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Abstract

A vertex set D of a graph G is a dominating set if every vertex
not in D is adjacent to some vertex in D. The domination number
v of a graph G is the minimum cardinality of a dominating set in G.
In 1989, Brigham and Dutton [1] proved
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for each graph G of order n, minimum degree § > 2, and girth g > 5.
For this class of graphs, Volkmann [8] recently gave the better bound
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if G is neither a cycle nor one of two exceptional graphs.
If G is a graph of order n, minimum degree § > 2, girth g > 5,
then we show in this paper that
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‘ if G is neither a cycle nor one of 40 exceptional graphs of order be-
: tween 8 and 21.
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1. Terminology

We consider finite, undirected, and simple graphs G with the vertex
set V(G) and the edge set E(G). The number of vertices |V(G)| of a
graph G is called the order of G and is denoted by n = n(G). The open
neighborhood N(v) = Ng(v) of the vertex v consists of the vertices adjacent
to v, and the closed neighborhood of v is N[v] = Nglv] = N(v) U {v}.
For a subset S C V(G), we define N(S) = Ng(S) = Upesg N(v) and
N[S]) = N¢[S] = N(S)US. The vertex v is an end-vertez if dg(v) = 1, and
an isolated vertez if dg(v) = 0, where d(v) = dg(v) = |N(v)] is the degree
of v € V(G). An edge incident with an end-vertex is called a pendant edge.
By § = 8(G) we denote the minimum degree of the graph G. The distance
dg(z,y) = d(z,y) between two vertices z and y of a graph G is the length
of a shortest path from x to y. The girth g = g(G) of a graph G is the
length of a shortest cycle of G. We write C,, for a cycle of length » and K,
for the complete graph of order n. A cycle with length = is also called an
n-cycle. If G is a graph and k a positive integer, then let kG be the disjoint
union of k copies of G.

A set D C V(Q) is a dominating set of G if Ng[D] = V(G). The domi-
nation number v = ¥(G) of G is the cardinality of any smallest dominating
set.

The corona H o K, of the graph H is the graph constructed from a copy
of H, where for each vertex v € V(H), a new vertex v’ and a pendant edge
vv’ are added.

For detailed information on domination and related topics see the com-
prehensive monograph [3] by Haynes, Hedetniemi, and Slater.

In 1989, Brigham and Dutton (1] proved

(@) <[99

for each graph G of minimum degree § > 2 and girth g(G) > 5 (for a proof
of this inequality cf. also [3], pp. 56-57). For this class of graphs, Volkmann
[8] recently gave the better bound

o< [O=501=8)

if G is not a cycle and not isomorphic to the graphs 2C; or Bg (see the
figure below).
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If G is a graph of minimum degree § > 2 and girth g(G) > 5, then we
show in this paper that

+(G) < [3”‘0) =20 9] ,

if G is not a cycle and not isomorphic to a member of the family AUBUDUL
of 40 exceptional graphs defined in the next section.

2. Preliminary results

The following well-known results play an important role in our investi-
gations.

Proposition 2.1 (Ore [4] 1962). If G is a graph without isolated vertices,

then
Y(G) < lnTG)J

Theorem 2.2 (Payan, Xuong [5] 1982, Fink, Jacobson, Kinch,
Roberts [2] 1985). For a graph G with even order n and no isolated
vertices, v(G) = n/2 if and only if the components of G are the cycle C,
or the corona H o K for any connected graph H.

In 1998, Randerath and Volkmann [6] and independently, in 2000, Xu,
Cockayne, Haynes, Hedetniemi, and Zhou [9] (cf. also [3], pp. 42-48) char-
acterized the odd order graphs G for which 4(G) = |n/2]. In the next
theorem we only note the part of this characterization which we will use in
Section 3.

Theorem 2.3 (Randerath, Volkmann [6] 1998 and Xu, Cockayne,
Haynes, Hedetniemi, Zhou [9] 2000). Let G be a connected graph
of odd order n with §(G) > 2. Then ¥(G) < (n — 3)/2, unless G = Cs,
G = Cy, or G belongs to a family of 10 graphs of order at most 7 with girth
less than or equal 4.

Theorem 2.4 (Volkmann [8] 2005) Let G be a graph of order n, mini-

mum degree § > 2, and girth g > 5. If G is not a cycle and not isomorphic
to 2C7 or to Bg (see the figure), then

3n—g—-6
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A proof of Theorems 2.2 can also be found in [7], pp. 223-224. In
order to formulate our main result, we define a collection of graphs in the
following figure.
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p L g
[ ] [ ] 4
3
B; =Csé,7 B3 =Cs.7,10 Az
J’ [ ] [ ] L . [ ]
By =Cegs Bs = Cs,7,7 Bg = Cs7,11
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4 L g

Dy D3 Dy

The denotation Cy 4 - in this figure means that the corresponding graph
has exactly three cycles of length p, ¢, and r. This notation is helpful to
see that the graphs By, Bs,..., Bjg are not isomorphic.

We define by A= {Al, Az, ceey As}, B = {Bl, BQ, ooy Blg}, and D =
{D1, D2, D3, Dy}. In addition, let £ be the the family of graphs, consisting
of the nine graphs 2Cs, 2C7, 2C\g, 3C7, CsUCy, C¢UCr, C7UCs, C7UChy,
and C; U Bs.

3. Main result

Theorem 8.1 Let G be a graph of order n, minimum degree § > 2, and
girth ¢ > 5. If G is not a cycle and not isomorphic to a member of the
family AUBUD UL, then

v |2 1

Proof. It is straightforward to verify that the graphs of the family AUBU
DU £ do not satisfy inequality (1).

Observe that in general, a g-cycle can be dominated by [g/3] vertices.
Assume that G is not a cycle, and remove a g-cycle C, from G to a form
a graph H. Since g > 5 and § > 2, the graph H has minimum degree at
least 6 —1 > 1.

Case 1. Assume that one of the components F of the graph H is of
odd order such that §(F) > 2. According to Theorem 2.3, we conclude that
¥(F) < (n(F) —3)/2 or F = Cs or F = C4. In the first case, Proposition
2.1 implies

< [ - g2 ] 2]
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and inequality (1) is proved. Therefore it remains to consider the cases that
F=Csor F=Cr;andthus5<g¢g<7.

Subcase 1.1. Assume that H = F. If F = Cs, then it follows that
C, = Cs. If G is disconnected or there exists exactly one edge between
F and C,, then we obtain the exceptional graphs 2Cs or A;. If there are
at least two edges between F' and C,, then, since g = 5, we arrive at the
exceptional graph As or we obtain the desired inequality

16 n-g-9
vea- || [0

Assume now that F = C5. If there is no edge between F' and Cj, then
we arrive at the exceptional graphs 2C7, Cs U Cy, or Cg U Cy. However, in
the case that G is connected, it is a simple matter to show that inequality
(1) is valid.

Subcase 1.2. Assume that the graph H has a further component F; of
even order such that §(F;) > 2. According to Theorem 2.2, we deduce that
¥(F1) £ [(n(F1) — 2)/2]. Since ¥(F) < [(n(F) —1)/2], Proposition 2.1
leads to the desired bound

n(H)-3 g 3n—-g-9
v [M= ] [

Subcase 1.3. Assume that the graph H has two further components F
and F5 of odd order. In view of Proposition 2.1, we observe that v(F;) <
l(n(F;) — 1)/2] for i = 1,2, and we arrive at (1) as in Subcase 1.2.

Subcase 1.4. Assume that H has a further component F; of even order
such that §(F;) = 1. If F} is not a corona graph, then, by Theorem 2.2,
Y(F1) £ |(n(F1)-2)/2]. Analogously to Subcase 1.2, we obtain the desired
result.

It remains the case that F; is a corona graph. Firstly, assume that
n(F1) 2 4 and let u be an end-vertex of Fy. Because of § > 2, the vertex u
is adjacent with a vertex z € V(C,). If we choose, without loss of generality,
a minimum dominating set Dy of C, such that z € Dy, then D, dominates
the vertex u. Since F; — u is connected and of odd order at least three,
Proposition 2.1 implies y(Fy — u) < |[(n(Fy —u) — 1)/2]. This easily leads
to (1).

Secondly, assume that V(F;) = {u,v}. Because of § > 2, the vertices
u and v have neighbors z and y in C,;. Since g > 5, we conclude that
dg(z,y) >2and g < 6.

If g = 5, then {z,y} is a dominating set of V/(Cy) U {u,v}. In the case
that F = Cs, Proposition 2.1 yields

oo [ - g )
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In the case that F = C5, Proposition 2.1 also leads to the desired result

n—-g-9 g n—g—3 g 3n—-—g-9
vsar [ 5] 2 e 5 [

If g = 6, then d¢,(z,y) = 3 and {z,y} is again a dominating set of
V(C,y) U {u,v}. Furthermore, we deduce that F' = C%, and (1) follows as
in the last case.

Subcase 1.5. Assume that H has exactly one further component F; of
odd order.

Subcase 1.5.1. Assume that §(Fy) > 2. If F} # Cs,C%, then we obtain
(1)asinCase 1. If C; =Cs =F =F,Cy=Cs = F and F} = Cy,
Cg=Cs=F1 andF=C7,Cg=C5andF=F1=C7,ong=Csand
F = F; = Cf, then it is easy to see that (1) is valid. Now let F} = F =
Cy = C7. In this case we have the exceptional graph 3C7 or there exists
an edge between two of these cycles. But in the last case, we observe that
7<8=[(3n-g-9)/6].

Subcase 1.5.2. Assume that 6(F}) = 1. If u is an end-vertex of Fi, then
u is adjacent with a vertex z € V(Cy).

If F; —u is not a corona graph, then we conclude from Theorem 2.2 the
inequality y(F; — u) < |(n(F) — u) — 2)/2]. Applying Proposition 2.1, we

obtain
o =g g

and (1) is proved.
Finally, assume that F) — u is a corona graph. Let n(F}) = 2p+1 with
p21. If C;=Cs and F = Cs or F = Cz, then we deduce inequality (1)

as follows: (F) 3 0
n n—g-—
< = .
vspene [N [
This is also valid if Cy = C and thus F' = C7. So it remains the case that
Cy = C7 and F = (7. If there is an edge between C, and F, then it is
straightforward to verify that

3n—g-9'|

< 5=
Yy<p+ [ 6

Consequently, we consider now the case that F = C7 is a component of G.

Subcase 1.5.2.1. Assume that u is adjacent to a vertex of Fy —u which
is no end-vertex of F; — u. This implies that n(f} —u) > 4. Since F] —u
is a connected corona graph, there exist two further end-vertices v and w
of F; such that dg(u,v) = 2 and dg(u,w) = 3. If 2,3,z € V(C,) are the
neighbors of u, v, w, respectively, then it is straightforward to verify that
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{z,9, 2z} is a dominating set of V(Cy) U {u,v,w}. Since F} — {u,v,w} is
connected, Proposition 2.1 implies v(Fy — {u,v, w}) < (n(F1 - {u, v, w})/2.
Altogether, we obtain

oo A2 [0 g =]

Subcase 1.5.2.2. Assume that u is adjacent to an end-vertex of F; —
If n(F1) = 3, then we arrive at the exceptional graph C;U Bg. If n(F}) > 5,
then there exists a further end-vertex v of Fy with dg(u,v) = 4. Ify is
adjacent with y € V(C,), then we can choose a minimum dominating set
D, of Cy such that z,y € D,. Since F; — {u,v} is connected and of odd
order, Proposition 2.1 implies y(F; — {u,v}) < (n(F;) — 3)/2. This leads
to (1) as in Subcase 1.5.2.1.

Case 2. Assume that one of the components F of H is of even order
such that 6(F) > 2, and H has no component of odd order and minimum
degree at least two.

Subcase 2.1. Assume that H = F. The hypothesis ¢ > 5 implies
n(F) > 6. Since §(F) > 2, Theorem 2.2 yields y(F) < [(n(F) —2)/2], and

we obtain n(F) -2 v Sn—g—6
v< —2—J+[§]S [T] 2

If g = 3s or g = 3342, then n and s are of the same parity, and we observe
that ~
In—g-6| [3n—g-9
6 B 6 ‘

This identity and inequality (2) lead to the desired bound (1) in these two
cases. In the remaining case that g = 3s+1 > 7, we investigate three cases.
Subcase 2.1.1. Assume that F is a cycle Cp of lengthp > g > 7.
Subcase 2.1.1.1. Assume that p = 3t w1th t > 3. Since F is of even
order, we observe that t > 4 is even and this leads to

I1+|2|= n-g-9
s [g]4[2]- e resmmaz],

Subcase 2.1.1.2. Assume that p=3t+ 1 with £ > 2. Since F is of even
order, we observe that ¢ > 3 is odd. In the case that ¢ > 5, we arrive at (1)

as follows:
gl |p 3n—g-9
< ~|= < |—].
75[3]+[3-| s+1+t+1_[ 5 ]

There remain the cases p =10and g =7 or g = 10. If Cy and F = Cyo
are two components of G, then we have the exceptional graphs C; U Cyq or
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2C). However, if there is an edge between Cy and F = C)g, then (1) is
immediate.

Subcase 2.1.1.3. Assume that p = 3t+2 > 8. In the case that p > 14, we
arrive at (1) as in the last case. There remains the casesp=8 and g =7.
If Cy = C7 and F = Cg are components of G, then we have the exceptional
graph C; U Cs. If there is an edge between C, = C7 and F = Cg, then (1)
is immediate.

Subcase 2.1.2. Assume that F = Bg. Since Bg has a cycle of length 7,
it follows that g = 7. If Cy = C7 and F = Bg are two components of G,
then we have the exceptional graph C; U Bg. If there is an edge between
Cy = C7 and F = Bg, then it is easy to see that (1) is valid.

Subcase 2.1.8. Assume that F is neither a cycle nor isomorphic to Bg.
Because of §(F) > 2, there is a cycle C, of length p > g > 7 in F with the
property that p is the girth of F. Because of p > g =3s+1 and s > 2,
Theorem 2.4 leads to

y < s+1+ ———3"(F)gp_6]
< s+l4 3n—95—63—p—6‘|
< s+l4 3n—93—36—3s—1—6-l
_ [3n—6s—-4
- 6
_ [3n—-3s—1-3s-3
- 6
< '3n—g—9.|.
- 6

Subcase 2.2. Assume that H has a further component Fj of odd order.
Because of §(F) > 2, Theorem 2.2 and Proposition 2.1 yield immediately

n(H) -3 g n-g-9
s [ gl =]
Subcase 2.3. Assume that H has a further component Fj of even order.

Subcase 2.8.1. Assume that F) is not a corona graph. Analogously to
Subcase 2.2, we even obtain

o< [t fE]< =)

Subcase 2.8.2. Assume that F} is a corona graph such that n(F;) > 4.
If u is an end-vertex of Fy, then u is adjacent with a vertex z € V(C,).
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If we choose, without loss of generality, a minimum dominating set D, of
Cy such that z € Dy, then D, dominates the vertex u. Since F; — u is
connected and of odd order at least three, Proposition 2.1 implies

e !

This leads to (1) as in Subcase 2.3.1.

Subcase 2.3.3. Assume that F) is a corona graph such that n(F,) =
Let V(F1) = {u,v}. Because of § > 2, the vertices » and v have nelghbors
z and y in C,. Since g > 5, we conclude that de,(x,y) >2and g < 6. If

=5, then {z,y} is a dominating set of V(Cy) U {u, v}, and we conclude

that 0 3 0
n— n—g—

< < .

"’-“l p J-[ 6 ]

If g = 6, then dg,(z,y) = 3 and {z, y} is again a dominating set of V(Cy)u
{u,v}. Hence we obtain

n—10 In-g-9
vsor |20 s [P

Case 3. Assume that all components of H have minimum degree one,
and let F' be such a component of odd order.

Subcase 8.1. Assume that FF = H. Let u be an end-vertex of F. If
F — u is not a corona graph, then let z € V(C,) be a neighbor of u. If
we choose, without loss of generality, a minimum dominating set D,y of
Cy such that z € Dy, then D, dominates the vertex u. Since F — u is

of even order and not a corona graph, it follows from Theorem 2.2 that
Y(F = u) < |(n(F — u) —2)/2]. This leads to

<[]

In the case that F' — u is a corona graph, we distinguish four cases.

Subcase 3.1.1. Assume that n(F —u) =2. Let V(F —u) = {v,w} such
that v is adjacent with u. Since u and w are adjacent with vertices in Cj,
we deduce that g < 8.

If g = 5, then we arrive at the three exceptional graphs B, A, and Bs.

If g = 6, then we arrive at the two exceptional graphs B4 and Bs.

If g = 7, then we arrive at the exceptional graph Bg, and if g = 8, then
we arrive at the exceptional graph Bis.

Subcase 3.1.2. Assume that n(F — u) > 4 and u is adjacent with a
vertex in F' — v which is no end-vertex of F — u. If w is an end-vertex of
F — u with dp(u,w) > 3, then F — w is not a corona graph. Applying
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Theorem 2.2., we observe that y(F — w) < |(n(F — w) — 2)/2|. Now let
y € V(C,) be a neighbor of w. If we choose, without loss of generality, a
minimum dominating set D, of C, such that y € D,, then D, dominates
the vertex w. Altogether, we obtain
n(H) -3 g n-g-9
v 2= g =)

Subcase 3.1.8. Assume that n(F — u) > 6 and u is adjacent with an
end-vertex of F — u.

If there exists an end-vertex w # u of F such that dp(u, w) = 5, then
F —w is not a corona graph. Analogously to Subcase 3.1.2 we arrive at (1).

Otherwise, it follows that n(F —u) = 6 and thus g < 9. In the case
7 < g<9,itis a straightforward to verify that

n—g-9
<bh=|———|.
vss= B

If g = 6, then we arrive at the exceptional graph Az or the bound (1). In
the remaining case g = 5, we observe that -y < 4 and (1) is also valid.

Subcase 8.1.4. Assume that n(F — u) = 4 and u is adjacent with an
end-vertex of F —u. This implies that F' is a path uujuzugw of length 4
and that g < 12. Let z and y be the neighbors of u and w on the cycle Cg,
respectively.

Subcase 8.1.4.1. Assume that g = 3t + 1 with ¢ > 2. Since G is not a
cycle and not isomorphic to 2C or to Bg, it follows from Theorem 2.4 that

dn—g-6] _|3n—-9g-9
74___6 ]_Hz_[ : ]

Subcase 3.1.4.2. Assume that g =3t +2 with ¢t > 1. If g = 11, then we
observe that d¢, (z,y) = 5. Because of y < 5, inequality (1) holds. If g =8
and 2 < dg, (z,¥) < 3, then v < 4 and (1) is valid. Since d¢,(z,y) < 1is
not possible, it remains the case that dg, (z,y) = 4 and there is no further
edge in G. In this case we arrive at the exceptional graph Byy. If g =5
and dg, (x,y) = 0 or d¢,(z,y) = 2, then it is a simple matter to show that
the desired inequality holds. If g = 5 and dg¢,(x,y) = 1, then we obtain the
exceptional graphs B3 and A;.

Subcase 3.1.4.8. Assume that g = 3t with ¢ > 2. If g = 12, then we
observe that dg, (z,y) = 6. Because of ¥ < 5, inequality (1) is immediate.
Ifg=9, then 3 < dg, (z,y) < 4. If dg,(z,y) = 3, then y < 4 and (1) is also
valid. In the case that d¢, (z,y) = 4, there is no further edge, and we arrive
at the exceptional graph B;s. If g = 6 and d¢,(x,y) = 0 or d¢, (z,y) = 3,
we easily obtain (1). If g = 6 and dg,(z,y) =1 or dg,(z,y) = 2, then we
arrive at the exceptional graphs Bg, Ag, or By, respectively.
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Subcase 3.2. Assume that there exists a further component F; of even
order such that §(F,) = 1. If F; is not a corona graph, then Theorem 2.2
and Proposition 2.1 imply inequality (1) analogously to above.

Subcase 8.2.1. Let Fy be a corona graph with V(Fy) = {u,v}. It follows
that g < 6. If z and y are the neighbors of » and v on C, respectively, then
{z,y} is a dominating set of V(C,) U {u,v}. If g = 5, then we conclude
together with Proposition 2.1 that

n—8 n-g-9
< <
vse |25 s ]

and if g = 6, then we deduce that

n—9 In-g-9

< .
vs2s |232)s [

Subcase 3.2.2. Let F; be a corona graph with n(F;) > 4. If u is an
end-vertex of Fy, then u is adjacent with a vertex z € V(C,). If we choose,
without loss of generality, a minimum dominating set Dy of C, such that
z € Dy, then D, dominates the vertex u. Since F; — u is connected and of
odd order at least three, Proposition 2.1 implies

O

This leads to (1) as above.

Subcase 3.3. Assume that there exists a further component F; of odd
order such that §(F;) = 1. In the case that there is a third component
of odd order, the desired result is immediate. Hence we next discuss the
case that H consists of the two components F and F;. Let u and v be
end-vertices of F and F), respectively. If one of F —u and F; —v isnot a
corona graph, then we arrive at (1) analogously to above. Thus it remains
the case that ' — u and F; — v are both corona graphs. Proposition 2.1

leads to
n(F) -1 n(F1)-1 g 3n—g-6
< = —_—.
’Y_l 5 J+l 7 [ +|3] 5 3)
If g = 3s or g = 3s+2, then n and s are of the same parity, and we

observe that
3n—g—6]_ [3n—g-9
6 - 6 '

This identity and inequality (3) lead to the desired bound (1) in these two
cases. In the remaining case that g = 3541 > 7, we investigate two cases.
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Subcase 9.8.1. Assume that F —u or F; — v, say F — u, has at least
four vertices. If u and w are two end-vertices of F, then let z and y their
neighbors on C,. Because of g = 3s + 1, there is a exists a minimum
dominating set D, of Cy with z,y € D,. Since F — {u,w} is connected
and of odd order at least three, Proposition 2.1 implies y(F — {u,w}) <
L(n(F) — 3)/2), and we conclude that

v < ln(F;-3J+ln(F12) 4}*[%15 [Sn—g—lfl.

Subcase 3.3.2. Assume that n(F) = n(F;) = 3 and g = 3s+1. It follows
that 5 < g < 8 and thus g = 7. Let Cy = 712223%4T5T6Z7T1, F' = uiugus,
and F} = vyvpvs. Assume, without loss of generality, that z,u; and z4ua
are edges of G. If v;z; € E(G), then we have the two possibilities that
vszs € E(G) or v3z4 € E(G). These two graphs are isomorphic two D, or
D3, respectively. If vyzz € E(G), then vzzs € E(G) or vazg € E(G). In
the case that vszs € E(G), we arrive at the exceptional graph D;. In the
other case that vazg € E(G), we see that {uy,v,,z4, s} is a dominating set
of G and (1) is valid. If v;z3 € E(G), then vszg € E(G) or v3z7 € E(G).
If vszg € E(G), then {u3,v1,z1,%6} is a dominating set of G and (1) is
valid. In the case that v3z7; € E(G), we again arrive at Dy. If viz4 € E(G)
and vsz7 € E(G), then G is also isomorphic to D;. By symmetry, the
remaining cases are immediate.

Case 4. Assume that all components of H are of even order and mini-
mum degree one. Let F be such a component.

Subcase 4.1. Assume that F = H. Let u be an end-vertex of F, and let
z € V(C,) be a neighbor of .

Subcase 4.1.1. Assume that V(F) = {u,v}. It follows that ¢ < 6. If
y € V(C,) is a neighbor of v, then {z,y} is a dominating set of G and the
desired inequality is immediate.

Subcase 4.1.2. Assume that n(F —u) > 3and g =3s+2or g = 3s.
If we choose, without loss of generality, a minimum dominating set Dg
of C, such that z € D,, then D, dominates the vertex z. Because of
~(F = u) < |[(n(F — u) —1)/2], we deduce in these cases as above that

n(H) -2 g 3n—g—6] [3n—g-9
vs M2 g [ ]
Subcase 4.1.8. Assume that n(F —u) >3andg=3s+12>7.
Subcase 4.1.8.1. Assume that F has a further end-vertex v. Let y €

V(C,) be a neighbor of v. If F—{u, v} is not a corona graph, then Theorem
2.2 implies y(F — {u,v}) < |(n(F) —4)/2]. Since g = 3s + 1, it is not
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difficult to show that there exists a minimum dominating set D, of C, with
z,y € Dy. As D, dominates u and v, we obtain

1< =t g m=g)

Therefore we assume in the following that F — {u,v} is a corona graph.

Subcase 4.1.8.1.1. Let n(F) = 4. We conclude that g < 10 and thus
g="T7or g=10. If g =7, then we arrive at the exceptional graphs By and
Byo, and if g = 10, then we arrive at Big.

Subcase 4.1.8.1.2. Let n(F) = 6. Then F — {u,v} = wywowsw, is a
path of length three.

If uwy € E(G) and vwy € E(G), then it follows that g < 14 and thus
g=17¢=10,0r g=13.

Firstly, let g = 7. If z = y, then it is straightforward to verify that we
arrive at the two exceptional graphs A4 or As. If dg,(z,y) =1, theniitis a
simple matter to show that we arrive at the exceptional graphs Bi;, Dy, or
D,. If dg,(z,y) = 2, then we observe that v < 4 and so (1) is valid. In the
remaining case that d¢, (z,y) = 3, we obtain the exceptional graph Bis.

Secondly, let g = 10. It follows that 3 < dc,(z,y) < 5. In the case
that dc,(z,y) = 5, we observe that v < 5 and (1) is valid. However, if
de,(z,y) = 3 or dg,(x,y) = 4, then we arrive at the exceptional graphs
Bj7 or B;s, respectively.

Thirdly, let g = 13. It follows that d¢,(z,y) = 6, and this leads to the
exceptional graph Big.

If uwy € E(G) and vw;, € E(G), then it follows that g < 8 and thus
g = 7. Since w4 has a neighbor on Cg, there exists a dominating set D of
G with wy,ws € D and |D| =4 < [(3n — g — 9)/6].

If uws € E(G) and vw, € E(G), then it follows that g < 10 and thus
g=Tor g =10. If a € V(C,) is a neighbor of w;, then there exists a
minimum dominating set D, of Cy such that a,y € Dy. Hence Dy U {w3}
is a dominating set of G and we conclude that

g n-g-9
i< | /2 7.
<1 [3]s [

If uws € E(G) and vw; € E(G), then it follows that g = 7. Since v has
a neighbor on C,, there exists a dominating set D of G with v,w3 € D and
[D]|=4<[(3n—g—9)/6].

If vws € E(G) and vws € E(G), then it follows that g = 7. If e € V(Cy)
is a neighbor of w;, then there exists a minimum dominating set Dy of C,
such that @ € D,. Hence DyU {w3} is a dominating set of G and this yields
the desired inequality.
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Ifuw; € E(G) and vws € E(G), then it follows that g = 7. Ifa € V(C,)
is a neighbor of wy, then there exists a minimum dominating set D, of C,
such that a,z € D,. Hence Dy U {ws} is a dominating set of G and (1)
is valid. Since we have investigated all possible cases, Subcase 4.1.3.1.2 is
proved.

Subcase 4.1.3.1.3. Let n(F) >8and g=3s+1>7.

Firstly, assume that u or v, say u, is adjacent with a vertex w; of
F — {u,v} which is not an end-vertex of F — {u,v}. Furthermore, let w be
the end-vertex of F — {u, v} such that dg(u, w) = 2, and let 2 # u,v,w be
an end-vertex of F' with a neighbor a € V(C,). Now we see that F—{v, 2} is
not a corona graph, and Theorem 2.2 implies y(F—{v, z}) < |(n(F)-4)/2].
Since g = 3s + 1, there exists a minimum dominating set Dy of C, with
a,y € Dy. As D, dominates v and z, we obtain

AL

Secondly, assume that u and v are only adjacent with end-vertices of
F — {u,v}.

If u and v are adjacent with a common end-vertex w of F — {u, v}, then
let wy, w2 # w be two further end-vertices of F — {u, v} with the neighbors
21, 22 € V(Cy), respectively. Now F — {w;, w;} is not a corona. graph, and
there is 2 minimum dominating set D, of C, with z1, 2z € D,. Analogously
to the last case, we obtain inequality (1).

Next assume that u and v are adjacent with different end-vertices w;
and wy of F — {u,v}, respectively. Since n(F) > 8, there exists an end-
vertex w in F such that dg(u,w) = 4 or dg(v,w) = 4, say do(u,w) = 4.
In this situation it is a simple matter to verify that F — {u,w} is not a
corona graph. If z € V(C,) is a neighbor of w, then let D, be a minimum
dominating set of Cy with x,2 € D,. Now the desired result follows as
above.

Subcase 4.1.8.2. Assume that F has only the end-vertex u.

Subcase 4.1.8.2.1. Assume that §(F —u) > 2. Since F — u is of odd
order, we deduce from Theorem 2.3 that v(F — u) < (n(F — u) — 3)/2,
F —u=Cs, or F —u=C5. In the first case we obtain

o[ o gl [

Since F — u = Cjy is impossible, it remains the case that F — u = C,. This
implies g = 7, v < 5, and inequality (1) is immediate.

Subcase 4.1.8.2.2. Assume that F — u has also an end-vertex v. It
follows that v is the unique end-vertex of F — u. Therefore £ — {u, v} is of
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even order but not a corona graph and Theorem 2.2 leads to

n(F)—4
—

Since g = 3s + 1, we can choose a minimum dominating set D* of the
path C; — = such that D* U {u} is a dominating set of V(Cy) U {u, v} with
|D* U {u}| = [g/3]. Consequently, we arrive at

n(H) -4 g 3n—-g-12
v 2= [

Subcase 4.2. Assume that H consists of at least two even components
F and F, with §(F) = 6(F)) = 1. If both of these two components are
no corona graphs, then Theorem 2.2 and Proposition 2.1 immediately yield
the desired result. If F is no corona graph and F; is a corona graph, then
we obtain inequality (1) analogously to Subcase 2.3. Finally, we assume
that all components of H are corona graphs.

Subcase 4.2.1. Assume that one component, say F, has order two. Let
V(F) = {u,v}. It follows that g < 6. Let z,y € V(C,) be the neighbors
of u and v, respectively. Because of g < 6, we observe that {z,y} is a
dominating set of V(Cy) U {u,v}. If g = 5, then n is odd and we conclude
together with Proposition 2.1 that

n—7 3n-g-9
< <
veoe [R5 [,
and if g = 6, then n is even and we deduce that

n—8 3n—-g-9
y<a+|252 s [E2mg=t).

Subcase 4.2.2. Assume that all components of H have at least four
vertices. Since F has at least two end-vertices v and v with dp(u,v) =3,
it follows that ¢ < 10. Let z,y € V(C,) be the neighbors of u and v,
respectively. If we choose, without loss of generality, a minimum dominating
set Dy of C, with z € Dy, then D, dominates the vertex u. Because of
¥(F —u) £ |(n(F —u) - 1)/2], we deduce together with Proposition 2.1 in
the cases g = 3s+ 2 or g = 3s that

n(H) -2 g 3n—-g—-6] [3n—g-—9
y<|MEL=2 ). 8]« [Pt 2=,
In the remaining cases that g = 7 or g = 10, we assume that w is an

end-vertex of F; with the neighbor z € V(C,;). Now we can choose a
minimum dominating set D, of Cy with z,z € Dy. Since Dy dominates

Y(F - {u,2}) <
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the vertices » and w, and because of y(F — u) < |[(n(F — u) — 1)/2] and
Y(Fi —w) < [(n(Fy —w) — 1)/2], Proposition 2.1 finally yields the desired

result
15 =t g 3
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