An O(n?) Algorithm for the
Characteristic Polynomial of a Tree

David P. Jacobs
Dept. of Computer Science, Clemson University
Clemson, SC 29634-0974 USA dpj@cs.clemson.edu

Catia M. S. Machado
FURG - Departamento de Matematica
96201-900 Rio Grande, RS, Brasil mmacmsm@super.furg.br

Vilmar Trevisan
UFRGS-Instituto de Matemaética
91509-900 Porto Alegre, RS, Brasil trevisan@mat.ufrgs.br

April 11, 2005

Abstract

We describe an algorithm, that uses O(n) arithmetic operations,
for computing the determinant of the matrix M = (A + al), where
A is the adjacency matrix of an order n tree. Combining this al-
gorithm with interpolation, we derive a simple algorithm requiring
O(n?) arithmetic operations, to find the characteristic polynomial
of the adjacency matrix of any tree. We apply our algorithm and
recompute a 22-degree characteristic polynomial, which had been in-
correctly reported in the quantum chemistry literature.
keywords: tree, adjacency matrix, characteristic polynomial.
AMS subject classifcation: 05C05, 05C50, 05C85, 15A15 .

1 Introduction
Recall that the characteristic polynomial of an n x n matrix M is the monic

degree-n polynomial

p(\) = det(M - AL,), (1)

JCMCC 54 (2005), pp. 213-221

and its roots in C are called the eigenvalues of M. Even when restricted to
0—1 matrices, eigenvalues and eigenvectors can have surprising applications.
Recently Wilf observed in [15] that determining the importance of web
pages, something done by search engines, can be viewed as an eigenvector
problem, and is related to early papers on ranking [9, 14].

Let G = (V, E) be an undirected graph with vertices V = (v,...,v5)
and edge set E. We assume edges occur only between pairs of distinct
vertices, and between any pair of vertices there is at most one edge. The
adjacency matriz A = [a;;] of G is the n x n 0 — 1 matrix for which a;; = 1
if and only if v; is adjacent to v; (that is, there is an edge between v; and
v;j). Real symmetric matrices, such as a adjacency matrices, are Hermitian
and known to have all real eigenvalues [10].

In chemistry, the characteristic polynomial is called the secular polyno-
mial, and has been used in Hiickel theory [13] and quantum chemistry [11].
When graphs are used to represent molecules, the characteristic polynomial
of the graph is related to certain thermodynamic properties of the molecule
[2]. Two different molecules having the same characteristic polynomial will
have similar thermodynamic properties.

There are several methods to compute the characteristic polynomial
P(A). We wish to obtain the exact integer coefficients of p()\), and not their
approximation using a numerical procedure. Procedures returning exact
values are called algebraic or symbolic. Wilkinson ([16], p. 411) presents
one such algorithm that computes the characteristic polynomial of any nxn
matrix using only O(n®) scalar multiplications.

In this paper we consider the problem for the class of adjacency matrices
of trees (connected, acyclic graphs). The characteristic polynomial of a tree
T, denoted pr(]), is the characteristic polynomial of its adjacency matrix.

One reduction method (3, 6] for computing pr()) works as follows. Let
z; be a leaf of T, and x5 its neighbor. Let T¥ and T denote the induced
graphs obtained by deleting {z,} and {z;,z2}, respectively. Then

pT =)\ -pT/ —pTu,

Although simple, this method takes exponential time since a problem of
size n is being replaced by problems of size n — 1 and n — 2.

In [2], Balasubramanian outlines a reduction method for computing
p7()), based on ideas of Godsil and McKay (5] and Schwenk {12]. The
method appears correct, but no algorithmic analysis is given. In [4, 7]
matrix methods were described that operated directly on the tree. The
procedure was refined in [8], using techniques to simplify the polynomial
arithmetic. The resulting algorithm requires O(n2log(n)) operations to
compute the characteristic polynomial of an n-vertex tree. The purpose

214

of this note is to describe an algorithm that computes the characteristic
polynomial of a tree’s adjacency matrix in O(n?) operations.

2 Computing the Determinant

Given an n-vertex tree T, the characteristic polynomial of its adjacency
matrix A is a degree n polynomial

p()\)=a0+a1)\+--~+/\". (2)

Our algorithm obtains the coefficients a; by first computing det(A+ ;) =
p(—a;) for sufficiently many a;, and then interpolating the points (—a;, p(—a;)).
In this section we will explain how to compute det(A + ;) in O(n) scalar
operations.

Given a matrix M, a method sometimes used for obtaining its determi-
nant is to apply Gaussian eliminations (i.e. operations in which a multiple
of a row is added to another row beneath it), hoping to obtain an up-
per triangular matrix U. Columns are processed left-to-right, and nonzero
entries below the diagonal are eliminated. As each Gaussian elimination
keeps the determinant invariant, the final upper triangular matrix satisfies
det U = det M.

For T a tree and A its adjacency matrix, if we use the Gaussian trans-
formation approach described above to compute

det M = det(A + al),

the ordering of the vertices will effect the amount of fill-in created by the
row operations. We can avoid fill-in by first selecting a root of the tree and
labeling it v,. We then order the vertices V = (vy,...,vs) so that if v; is
a parent of u; then 7 < j. The vertex order is crucial in preventing fill-in.
Because of our vertex order, row operations always represent a child’s row
acting on a parent’s row. Beside the entry being eliminated, the only other
entry affected is the diagonal entry of the parent. Figure 1 illustrates a
subtree and its corresponding sub-matrix.

Since our Gaussian transformations do not produce additional fill-in, it
is not necessary to store all of U, but only its diagonal entries mj;, which
are transformed according to the rule mj; — m;; — 3° -1-, where the sum
ranges over the children v; of v;. As long as none of the m;; are zero, the
algorithm works and, in fact, can be performed directly on the tree, each
node storing its diagonal value.

As an example, consider the tree of Figure 2 and its neighborhood ma-
trix M = A+ I. Initially all the nodes (diagonal entries) are assigned the

215

S .5:; o o

L)

Figure 1: Sub-matrix and corresponding subtree

value @ = 1. We process the vertices bottom-up, the leaves remaining un-
changed. Processing a vertex v means that the 1’s, below the main diagonal,
representing the edges between v and its children, are being eliminated by
the diagonal elements of the children. The resulting diagonal elements are
shown in Figure 2. The value of det M is the product of the node values,
which is -1 in the example.

Figure 2: Diagonal of the upper-triangularized A + I

Consider now the case when exactly one of the children has a zero value
in the diagonal. This corresponds to the situation depicted in the matrix
of Figure 3, where the vertex v; has a child »; with my; = 0. The following
elementary row operations are performed. Row 1 is replaced by the sum of
row ¢ and j. Row j now is replaced by row j minus row 7. That is,

row(i) «— row(z)+ row(y)

row(j) «— row(j) — row(s)

We note that all the elements of row j are now zero except for m;; = ~1,

216

1 v P

— =

Figure 3: Vertex v; and child »; with my; = 0.

and this value may be used to annihilate the myj, if the vertex v; has a
parent v;. This operation does alter my.

In the ith-row we observe that a;; = 1. It is important to notice that
some mgk, for k < i, might have the value 1 after the row operations.
However, in this case, v and v; are siblings and we use my to annihilate
mg, without altering my; = 1, since my; = 0.

We illustrate the final appearance of the matrix in Figure 4. The actual
algorithm does not execute these operations entirely. Rather, it merely
records the resulting diagonal values for the parent (—1) and child (1).
Since mj; = 0, v; does not alter the diagonal of its parent v;. We represent
this by the deletion of the edge between v, and v;. This causes v; to be
treated as leaf when it is processed later.

e !

Figure 4: Sub-matrix after the row operations.

If two or more children »; and vy have value 0, then it is easy to see

217

that both rows 7 and i’ will be equal and, therefore, the determinant is
zero. Figure 5 describes the algorithm performed directly on the tree.

Since processing a vertex takes a fixed number of scalar operations and
each vertex is processed once, we have

Theorem 1 The algorithm of Figure 5 computes det(A + al) in O(n)
scalar operations.

The algorithm assumes that the input is a rooted tree with nodes or-

dered bottom-up, and where each node contains pointers to both its parent
and children.

Initialize a(v) := « to each vertex .
process the vertices bottom-up as follows:
if v is a leaf then

do nothing.

else if v has more than one child with value 0, then
return 0

else if v has exactly one child w with value 0 then
a(v) = ~1
a(w) =1
if v has a parent z, then remove the edge vz

else
av) i =a-3 E(Ic_J’ summing over all children.

end loop

return [] a(v)

Figure 5: Algorithm to compute det(A + al) for tree T.

As an example, consider the tree shown on the left of Figure 6. We wish
to compute the determinant of M = A + I. The tree on the left shows the
initialization of the algorithm, that is, all the diagonal elements (vertices)
have the value @ = 1. The second graph of Figure 6 shows the forest
that results from executing the algorithm. Note that the determinant, the
product of all values, is zero.

We note that an algorithm to compute det(A+al) in O(n) was obtained

in [4]. The new algorithm we suggest is simpler, and its correctness is easier
to prove.

218

Figure 6: Tree with 8 vertices

3 Computing the Characteristic Polynomial

Our algorithm to compute the characteristic polynomial of a tree may now
be summarized as

a) Choose n + 1 distinct scalars ay, . ..an.

b) Compute det(A + Ia;) = p(—a4) for i = 0,...,n, using
method above.

¢) Interpolate the points (—a;, p(—a;)).

Theorem 2 The characteristic polynomial of a tree can be computed in
O(n?) scalar operations.

Proof: Since we need n + 1 values of ¢, the total cost for the evaluation
is O(n’) As interpolation of the n + 1 points (@, p(a)) can be done in
O(nlog®n) (see [1), p. 299), the total cost of the algorithm is O(n?). 0O

It is known that for trees T, pr()) is of the form A*s()\), where s()) is a
symmetric polynomial. Therefore, the polynomial p(~z) is either identical
to either p(z) or —p(z). Soin practice, one needs to evaluate the polynomial
for only about % a’s. From a practical standpoint, for most initial choices
of a, nodes will have nonzero children, and so one is only computing the
expression a—Y_ E'(lc_J If a computation produces a node with a value zero,

then one can simply try a different .

4 Application

We used our algorithm to compute the characteristic polynomial p of the
22-vertex tree shown in Figure 7, a polynomial considered in the chemistry
literature [2], but apparently computed incorrectly. Using Maple, we wrote
a function that computes p(a), for an arbitrary a according to the algorithm

219

DD DV B

Figure 7: A 22-vertex tree.

in Figure 5, and generated twenty-three pairs (o, p(«)) that are shown in
Figure 8. Finally, we used Maple’s ratinterp function to perform the
interpolation, obtaining p(\) =

A22 21020 4 1742018 — 737716 1 170814 — 2104012 + 1168A10 — 1448,

Our entire computation took less than a-second. One can check that if
eq. (2.12) in [2] been correctly calculated, it would have agreed with our
polynomial above.

a ple) || @ p(a) @ p(a)

+2 12288 +3 312 1813 +4 220 3546375
+ \/§ 243 + _;_ y ;3533 + %_ _ 17"'228307
5 - 58 17’2135339 +3 3‘°41’529094861 0 0 H
+1 45 | +/2 0 +3 a3 "

Figure 8: Interpolation pairs.

Finally, we note that while our characteristic polynomial algorithm re-
quires only O(n?2) arithmetic operations, its bit-complexity may be greater
because of the growth of its operands. Such an analysis would be worth
further study.

References

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] K. Balasubramanian, Spectra of chemical trees, International Journal
of Quantum Chemistry 21 (1982), 581-590.

220

[3] D. Cvetkovié, M. Doob, and H. Sachs, Spectra in Graphs, Academic
Press, New York, 1980.

[4] G.H. Fricke, S.T. Hedetniemi, D.P. Jacobs, and V. Trevisan, Reducing
the adjacency matrix of a tree, Electronic Journal of Linear Algebra 1
(1996), 34-44.

[5] C.D. Godsil and B.D. McKay, A new graph product and its spectrum,
Bulletin of the Australian Mathematical Society, 18 (1978) 21-28.

[6] F. Harary, C. King, A. Mowshowitz, and R. Read, Cospectral graphs
and digraphs, Bull. London Math. Soc. 3 (1971) 321-328.

[7] D.P. Jacobs and V. Trevisan, The determinant of a tree’s neighborhood
matrix, Linear Algebra and Its Applications 256 (1997), 235-249.

(8] D.P. Jacobs and V. Trevisan, Constructing the characteristic poly-

nomial of a tree’s adjacency matrix, Congressus Numerantium 139
(1998), 139-145.

[9] M.G. Kendall, Further contributions to the theory of paired contribu-
tions, Biometrics 11 (1955) 43.

[10] M. Marcus and H. Minc, Introduction to Linear Algebra, Macmillan,
New York, 1965.

(11] D.H. Rouvray, The topological matrix in quantum chemistry, in Chem-
ical Applications of Graph Theory, A.T. Balaban, ed. Academic Press,
New York, 1976.

[12) A.J. Schwenk, Computing the characteristic polynomial of a graph,
Proc. Capital Conf. on Graph Theory and Combinatorics, Lecture
Notes in Math., A. Dold and B. Eckmann eds., Springer-Verlag, New
York, 406 (1974) 153-172.

[13] N. Trinajsti¢, Graph theory and molecular orbitals, in Chemical Graph
Theory, D. Bonchev and D.H. Rouvray, eds. Abacus Press/Gordon &
Breach, New York, 1991.

[14] T.H. Wei, The algebraic foundations of ranking theory, Cambridge
University Press, London, 1952.

[15] H. Wilf, Searching the web with eigenvectors, manuscript.

[16] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University
Press, London, 1965.

1221

