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ABSTRACT. A caterpillar R is a tree with the property that after deleting
of all vertices of degree 1 we obtain a path P or a single vertex. The path P
is called the spine of caterpillar R. If the spine has length 3 and R contains
vertices of degrees r, 3,2, 2, where r, s > 2, then we say that Risa [r,5,2,2)-
caterpillar of diameter 5. We completely characterize [r, 5,2, 2]-caterpillars
of diameter 5 on 4k + 2 vertices that factorize Kag 2.

1. INTRODUCTION

Let G be a simple graph with at most n vertices. A graph H with n
vertices has a decomposition into subgraphs Gy, Gy, Gy, ..., G, if each edge
of H belongs to exactly one G;. When all subgraphs G;,0 < i < s, are
isomorphic to a graph G, we say that H has a G-decomposition. If G has
exactly n vertices and none of them is isolated, then G is called a factor
and the decomposition is called a G-factorization of H.

Graph factorizations have been extensively studied for many years.
Special attention has been paid to isomorphic factorizations. Among graphs
whose G-factorizations have been sought, the most popular ones are the ob-
vious candidates—complete graphs and complete bipartite graphs (see, e.g.,
[2]). In this paper we concentrate on isomorphic factorizations of complete
graphs into spanning trees and in particular into spanning caterpillars of
diameter 5.

A simple arithmetic condition shows that only complete graphs with
an even number of vertices can be factorized into spanning trees. Moreover,
every spanning tree, which factorizes K, satisfies the mazimum degree
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condition, which means that for each vertex v in such a tree on 2n vertices
it holds that deg(v) < n.

It is a part of graph theory folklore that each graph K, can be
factorized into hamiltonian paths Ps,. On the other hand, it is easy to
observe that each K, can be also factorized into double stars; that is, two
stars K -1 joined by an edge with the endvertices in the centers of both
stars. The first attempt to fill the gap between these two extremal cases
was P. Eldergill’s thesis [1], where he dealt with symmetric trees. Some
classes of non-symmetric trees were examined by Fronéek [3,4], Frongek
and the author [6], and by the author [7]. In [5] Fronéek proves that some
classes of caterpillars of diameter 4 and 5 do not factorize complete graphs
of order 2n. Results in this paper together with Fronéek’s results [5] give
a complete characterization of caterpillars of diameter 5 and order 4k + 2
with exactly two vertices of degree 2 that factorize Kyxio.

The labeling used in constructions in this paper exists only for graphs
with 4k+2 vertices. Therefore, we examine just a special class of caterpillars
of diameter 5, namely the caterpillars of order 4k + 2 with exactly two
vertices of degree 2. The reason why we do not present here a more general
class is that the caterpillars with one or none vertex of degree 2 require
many different and usually very long constructions. The results for the
remaining classes are already in preparation.

2. DEFINITIONS AND NOTATION

A labeling of G with at most 2n + 1 vertices is an injection A :
V(G) — S, where S is often a subset of the set {0,1,...,2n}—however, in
this paper we have S = {0p, 1o, - ., (n—1),01,1;,...,(n—1)1}. The labels
of vertices u,v, denoted A(u) = i,A(v) = j, respectively, where ¢,j € S,
induce uniquely the length £(e) of the edge e = (u,v) with endvertices u,v.
All labelings used here are generalizations of labelings introduced by A.
Rosa [8,9].
The following definition was introduced in [4].
Let T be a tree with 2n = 4k + 2 vertices, V(T) = VoUW,V N
Vi =0, and |Vo| = |Vi]| = 2k + 1. Let X be an injection, A : V; =
{04,1;,2;,...,(2k)i},i = 0,1. The pure length of an edge (zi,y;) with
zi,¥; € Vi,i € {0,1} is defined as follows: If A(z;) = a; and A(y:) = b,
then £;(z;,y;) = min{ja — b|,2k +1 — Ja — b}} for i = 0,1. The mized
length of an edge (zo,%1) with A(ze) = ao and AM(y1) = by, is defined as
£01(z0,41) = b—a mod (2k + 1) for g € Vp,y1 € Vi. We say that T has
a blended p-labeling or just blended labeling if
(1) {Eﬁ(zi,y,-)](a:i,y.-) € E(T)} = {1,2,. .. ,k} fori=0,1,
(2) {801 (:co,yl)l(xo,yl) € E(T)} = {0, 1,2,.. .,2k}.
To simplify our notation, we often unify vertices with their respective
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labels. We will say “a vertex a;” rather than “a vertex z with A\(z) = a;”.
Similarly, we will say “an edge (a;,b;)” rather than “an edge zy, where
A(z) = a; and A(y) = b;”.

Notice that the lengths of pure and mixed edges are computed dif-
ferently. Suppose we have the complete graph K,4 with the vertex labels
0o, 1o,...,60,01,1;,...6;. Then both the edges (19,30) and (1o,6p) have
the pure length 2. On the other hand, the edge (1p,3;) has the mixed
length 2 while the edge (11, 3o) has the mixed length 5. Similarly, the edge
(10, 61) has the mixed length 5 while the edge (6o, 1;) has the mixed length
2.

It was proved in [4] that a tree T of order 4k + 2 with a blended
labeling allows a T-factorization of Ky 2.

We want to characterize some classes of trees on 4k + 2 vertices
of diameter 5, which allow a blended p-labeling. Since the factorization
into hamiltonian paths Py is well-known, we start our work with the
caterpillars. From now on we will only consider caterpillars with 4k + 2
vertices.

A tree R such that after deleting all leaves we obtain a path P or a
trivial graph is called a caterpillar. The path P is called the spine of the
caterpillar R.

It is clear that the caterpillars on 4k + 2 vertices of diameter 2 are
the stars K 411, which clearly do not satisfy the maximum degree con-
dition. The caterpillars of order 4k + 2 with diameter 3 are the double
stars mentioned above. Therefore, the first interesting case is the class of
caterpillars of diameter 4. The results obtained in [5] and [7] give the com-
plete characterization of the caterpillars of order 4k + 2 with diameter 4,
which factorize the complete graphs K4;,-. Hence, we continue with the
caterpillars on 4k + 2 vertices of diameter 5. Recall that if R is a caterpillar
of diameter 5 then the spine of R has four vertices.

Let the spine of a caterpillar R of diameter 5 have vertices A,a, b, B
and edges Aa,ab,bB. Then we see that the endvertices of the spine of R
of diameter 5 are denoted by A, B and the internal vertices are denoted by
a,b. If deg(A) = dy,deg(a) = da,deg(b) = d3,deg(B) = dy, then such a
caterpillar will be called a (d;,d2, ds, d4)-caterpillar. If we specify just the
degrees of the vertices, say as r, > re > r3 > r4, without specifying their
location in the spine, then we will denote R as an [ry, 2,73, r4)-caterpillar.

It is obvious that no [4k—2, 2, 2, 2]-caterpillar can factorize K4y for
any k > 2, because it does not satisfy the maximum degree condition. Note
that [4k — 2,2, 2, 2]-caterpillar of order 4k + 2 for k = 1 is the hamiltonian
path P;.

Notice that we deal only with trees with 4k + 2 vertices, since trees
with 4k vertices do not allow a blended labeling (see [6]). We conclude this
section with the main result of this paper that will be proved in Section 3.
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Theorem 2.1. An [r,s,2,2]-caterpillar R with diameter 5 and 4k + 2 ver-
tices factorizes Kyxio if and only if 3 < r,8 <2k+1 and R is not isomor-
phic to (2k + 1,2,2,2k — 1)- or (2k + 1,2,2k — 1, 2)-caterpillars.

3. [r,3,2,2]-CATERPILLARS FOR 3 < 7,8 <2k +1

If r,3 > 2 then we see that a [r, s, 2, 2]-caterpillar R of order 4k + 2
has exactly two vertices u,v € {4, a,b, B} such that degg(u) =r > 2 and
degp(v) =s>2for k> 2.

Notice that P. Eldergill in [1] complete characterized trees on 10
vertices that factorize Ky9. Therefore we can deal only with [r,s,2,2]-
caterpillars on 4k + 2 vertices for k > 3.

We express degp(u) and degg(v), respectively, as z + 2 and y + 2. If
R satisfies the maximum degree condition then it holds that z +y = 4k —4
for z < 2k — 1,y < 2k — 1. Thus the solutions of previous equation are
either

1) z=2k—-1,y=2k—3o0r

) T=2k—2,y=2k—2.

Therefore, we can further consider only [2k+1,2k—1, 2, 2]- and [2k, 2k, 2, 2]-
caterpillars. To prove Theorem 2.1, we will use the following result.

Theorem 3.1. (Froncek (5]) Let R be a caterpillar of order 2n and diame-
ter 5 that is isomorphic either to (n,2,2,n—2)- or (n,2,n—2, 2)-caterpillar.
Then R does not factorize Koy,.

In our proofs we will use the following lemma.

Lemma 3.2. Let T be a tree on 4k + 2 vertices, which allows a blended
p-labeling. Then ).y, deg(i) = 3_;cy, deg(s) =4k + 1.

Proof. If a tree T of order 4k + 2 has a blended labeling then it has k pure
00-edges, k pure 11-edges and 2k + 1 mixed 0l-edges. Each pure 00-edge
contributes to the sum }.. . deg(i) by 2 and every mixed 0l-edge by 1.
Therefore 3, y, deg(i) = 2k +2k+1 = 4k + 1. For the sum }_;.,, deg(j)
the proof is essentially similar.

Lemma 3.2 will be called the degree condition for a blended labeling.

Recall that every tree T' with a blended labeling has vertices labeled
so that % = {003 10’ eey (2’5)0},‘/1 = {01) 111"'7 (2k)1} and V(T) = ‘/0 u
V1, VonV; = 0. Therefore in all following constructions we assume that the
vertices are already labeled and then join them by edges, keeping in mind
that we need to construct the [r, s,2, 2]-caterpillar while obtaining exactly
one edge of each mixed length from 0 to 2k and exactly one edge of every

pure length from 1 to k in each partite set.
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Lemma 3.3. All[2k+1,2k-1,2,2]-caterpillars with the exception of (2k+
1,2,2,2k—1)- and (2k+1,2, 2k—1, 2)-caterpillars factorize Kyx2 for k > 3.

Proof. By constructions.

Case 1. Let R be a (2k + 1,2k — 1,2,2)-caterpillar. Furthermore, let
V(R) = Vo UV}, where Vp = {09, 1o, ..., (2k)o}, V1 = {01,14,...,(2k),} and
A= 00,0, = Ol,b = (2’6 - 2)1,3 = (2’6)1

The diametrical path P’ of R is (k+1)o, 0, 01, (2k—2)1, (2k)1, (2 —
1);. Thus P’ contains 00-edge of length k, 01-edge of length 0 and 11-edges
of lengths 3,2, 1.

Further we join each vertex from the sets {(k+2), (k+3)o, ..., (2k)o},
{11,24, ..., k1} by an edge to the vertex A = 0y and each vertex from the sets
{14, 20, --., ko}, {(k+1),, (k+2)1,...,(2k—3): } to the vertex a = 0,. We see
that R also contains 00-edges of lengths k—1,k—2, ..., 1, 01-edges of lengths
1,2,..,k and 2k,2k — 1,...,k + 1, and 11-edges of lengths k,k — 1,...,4.

Case 2. Let R be a (2,2k+1,2,2k— 1)-caterpillar and let A = (k+1);,a =
00,0 = k;,B = 0.

Again first we construct the diametrical path P’ of R so that P' =
(k + 1)o, (k + 1)1,00, k1,01, (2k);. Then P’ contains Ol-edges of lengths
0,k + 1,k and 11-edges of lengths k, 1.

Further we join each vertex from the sets {ko, (k + 2)o, (k + 3)o, ...,
(2’5)0}, {11,21,...,(’6 - 1)1} by an edge to the vertex a = 0p and each
vertex from the sets {1q,2, ..., (k — 1)o}, {(k + 2)1, (K + 8)1, ..., (2k — 1)1}
to the vertex B = 0,. Hence, R also contains 00-edges of lengths k and
k—1,k-2,..,1, Ol-edges of lengths 1,2,....k — 1 and 2k,2k — 1,...,k + 2,
and 11-edges of lengths k- 1,k — 2,..., 2.

Case 3. Let R be a (2,2k + 1,2k — 1,2)-caterpillar and let A = 2;,a =
007b = OlaB = (2k)1-

First we construct the diametrical path P’ of R so that P’ = (k +
2)1,21,00,01, (2k)1, (k+1)1. Then P’ contains 01-edges of lengths 0,2 and
11-edges of lengths k and & — 1, 1.

Further we join each vertex from the sets {(k+1)o, (k+2)o, ..., (2k)o},
{11,31,41,...,k1} by an edge to the vertex a = 0y and each vertex from
the sets {19, 2o, ..., ko}, {(k + 3)1, (k + 4)1,..., (2k — 1)1} to the vertex b =
0:. Hence, R also contains 00-edges of lengths k,k — 1,k — 2,...,1, 01-
edges of lengths 1,3,4, ...,k and 2k,2k —1,...,k+1, and 11-edges of lengths
k—2,k-3,..,2.

Case 4. Let R be a (2k — 1,2k + 1,2, 2)-caterpillar and let A = 0,,a =
00,b = 1;, B = (2k);.

We construct the diametrical path P’ of R so that P’ = (2k —
1), (2k)1,11,00,0;,(k + 1);. Then P’ contains 0l-edges of lengths 0,1
and 11-edges of lengths 1,2 and &.
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Further we join each vertex from the sets {(k+1)o, (k+2)o, ---, (2k)o},
{24,31, ..., k1} by an edge to the vertex a = Op and each vertex from the sets
{10, 20, ...y ko}, {(k+2)1, (k+3)1, ey (2’6—2)1} to the vertex A = 0;. Hence,
R also contains 00-edges of lengths k,k — 1,k — 2,..., 1, 01-edges of lengths
2,3,...,kand 2k,2k—1,...,k+1, and 11-edges of lengths k -~ 1,k — 2,...,3.

It is easy to check that the caterpillar R in each previous case has a
blended labeling. Therefore R factorizes K4z42. O

Lemma 3.4. Every [2k, 2k, 2, 2]-caterpillar factorizes Kyry2 for k > 3.

Proof. By constructions.

Case 1. Since (2k,2,2,2k)- and (2, 2k, 2k, 2)-caterpillars are symmetric, it
follows from Eldergill’s resuits [1] that they factorize Kyg42.

Case 2. Let R be a (2k,2,2k,2)-caterpillar and let A = 0g,a = ko,b =
01,B=(k+1).

We construct the diametrical path P’ of R so that P’ = (2k)e, 0o, ko,
01,(k+1)1,(k+1)o. Then P’ contains 00-edges of lengths 1, k, 01-edges of
lengths k + 1 and 0, and 11-edge of length k.

Further we join each vertex from the sets {(k+2)o, (k+3)o, ..., (2k—
1)o}, {11,21,..., k1 } by an edge to the vertex A = Op and each vertex from
the sets {1¢,20,...,(k — 1)o}, {(k + 2)1,(k + 3)1,..,(2k)1} to the vertex
b = 0;. Hence, R also contains 00-edges of lengths k — 1,k — 2,...,2, 01-
edges of lengths 1,2, ...,k and 2k,2k — 1, ...,k + 2, and 11-edges of lengths
k—-Vk-2,..,1

Case 3. Let R be a (2k, 2k, 2,2)-caterpillar and let A = 0g,a = (k+1)1,b =
(k+1)g,B=0;.

We construct the diametrical path P’ of R so that P’ = ko, 0o, (k +
1)1,(k + 1)0,01,k1. Then P' contains 00-edge of length k, 0l-edges of
lengths k + 1,0, k and 11-edge of length k.

Then we join each vertex from the sets {1y, 2o, ..., (k—1)o}, {11, 21, ...,
(k — 1)1} by an edge to the vertex A = Op and each vertex from the sets
{(k + 2)o, (k + 3)o, .-, (2k)o}, {(k + 2)1,(k + 3)1,..-,(2k)1} to the vertex
a = (k + 1);. Hence, R also contains 00-edges of lengths 1,2,...,k — 1,
01-edges of lengths 1,2, ...,k — 1 and 2k,2k — 1,...,k + 2, and 11-edges of
lengths 1,2, ...,k — 1.

We see that the caterpillar R in the cases 2 and 3 has a blended
labeling. Therefore R factorizes Kax42. O

From above it follows that every [r, 3,2, 2]-caterpillar for 3 < r,8 <
2k + 1, with the exception of (2k +1,2,2,2k —1)- and (2k +1,2,2k—1,2)-
caterpillars, factorizes K4g4+2. This result together with Theorem 3.1 and
the maximum degree condition gives the proof of Theorem 2.1.
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