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Abstract

A vertex-magic total labeling of a graph G(V, E) is defined as one-
to-one mapping from V U E to the set integers {1,2, ..., VI +|E|}
with the property that the sum of the label of a vertex and the labels
of all edges incident to this vertex is the same constant for all vertices
of the graph. A supermagic labeling of a graph G(V, E) is defined as
one-to-one mapping from E to the set integers {1,2, ..., |E|} with the
property that the sum of the labels of all edges incident to a vertex
is the same constant for all vertices of the graph.

In the paper we present a technique for constructing vertex magic
total labelings of products of certain vertex magic total r-regular
graphs G and certain 2s-regular supermagic graphs H. H has to be
decomposable into two s-regular factors and if 7 is even |H| has to
be odd.

1 Introduction and known results

A labeling of a graph G(V, E) isa mapping from the set of vertices, edges or
both vertices and edges to the set of labels. In most applications labels are
positive (or nonnegative) integers, though in general real numbers could
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be used. Various labelings are obtained based on requirements put on
labelings.

The notion of magic squares can be naturally extended to graphs. We
want the sum of labels related to an edge or a vertex be constant all over
the graph. If the sum of labels of an edge and both end vertices does not
depend on the edge, we call the labeling edge-magic type labeling. If the
sum of labels of a vertex and all incident edges is constant, we call the
labeling vertex-magic type labeling. This text is focused on vertex magic
total labelings. The word total is used since labels are assigned to both
edges and vertices.

Magic labelings were introduced by Sedlacek in 1963 [13]. A magic
labeling assigns distinct integers to edges with the property that the sum
of the labels of all edges incident with the vertex v is the same for allvina
given graph. If the set of labels consists of consecutive integers, the labeling
is called supermagic. This type of labeling is also called vertex-magic edge
labeling by Y. Lin, M. Miller, R. Simanjuntak, and Slamin [12}.

Let G(V, E) be a graph with the vertex set V and the edge set E.
Let v be a vertex in G. We denote the edges incident to the vertex v as
Ng(v) = {e € E(G)| e is incident to v}.

Definition 1.1 Let G(V,E) be a graph with the vertez set V and the
edge set E. We denote v = |V] end e = |E|. A one-to-one mapping
A:VUE = {1,2,...,v+¢)} is called a vertex magic total labeling (VMT)
of G if there exists a constant k such that for every vertez z of G

Mz)+ ) Mzy) = h. (1)

yEN(z)

The constant h is the magic constant for . We call a graph to be a VMT
graph if it has a VMT labeling.

An example of VMT labeling is in figure 1.1.

Q——0

Figure 1.1: Vertez magic total labeling of K4 with h = 20
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Definition 1.2 Let G(V, E) be a graph with the vertez set V and the edge
set E. We denote e = |E|. A one-to-one mapping A : E = {1,2,...,¢} is
called a supermagic (SPM) labeling of G if there exists a constant k such
that for every vertex z of G

D AMay) = k. (2)

YyEN(z)

The constant k is the magic constant for A\. We call a graph to be an SPM
graph if it has an SPM labeling.

An example of an SPM labeling is in figure 1.2.

Figure 1.2: Super magic labeling of Ky 4 with k = 34

There was a large number of articles published on magic-type graph
labelings. Probably the best source of information is Dynamic Survey of
Graph Labeling by Joseph Gallian [7). The table 1.1 appeared in the fall
2003 edition of the Dynamic Survey.

From the table it is apparent. that the existence of a VMT labeling
is known for most basic families of graphs as complete graphs, complete
bipartite graphs, cycles, etc. Notice there are only two general results
concerning VMT labeling of copies of a VMT graph (see (15] and [9]).
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Graph Labeling | Notes

Cn vMT [3]
P, VMT n>2[3]
Kmm VMT m > 1 [3][11]
Kpm—e VMT m > 2 [3)
Koan VMT iff jm —n| <1 (3]
not VMT |ifn>m+1

K, VMT for n odd (3]

for n =2 (mod4), n > 2 [11]
Petersen P(n,k) | VMT for all n and k (2]
prisms Cp, X P» VMT for all n
W, VMT iff n <11 (3]
F, VMT iff n <10 3]
friendship graphs | VMT iff # of triangles < 3 [3]
G+H VMT V(G)| = V(H)|

and G U H is VMT [14]
unions of stars VMT [14]

Tree with n
internal vertices

and more not VMT | [14]
than 2n leaves [14]
nG VMT n odd, G regular of even
degree, VMT {15]
nG VMT G is regular of odd
degree, VMT, but not K [15]
CnOCam VMT [4)
KsOCansa VMT [5]
GOCoy, VMT G (2r + 1)-regular, decomposable

into 7 + 1 and r regular [9]

Table 1.1: Summary of results on vertex magic total labelings.

2 Copies of VMT and SPM graphs

The construction of VMT labelings of products of certain r-regular VMT
graphs and certain s-regular SPM graphs shown below in this paper is

based on a VMT labeling of copies of an r-regular graph VMT and on an



SPM labeling of copies of a 2s-regular graph, which can be factored into
two s-regular factors. The first result is due to Wallis [15). We give another
proof here in this paper, which yields a different magic constant. Graph
nG denotes n disjoint copies of the graphs G. '

Theorem 2.1 (W. D. Wallis 2002) Suppose G is a regular graph of
degree A, which has a magic total labeling. Provided G is not K 1y

1. if A is even then nG has a verlex magic total labeling whenever n is
an odd positive integer;

2. if A is odd then nG has a vertex magic total labeling for every positive

integer n.
Proof 1. Given in 15). 0
Note 2.2 Wallis showed that the labeling
Muwip) = Mup) +(e+ vV)agy,y,i forp=1,2,...,v (3)
Meig) = Aeg)+(e+ V)ape,),: for g=1,2,... e

is a VMT labeling of n copies of G with the magic constant h + (e +
v)(r+1)(n—1). We give another proof here, which yields a different magic
constant.

Proof 2. Let G be a VMT r-regular graph from Theorem 2.1. Take a
VMT labeling A of G with the magic constant k and a Kotzig array A =
(ai,;) of size (r + 1) x n. Such an array always exists under the conditions
on A and n of Theorem 2.1. Take a total coloring of G 3 : (V(G) U
E(G)) = {1,2,...,7 + 1}. We denote the vertices of G by v1,va,...,1,
and edges by ¢),ea,...,e.. We will construct n copics G; of graph G for
i=1,2,...,n. In G; we denote the copies of vertices v;3,v;9,..., Vi, and
edges e;,1,€;2,...,€..
Consider the following labeling
Mwip) = n(Mw,)-1)+ Upy,)i+1lorp=1,2,...,v 4)
Meig) = n(Me)-1)+ Upreg)i +1llorg=1,2,... e

To show that (4) is a VMT labeling we evaluate the swun at each vertex

Nuwip)+ D Neig)-

eiq€ENE(1; )

Expanding the expression we have

n ((’\(vp) - 1) + Z (’\(efl) - 1)) + (an(v,,).i + 1)+ Z (aq(e.,),i + 1)

eqENE(1,) e ENg(1y)
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We can evaluate the expression. Since X is a VMT labeling with the magic
constant h and G is an r-regular graph,

Mup) =1+ 3 (Meg) =) =h—(r+1)
eg€Ng(vp)

and the second sum runs over the i-th column of the Kotzig array A, so

1 1
CHRYES \EDY) (a,,(eq),i+1)=5(n—1)(r+1)+(r+1)=-2-(n+1)(r+1).
e, ENg(vp)

This means that we have a constant sum n(h — (r + 1)) + in(r +1) =
nh + -}_,-(1 —n)(r + 1) at each vertex in G; fori =1,2,...,n.

Now looking at all n vertices v;,, (edges e; q, respectively), which corre-
spond to the vertex v, (edge e;) of the original graph G, the labels form the
set {nA(vp), nA(vp) +1,. .., nA(vy)+n—1} ({nA(eq),nA(eg)+1,...,mA(eg)+
n — 1}). There are e + v such sets and they are disjoint since A assigns a
different label to every vertex (edge). This means that A’ uses each of the
n(e + v) labels exactly once. Thus X' is a VMT labeling of n copies of G
with the magic constant nh + 3(1 — n)(r + 1). a

Theorem 2.1 gives a general method for constructing VMT labelings for
n copies of certain regular VMT graphs (together with Proof 2 with two
different magic constants). The following theorcin gives a similar result for
copies of certain 2s-regular supernagic graphs.

Theorem 2.3 Let s be a posilive integer. Let G be a 2s-regular super-
magic graph, which can be factorized inlo two s-regular factors. Then nG
. -is also a supermagic graph.

Proof. Let G be a 2s-regular graph, which can be factorized into two s-
regular factors H, and Ha. Let G have a supermagic labeling f with the
magic constant k. Let v denote the number of vertices of G and e the
number of edges of G.

Since f is a supermagic labeling of G, (2) holds for every v € V(G). We
will construct n copies G; of the graph G for i =0,1,...,n— 1. Each of
them will have a supermagic labeling f; with the same magic constant

ki = nk +s(1 —n).

Let us denote the vertices of G by vy, w,...,v, and edges by ey, ea,.. ., €.
In G; we denote the copies of vertices by vii,vi2,..., % and the copies
of edges by e;1,€i2,...,Ci.e-

Consider the following labeling of Gi:

ooy fn(fler) =) +n—i il er € Hy . _
f&(et,k) - {n(f(ek)—l)""i‘l"l i[ekeHQ fOI"l»—O,l,...,n 1(5)
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We show that for every G;, f; is a supermagic labeling with the magic
constant k; = k' = nk + s(1 — n). The sum at every vertex v; ; of G is

> fileiw)

eENg(v;, ;)

We split the sum into two sums, each over the edges of one of the two
s-regular factors Hy and Ha:

> filein)+ D fileis)

e€Ng (v ; )NH, eENg(vi,;)NH,

and we get

> e -D+n-it Y afle)-1)+it1=

eENg (vi; )NH, eENg(v; ;)NH

Z nf(er) —i+ Z nf(ex) ~n+i+1=

eENg(v; ; )NH, cENE(v; ; )NH;

nl X St Y few] - Y i+ Y icnel

cENg(v; ;)NH, €ENE(v; ;)Hy c€ENE v ;)N He€Ng(u; ; )NH,

Since |[Ng(v; ;) N Hy| = INE(vi,j) N Ha| = s and using (2) we get
nk—si+s(i-n+1)=nk+ 3(1 —n).

Since the sum is constant the labeling given in (5) is a supermagic labeling
of n copies of G. O

Unfortunately we can't use the same nice approach as Wallis in his
Theorem 2.1. The idea is based on Vizing’s Theorem, which guarantees
that there always exists a proper edge coloring with A + 1 colors and thus
there exists a proper A + 1 total coloring (both edges and vertices) of G.
In the copies the labels are assigned based on the coloring of G and the
rows of Kotzig arrays. The A + 1-st color is used for vertex labels. But
there are no vertex labels in an SPM graph! Instead of a general statement
as in Theorem 2.1 we can obtain a result only for graphs with proper A
coloring of edges. We have partial results and at the time this paper is
published is not clear if it is more general result that in Theorem 2.3 or
whether there are classes of graphs that are both SPM and decomposable
into two s-regular graphs and do not have a proper edge coloring with A
colors.
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3 Main result

We are almost ready to show the main result of this paper. The proof of
the result will make use of the two following easy observations, that adding
the same number ¢ to every label of a VMT graph G (or an SPM graph
H, respectively) with the magic constant h (or k) yields the same sum
h+ (r + 1)t at every vertex (or h +rt). We refer to such a labeling as to a
generalized VMT (or SPM) since the labels in general are not consecutive
positive integers starting at 1.

Lemma 3.1 Let G be an r-regular graph on v vertices, which has a VM T
labeling A with the magic constant h. Let 2 be an element (a vertex or
an edge) of G. Let t be an integer.

1. The labeling N'(z) = M) + ¢ is a generalized VMT labeling with the
magic constant b+ (r + 1)1

2. The labeling A" (z) = tA(z) is a generalized VMT labeling with the
magic constant ht.

Proof. Part 1 There are r + 1 terms in the sum of labels at every vertex.
Each of them increases the sum by &.
Part 2 Each term in the sum of labels at every vertex is multiplied by ¢. O

Lemma 3.2 Let H be an s-regular graph on u verlices, which has an
SPM labeling A with the magic constant k. Let 2 be an element (a vertex
or an edge) of G. Let | be an inleger.

1. The labeling X' (z) = A(z) + ¢ is a generalized SPM labeling with the
magic constant h + st.

2. The labeling X' (x) = tA(z) is a generalized SPM labeling with the
magic constant hi.

Proof. Prool is similar to the proof of Lemma 3.1 O

Taking a graph G on v vertices, which satisfies the conditions of Theo-
rem 2.1 and taking a graph Hp on u vertices, which satisfies the conditions
of Theorem 2.3 one can get a graph uGy on uv vertices, which is VMT and
a graph vHp on uw vertices, which is SPM. But we can have a VMT (or an
SPM) labeling of nGp (or nHg) based on a different construction. In both
cases we can combine the graphs to get a VMT graph.

Theorem 3.3 Let G be an r-regular VMT graph on uwv vertices, which
consists of u copies of Go. Let Ag be a VMT labeling of G with the magic
constant h. Let H be an s-regular SPM graph on uv verlices, which consists
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of v copies of Hy. Lel Mg be an SPM labeling of H with the magic constant
k. Then there exists a VMT labeling of GoOHy with the magic constant
h+k+1s(2+7).

Proof. We denote the vertices of Gy by v; for j = 1,2,...,v and the
vertices of Hy by u; for i = 1,2,...,u. The vertices of G can be seen as
copies of v;. We denote them by vi,j, where i = 1,2,...,u. For the same
reason we denote the vertices of H by u;j, where j=1,2,...,v.

It is easy to observe that by identifying vertices v;,; with u; ; we get the
graph GoOHp. We can also say that we are adding correspondent edges of
H to G.

For constructing a VMT labeling of GoOH, we can use the VMT label-
ing Ag of G' and the SPM labeling Ay of H. Consider the labeling

Azx) = Mz) VzeV(G)UEQG) (6)
M) = |E(G)+V(G)+Ay) VyeE(H).
The swmn of the labels A(v; ;) + D eeNpiu ;) Ale) at every vertex v; ; now

consists of the sum of the labels in G and’the sun of the labels at u;, jin
H. We get

Awg) + 30 M) =Mug)+ D Mg+ Awe).

CENE(W.J') CENF.'("i.j)nE(G) CENp:(v; ;)NE(H)

The first sum corresponds to the VMT labeling of G.

Awij) + > Me)=h

CENB'(!';.,')“IE(G)

The second sum

> M) =k+s(V(C)+EQ)) =k+ %suv(2 +7)
eENg(vi ; )NE(H)

follows immediately from Lemma 3.2 since we add IV(G) + E(G)| to every
label of the SPM labeling Ajy. Every label is used exactly ounce since we
use the first |V (G) + E(G)| labels from the labeling A¢; and the following
|E(H)| labels from Ay. Ais a VMT labeling of GoOOHp with the magic
constant b + k + $suv(2 + 7). O

Note 3.4 There is a natural modification of the construction given in the
proof of Theorem 3.3. We can keep the labels given by Ay and increase the
labels arising from A by |E(H )|- The labeling
Ax) |[E(H)| + Mz) Ve V(G)UE(G) (M
AMy) My) Vye€ E(H)
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is a VMT labeling of GoOH, with the magic constant h+k+(r+1)|E(H)| =
h+k+ 3(r + Luor.

4 Conclusion

The construction given in the proof of Theorem 3.3 allows to build products
for several families of graphs. For G in the theorem we can take any graph
with a VMT labeling, which satisfies Theorem 2.1, e.g., K., Knny Cn,
Petersen graph P(n, k), prisms P> x C,, if the necessary condition of being
even-regular or odd regular with even number of copies is satisfied. Also
for H we have a variety of graph classes to choose from. Among graphs,
which are proven to have an SPM labeling and are also factorable into two
s-regular factors are e.g. K, forn #0 (mod 4), Kn,n, @n for n even.

We also want to point out that the GOH graph is a VMT graph, which
again satisfies the conditions of Theorem 3.3. This means that also repeated
products are VMT graphs, e.g., (K22 OKa2m,2m0Q2,0. ..) cte.
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