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Abstract

In the theory of cocyclic self-dual codes three types of equiva-
lences are encountered: cohomology or the equivalence of cocycles,
Hadamard equivalence or the equivalence of Hadamard matrices and
the equivalence of binary linear codes. There are some results re-
lating the latter two equivalences, see Ozeki [12], but not when the
Hadamard matrices are un-normalised.

Recently Horadam [9] discovered shift action, whereby every finite
group G acts as a group of automorphisms of Z = 22(G, C), the finite
abelian group of cocycles from G x G — C, for each abelian group
C. These automorphisms fix the subgroup of coboundaries B < Z
setwise. This shift action of G on Z partitions each cohomology class
of Z.

Here we show that shift-equivalent cocycles generate equivalent
Hadamard matrices and that shift-equivalent cocyclic Hadamard ma-
trices generate equivalent binary linear codes.

1 Introduction

In [1, 2, 3], the [I, A] construction was used to obtain doubly-even self-
dual codes from Z% x Z; and Dy, - cocyclic Hadamard matrices for ¢ odd,
t < 9. The equivalence classes of the codes obtained from all these groups
were also catalogued. The internal structure of these Hadamard matrices
permitted substantial cut-downs in the search time for each code found. In
addition, there was no longer any need for generating the entire matrix A
before a search could take place.

While generating the self-dual codes from cocyclic Hadamard matrices it
was felt that the algebraic nature of these Hadamard matrices should lend
itself to the task of checking the equivalence of the self-dual codes.

Recently Horadam [9] dicovered shift action, whereby each group G acts as
a group of automorphisms of Z2(G, C), the abelian group of cocycles from
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G x G — C, for each choice of abelian group C. It will be shown here
that cocyclic Hadamard matrices which are shift equivalent indeed generate
equivalent self-dual codes.

We assume that the reader is familiar with the basic facts of the theory of
Hadamard matrices, (see [8, 13, 14]) and of binary linear codes (see [11]).

A code C is self-dual if it equals its dual code CL. A code is doubly-even
if all codewords have weights divisible by four. A code is singly-even if all
codewords have even weights. It is known that the minimum distance d of
a self-dual, doubly-even code of length n, satisfies d < 4 [%] +4, (see [11]).
C is extremal if this theoretical maximum is attained.

The paper is organised in the following manner: In Section 2 we explain
the necessary background algebra relating to cocycles and their equiva-
lences. Section 3 gives some background information on Hadamard ma-
trices and describes the effect of shift equivalence on cocyclic Hadamard
matrices. Section 4 details the structure of the cocyclic Hadamard matri-
ces used to generate self-dual codes and looks at the relationship between
shift-equivalent cocyclic Hadamard matrices and the self-dual codes they
generate. Section 5 catalogues the self-dual codes found so far in terms of
shift-equivalence classes.

2 Shift equivalence

If G is a group and C is an abelian group, a (2-dimensional, normalised)
cochain is a mapping ¥ : G x G — C satisfying ¥(1,1) = ¥(g,1) =
¥(l,g)=1, VgeGi.

A cochain is a cocycle if it satisfies the cocycle equation:

¥(g, R)¥(gh, k) = (g, hk)p(h, k) 1)

A cocycle may be represented as a cocyclic matrix

My = [(g, h)lgnec (2)

once an indexing of the elements of G has been chosen.

The set C%(G,C) of all cochains from G to C forms an abelian group
under pointwise multiplication and the set Z*(G, C) of all cocycles forms
a subgroup. The identity 1 € C*(G,C) is the cochain which maps every
element of G x Gto 1 € C.
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A cocycle is a coboundary 8¢ if there exists a set mapping ¢ : G — C
with ¢(1) = 1 such that d¢(a,b) = ¢(a)~1¢(b)~14(ab).

The set of coboundaries B%(G,C) forms a subgroup of Z%(G,C). Two
cocycles 9 and 1’ are cohomologous if there exists a coboundary 8¢ such
that ' = 98¢. Cohomology is an equivalence relation and the cohomology
class of 1 is denoted by [¢f]. In particular, [1] = B%(G,C).

A stronger equivalence relation, called shift equivalence, is described in [9].

Definition 2.1 The shift action of G on C%(G, C) is defined fora € G, ¢ €
C2%(G,C) to be ¢ - a € C*(G,C) where

(¥ - a)(g, h) = ¥(ag, k) (a, k)"

We say that 3 and ¢ - a are shift equivalent.

For a € G and ¥ € C%*(G,C), let ¥, : G — C be the set mapping
Ya(g) = ¥(a,g),g9 € G. Also let 3y, be the corresponding coboundary.

Hence if 9 is a cocycle, then

Y-a =190, Ya€GC, ¥ Z%G,C).

i.e., 9 is equivalent (cohomologous) to ¥ - a.

Thus the shift equivalence partitions each cohomology class, and is conse-
quently a stronger equivalence relation.

3 Shift equivalence and cocyclic Hadamard
matrices

A Hadamard matrix of order m is a square matrix [h(%,7)] with entries
h(i,j) = *1, 1 < i,5 < m, whose row vectors are pairwise orthogonal.
A Hadamard matrix must have order 1, 2 or a multiple of 4, but no other
restrictions on the order of a Hadamard matrix are known, and the century-
old Hadamard Conjecture proposes that a Hadamard matrix exists for every
m=0 (mod 4).

If we take C in (2) to be the group Z; = {1,—-1} then My is a cocyclic
binary matrix and it is computationally easy to check whether M, is a
Hadamard matrix, as we only need to check whether the dot product of the
first row with each other row is 0, see [4].
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Recall two binary matrices are Hadamard equivalent if one can be obtained
from the other by a sequence of row or column permutations or negations.

The question arises as to whether there is a relation between shift equiv-
alence and Hadamard equivalence. This is particularly interesting since
two cocycles which are cohomologous need not generate Hadamard equiv-
alent matrices. Further if a cocycle generates a Hadamard matrix then a
cohomologous cocycle need not even generate a Hadamard matrix.

Proposition 3.1 Let My = [¥(g,h)]g,nec be the cocyclic matriz of 1.
From the definition of shift equivalence My.. = [¢(ag, h)¥(a, k) )y nec-
Consequently, My., can be obtained from My for a € G by the following
steps:

1. Change the order of the elements of G from g€ G to g’ = ag € G.

2. Rearrange the rows of My with respect to this indering obiaining
M' = [(ag, h))g,nec. Now the first row of M’ is indezed by a.

3. Obtain My., from M’ by multiplying every row of M’ point-wise by
the first row of M.

Clearly My, is Hadamard equivalent to My, since the only operations are
interchanging rows and multiplying specific columns by -1.

Thus if two cocyclic matrices are shift-equivalent then they are Hadamard
equivalent, but Hadamard equivalence does not necessarily imply shift
equivalence.

4 Shift-equivalence and self-dual codes

In (10]), Horadam and Perera define cocyclic codes as follows: A code over
a ring R is termed cocyclic if it can be constructed using cocycles or the
rows of cocyclic matrices or is equivalent to such a code.

In [1, 3] Hadamard matrices H over Z% x Z; and over Dy, were used in the
[Z, A] construction to generate doubly-even and singly-even self-dual codes.

We will look at the structure of dihedral cocyclic matrices to understand
the relation between shift-equivalent Hadamard matrices and the codes they
generate.

In the case of the dihedral group Dy, of order 4t where ¢ is odd, cocyclic
Hadamard matrices developed over Dy, can exist only in the cases

(A,B,K)=(1,1,1),(1,-1,1),(1,-1,-1),(-1,1,1)
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for ¢t odd. Here A and B are the inflation variables and K is the transgres-
sion variable.

In the cases (A, B, K) = (1,1,1) or (4, B, K) = (-1,1, 1), for a Dy-cocyclic
Hadamard matrix to exist ¢ must be a sum of two squares. This is cer-
tainly true for ¢{ = 5, but no Hadamard matrices were found. (4, B, K) =
(1, -1, -1) was the case which yielded the most number of Hadamard ma-
trices and self-dual codes.

In this case, the D4;-cocyclic Hadamard matrices are ~; (Hadamard equiv-
alent) to

[ ND.-MD ] 3)

where M and N are 2t x 2t matrices each the entrywise product of a back—
circulant and a back-negacyclic matrix with first row m = (m;,ma, ... ™Mae)
and 7 = (n1,n2,...n2) respectively. If Cy, is the back circulant 2¢ x 2¢
permutation matrix with first row

1000...0

then D is the 2t x 2t matrix obtained by negating every non-initial column
of Co;. See [7] for more details.

H is fully determined by the ordered pair (ni,7). For example for ¢ = 3,

- -

m ma m3 mg ms meg

m2 mg3 my msg Mg —m
M=| ™ ™ mg me —mMp —m2
mg Mg ms -—-my —m2 —m3
ms meg -—m; -—my —mM3 -—my

me —m; -—Mg -—M3 -—My —MmMp

and similarly for N.

H is a cocyclic Hadamard matrix if and only if

M? 4+ N? = 4tl,, (4)

This equation was used to generate Dy,-cocyclic Hadamard matrices for
t = 3,5,7 and 9. One of the major problems in such a search has always
been exponential growth of the search space. Image restoration techniques
(explained in [3] and [6]) were used to mitigate some of these effects.

These matrices were then used to generate self-dual codes, which by [10]
are Dy,-cocyclic self-dual codes.
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One of the intriguing consequences of this search for extremal self-dual
codes, was codes with only one code word of minimum weight. This: in-
teresting case was first encountered in the case ¢ = 5, and only among the
doubly-even codes in that case. In the case ¢t = 7 singly-even codes with
one codeword of minimum weight were found, whereas in the case t = 9
there are both singly-even and doubly-even codes of this type.

All the self-dual ‘codes were classified into code equivalence classes except
for the codes with one codeword of minimum weight. The question arose as
to whether there is a relation between the many codes with this property.
Recall that two binary codes are said to be equivalent if one can be obtained
from the other by interchanging columns. Ozeki [12] showed that equivalent
normalised Hadamard matrices give equivalent self-dual codes, but it is easy
to see that equivalent un-normalised Hadamard matrices need not generate
equivalent linear codes.

The question is whether shift-equivalent cocyclic matrices give equivalent
codes.

Proposition 4.1 Let us consider the effect of the following operations on
a matriz of type (3).

1. Multiplying all rows of a Hadamard matriz, M, of type (8), entry-
wise by the first row. and all columns entry-wise by the first column
gives a normalised Dy, - cocyclic Hadamard matriz My,

2. Rearranging the rows of My according to the indezing {ag} g € G
and then multiplying all rows pointwise by the resulting first row, we
obtain the shift equivalent matriz My.q.

3. Suppose M’ was the matriz obtained from M by rearranging the rows
according to the indexing {ag} g € G. Then normalising M’ as in
step 1, we would get My.q.

Clearly M’ and M are obtained from shift-equivalent cocycles. The matrices
used in the [I, A] construction are M and M’. Since M and M’ differ only
by a permulation of the rows, they will generate equivalent codes.

Following is a small example which clarifies the above point. We use a
matrix which is Hadamard equivalent to a Z2- cocyclic matrix. The basic
theory is outlined in [4]. The first row and column give the index of the
remaining rows and columns.
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e a b ab
n =z y z
M= z An 2z Ay

y Kz Bn Bkzx
z Aky Bz ABKn

On performing step (1) we get

S.op ol

x |e a b ab
el 1 1 1

M= all A nxyz  Anzyz
b11 Knayz B BKnzyz
ab

1 AKnzyz Bnzyz ABK
This matrix is a Z2- cocyclic matrix.

Let g = b. Indexing the rows according to the new index {bg : g € G}, that
is, {b, ab, e, a} and performing the operations in step (2) we get

| e a b ab

1 1 1 1

1 A nzyz ABKnzyz
1 Knzyz B BKnzyz
a |l AKnzyz Bnzyz ABK

Consider the matrix M’ obtained from M by rearranging the rows according
to the index {b, ab, ¢, a}

*
5
My,= ab
€

*|le a b ab
bly Kz Bn Bkz
M= aob|z Aky Bz ABKn
e|ln =« v z
alz An 2z Ay

Normalising M’ using step (1), we get My,.,.

It can now be seen that matrix M’ can be obtained from M by simple
rearrangement of the rows of M according to the indexing {bg: g € G} =
{b, ab, e, a}.

Consequently M and M’ would generate equivalent codes. Thus shift-
equivalent cocyclic Hadamard matrices generate equivalent codes. We can
now classify the self dual codes according to shift equivalence classes.

181



5 Computational results

Here by shift-equivalent, we mean that if we normalised the Hadamard
matrices as described in step (1) of Proposition 4.1, we would get shift-
equivalent cocyclic Hadamard matrices.

Tests were conducted on all Hadamard matrices cocyclic over Dag which had
resulted in doubly-even self-dual codes. Firstly, we checked whether any of
the cocyclic matrices could be obtained from each other by rearrangement of
the rows according to the Cayley table of Dyg. None of the matrices were
found to be row-rearrangements of each other. This was not surprising,
since rearrangement of the rows results in a very different pattern to the
one (3) used for generating the Dy, - cocyclic Hadamard matrices.

When the normalised Dy, - cocyclic Hadamard matrices (normalised as in
step (1) of Proposition (4.1)) were tested for shift equivalence, 35 shift-
equivalence classes were found, each with 160 matrices. Table 1 classifies
the self-dual codes found in [1] according to shift-equivalence classes. A
representative of each class is given in the form {mi;7}. The vectors 7t and
7 are given in the form of integers. The corresponding vectors are generated
by converting the integers to binary, and then replacing all 0’s by -1’s.

Note that there are two code equivalence classes associated with some of
the shift-equivalence classes. This may seem to be contradictory to the
theoretical result in section 4 but can be explained easily:

It was noted in [1] that the structure of the dihedral-cocyclic Hadamard ma-
trices was too restrictive to produce doubly-even or singly-even codes using
the [I, A] construction. The following steps were used to identify “good”
Hadamard matrices, i.e., those that give doubly-even self-dual codes.

1. Generate all Hadamard matrices cocyclic over Dy, for ¢ odd.

2. Keep all matrices with the number of +1s in each row congruent to
either 3 (mod 4) or 1 (mod 4).

3. To produce doubly-even codes multiply every row with the number
of +1s congruent to 1 (mod 4) by —1.

It is now clear that the Hadamard matrices used for generating the self-dual
codes are no longer truly cocyclic, but we thought it still an interesting ex-
ercise to classify the code classes obtained according to the shift-equivalence
classes.

The code class 0 is the class of codes with one code word of minimum
weight. This class of codes cannot actually be called an equivalence class
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Table 1: Code classes distributed into shift-equivalence classes

C-e | Rep cocylic S-e C-e | Rep cocylic S-e
Class | matrix {;#} | Class || Class | matrix {;7} | Class
01 33;425 31 9 | 32; 202 34
0| 77; 161 21 10 | 18; 98 25
0 | 61; 202 26 10 | 22; 232 13
1112;372 27 11 | 18; 185 24
1112;82 35 11 | 22; 371 12
2] 18; 280 23 12 | 34; 208 4
212292 15 12 | 20; 475 16
2| 12; 331 28 12 | 34; 188 7
21 12;162 34 12 | 20; 118 20
3 | 22; 462 11 13 | 34; 304 1
31 12; 186 32 13 | 20; 440 17
3]12;181 33 13 | 34; 244 3
3 | 18; 465 21 13 | 20; 285 18
4 | 12; 466 26 || 13 | 34; 179 8
41 22;197 14 13 | 20; 145 19
41 12; 276 31 14 | 66; 188 6
4| 18; 395 22 14 | 34; 44 10
5 | 12; 302 29 15 | 34; 50 9
5 | 12; 296 30 16 | 34; 194 6
6 | 61; 306 27 16 | 66; 50 10
6 | 33; 345 35 17 | 34; 268 2
7 ] 33; 405 32 17 | 34; 203 5
7| 32; 332 33 18 | 77; 117 25
8162172 29 19 | 77; 482 23
8| 61;172 30 20 | 77,471 22
9 | 62; 212 28 21 | 77; 376 24
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as we have not exhaustively checked whether the codes are equivalent to
each other. The computer algebra package, MAGMA [5] stalls when asked
to check the equivalence of these codes.
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