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Abstract

In this paper, we develop a computational method for constructing trans-
verse t-designs. An algorithm is presented that computes the G-orbits of
k-element subsets transverse to a partition H, given that an automorphism
group G is provided. We then use this method to investigate transverse
Steiner quadruple systems. We also develop recursive constructions for trans-
verse Steiner quadruple systems, and we provide a table of existence results
for these designs when the number of points v < 24. Finally, some results
on transverse {-designs with ¢ > 3 are also presented.

1 Introduction

Given apartition H = {Hy, H,, ..., H,} of asct X, we say thata subset T C X
is transverse with respect o H if [T N H;| = Oor 1 foreachi = 1,2,...,7. A
transverse t-design with parameters ¢-(v, k, ) is a triple (X, H, B) such that the
following propertics are satisfied:

1. X is a v-clement sct of points,
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{3,5,7,a} {3,5,6,b} {3,4,7,d} {3,4,6,c} {2,5,7,c} {2,5,6,d}
{2,4,7,b} {2,4,6,a} {1,5,7,b} {1,5,6,c} {1,4,7,a} {1,4,6,d}
{1,3,7,¢ {1,3,6,a} {1,3,5,d} {1,3,4,6}) {1,2,7.d} {1,2,6,b}
{1,2,5,a} {1,2,4,c} {0,5,7,d} {0,5,6,a} {0,4,7,c} {0,4,6,b}
{0,3,7,b} {0,3,6,d} {0,3,5,¢} {0,3,4,a} {0,2,7,a} {0,2,6,c}
{0,2,5,b} {0,2,4,d}

Figure 1: The 32 blocks of a transverse 3-(12, 4, 1) design of type 244!, with holes
{0, 1}: {2: 3}, {4» 5}» {6’ 7}, {aa b,c, d}

2. H = {H\, Ha, ..., H.} is apartition of X into subscis called holes, and

3. B is acollection of k-clement subscts called blocks, cach of which is trans-
verse with respect to H, such that cvery transverse ¢-clcment subset of
points is in exactly A blocks.

A transverse 2-(v, k, 1) design is also called a group divisible design.
A transverse 3-(12,4, 1) design having holcs

H= {{0, 1}’ {2’3}’ {4'5}v {6, 7}’ {aa b, c, d}}
is displayed in Figure 1.

Let h; = |H;| be the size of the hole H; € H. The type of a transverse
t-design is the multi-set {k,, ho, ..., h.} of hole sizes. It is customary to write
81%189%2 ... s¥™ for the type of a transverse ¢-design with u; holes of size s;,
i=1,2,...,m. Il all the holes have the same size, h, then the ransverse t-design
is said to be uniform. Such a design has type h* for some u.

The transverse ¢-(v, k, A) designs of type 17 are the the (ordinary) t-designs.
A transverse t-(v, k, 1) design is a transverse Steiner system. A transverse Sieiner
triple system (or transverse STS) of type hyhy - - - hy is a ransverse 2- (v,3,1)de-
sign of type hqhs - - - hy, and a transverse Steiner quadruple system (or transverse
SQS) of type hyh - - - hy is a transverse 3-(v,4, 1) design of type hiha - -+ h,.

The remainder of this paper is organized as follows. Scction 2 gives some
basic constructions for transverse designs using other types of designs. In Sec-
tion 3, we discuss how o construct transverse ¢-designs with a given automor-
phism group. In order to do this, an algorithm is rcquired that finds the orbits
of transverse subscts under the automorphism group. In Scction 4, we focus on
transverse SQS; we review old results and we give several new constructions for
these designs. In Scction 4.4, we give tables of cxistence results for transverse
SQS on at most 24 points. Finally Scction 5 concludes the paper.
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2 Some basic constructions

A (uniform) transverse t-(kh, k, A) design of type k* is equivalent to an orthog-
onal array of order h, strength ¢, index X and degree k, denoted OAx (¢, k, k). It
is well-known that an OA, (¢, ¢ + 1, k) exists for all ¢ and A. Hence, we have the
following result as a consequence.

Theorem 2.1 There is a transverse t-((t + 1)h,t + 1,1) design of type ht+1 for
allintegersh > 1andt > 2,

Proof: Define X =Z, x {1,...,t +1}, H = {Z;, x {i}:1<i<t+1},and
B= {{(al,l), .. .,(a¢+1,t -+ 1)} a4 +a¢+, =0 (mod h.)}.
Then (X, M, B) is the desired ¢-((¢ + 1)k, ¢ + 1, 1) design of type k1, [ ]

If (X,H,B) is a transverse t-(v,k,\) design and z € H € H, then
(X', H',B') is a wransverse (¢ — 1)-(v — [H|,k — 1, A) design, where
X = X\/I,

H' H\ {1}, and
B = {B\{z}:ze€ BeB).

The design (X', H’, B') is called the derived design of (X, H, B) with respect 1o
Z.

It

Suppose H is a partition of type h* of a set X. Two transverse t-(v, k, 1)
designs of type A having holes H, say (X, H, B) and (X, ™, B’), are said to be
disjoint if BN B’ = . A collection (X, H,B;) (i = 1,2,...,n, where n =
h(u — t)/(k — t)) of pairwise disjoint transversc ¢-(v, k, 1) designs of type h¥
having holes H is called a large set of transverse ¢-(v, k, 1) designs of type h*.
Given any subset of k points transverse to #, there is a unique design (X, H, B;)
in the large set that contains the k given points as a block.

The following theorem shows a useful equivalence when k = ¢ + 1.
Theorem 2.2 There exists a large set of transverse t-(hu, t+1, 1) designs of type

h* if and only if there exists a transverse (¢t + 1)-(hu +n, t + 2,1) design of type
h¥nl, where n = h(u - t).

Proof: Suppose H is a partition of type k" of a sct X. Suppose that (X, H, B;)
(t=1,...,n)arc the transversc ¢-(hu, t + 1, 1) designs of type h* in a large set.
LetY = {y1,...,yn} beasct of n points disjoint from X. Define

B:{{y,-}UB:BGB,-,]SiSn}.
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Then (X UY, HU{Y '}, B) is a transversc (¢ + 1)-(hu+n,¢+2, 1) design of type
h¥nl.

Conversely, suppose we start with a transverse (¢ + 1)-(hu+n, t+2,1) design
of type h¥n!, It can be shown that cvery block contains a point in the hole of size
n. If we construct the n derived designs through the points in the hole of size n,
then we get the desired large sct. ]

It is easy to see that = h in the above theorem if andonly if u = k= ¢ + 1.
In this case, the designs are orthogonal arrays. We can extend Theorem 2.1 as
follows:

Corollary 2.3 There is a large set of transverse t-((L + 1}k, L + 1,1) designs of
type b+ for all integers h > 1 and t > 2.

Proof: From Theorem 2.1, there cxists a transverse (L + 1)-((¢ + 2)h,t +2,1)
design of type h**2, Now apply Theorem 2.2. n

Here is a simple “inflation” construction.

Theorem 2.4 If a transverse L-(v,L + 1, \) design of type hyha - - - by exists, then
a transverse t-(vw, t + 1, \) design of type (why)(why) - - - (wh;) exists for every
integer w > 0.

Proof: Take w copics of cach point, and replace cach block B3 of a transverse
t-(v, ¢ + 1, A) design by the blocks in a transversc t-(w(t +1),¢ + 1,1) design of
type w't!, which exists by Thcorem 2.1. [ |

3 Constructing transverse t-designs having speci-
fied automorphism groups

A permutation g on a set X acts on the subscts of X in a natural way. Given
S C X, we define g(S) by g(S) = {g(z) : = € S}. A pcrmutation g is an
automorphism of the transverse design (X, H, B) provided that

1. g € SYM(X) (the symmetric group on X),

2. g(H) € H forevery hole H € H,and

3. g(B) € B forevery block B € B.
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A collection of automorphisms of (X, H, B) that forms a group (under compo-
sition of permutations) is called an automorphism group of the transverse design
(X,H,B). If G is an automorphism group of (X, H, B), then H and B are each
unions of group orbits, where the orbit of any subset S C X under the action of
G is defined to be G(S) = {g(S) : g € G}.

It is easy to sce that the permutations
@ (0,2)(4,6)(1, 3)(5,7)(a, b)(c, d),

B 1 (0,4)(2,6)(1,5)(3,7)(a, c)(b,d),and
v = (0,2,4)(1,3,5)(a,b,c)

Il

preserve the blocks and holes of the transverse design in Figure 1. Thus the group
G = {a, B, ) generated by them is an automorphism group of the design.

Suppose that a subgroup G of SYM(X) preserves the holes H =
{Hy,H,,..., H,}. The orbits of subscts transverse 10 H under the action of G
can be computed if we have one representative for cach orbit. The actual orbits
can then be constructed by running through ail the elements of G, applying them
to the orbit representatives, and removing duplicates.

Orbits of transverse (k + 1)-clement subsets can be obtained by the following
method. Let R be a set of orbit representatives for the orbits of transverse k-
element subsets of X under the permutation group G. Given A € R, define C (A)
by

C(A)=U{H;:ANH; =0,i=1,2,...,7},

and let
§={AU{z}: A€ Randz € C(A)}.

Let I be any orbit of transverse (k + 1)-clement subsets. Consider any represen-
tative B’ € T'. Writing B’ = A’ U {z'} for some k-sct A’, we scc that A’ € A
for some orbit A of transverse k-clement subscts. Thus there is a g € G such that
9(A’) = A € R. Hence T has the orbit representative AU {z}, where z = 9(z’).
Thus, applying the permutations in the group G to each A U {z}, z € C(A),
and keeping the onc that is minimum in Iexicographical order, we will construct
the desired list S of distinct orbit representatives of transverse (k + 1)-clement
subsets. Pseudocode for this method is provided in Algorithm 3.1.
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Algorithm 3.1: TRANSREPS(G, H, R)

S « the empty list

for each A in thelist R

( comment: computc C = C(A)

C—0

foreachHe HdoifANH =0 thenC+— CUH
comment: compute orbit reprcsentatives containing A

foreachz e C
(B — AU{=}

do find the minimum orbit
ﬁ comment: { representative B* of G(B)
do ¢ B*—B
foreachg e G
d if 9(B) < B* in lexicographic order
then B* — g(B)
{ Lif B* is not in the list S then insert B* into the list S
return (S)

If we can compute the number N [k +1] of orbits of wransverse (k+1)-element
subsets prior to computing the orbit representatives of (k + 1)-subsets, then we
can possibly abort the computation in Algorithm 3.1 carly. In order to do this, we
would add the statement

if |S| = N[k + 1] then exit
after B* is inserted onto the list S.

Let H = {H, Ha,..., H;} be a partition of X into holes and let G be an
automorphism group preserving M. Then N{k], the number of orbits of transverse
k-element subsets, is given by the Cauchy-Frobenius-Burnside formula:

1
N[kl = |—5|' Z F]X(k’g)a

9c¢G

where F1X (k, g) is the number of transversc k-clement subscts fixcd by the permu-
tation g. In order (o use this formula, an cfficicnt algorithm is required to compute
FIx(k, g). We develop such an algorithm now.

Let g € G and write g as a product of disjoint cycles:

g=CoCiCyp:--Cy.

38



Forj =0,1,...,5—1,definc C; by
Cj = {i:z € H; forsome z € Cj).

If K is a transverse k-clement subset fixed by g, then

1. K is a union of cycles Cj,,Cj,, ..., Cj,,

2. Cj, istransverse toH forh = 1,2, ..., ¢, and

3.C;,NC;, =0foralll <h <k’ <&

Thus, we associate with cach permutation g € G a graph G, = (V, &) whose

vertices arc the cycles Cj in g  with C; transverse 1o H, and in which C; is adjacent
to Cy- if and only if C; and Cj. arc disjoint. If A C Vis a cliquc in G, then g

fixes a subset of size
>_ LEN(Gy),
CjGA

where LEN(Cj) is the length of the cycle C;. The fixed transverse subset K
corresponding to the clique A is

K ={z:z € Cjand C; € A}.

Example 3.1. Consider the holes

H = {{0}, {1},{2}.{3}.{4,5,6},{7,8,9}}
and the permutation
o = (0,1)(2,3)(4)(5)(6)(7)(8)(9) = (0, 1)(2,3),
which preserves H. In Figure 2, the graph G,, is displaycd.

The vertices in graph G, are Co = (0,1),C, = (2,3),Cy = (4),C3 =
(6),Ca = (6),Cs = (7),Cs = (8), and C7 = (9). Note, for cxample, that
Cs is not adjacent to C4 because Cs N Cy = {5}. One clique in this graph
contains vertices Co, Cy, Cy and Cs. The size of this clique is four and K =
{0,1,2,3,6, 7} is the corresponding fixed subsct. The size of K s six. a

This process of finding the number of transverse orbits is given by the pseu-

docode in Algorithm 3.2. Implementation dewils for Algorithms 3.1 and 3.2
described can be found in [5].
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Figure 2: The graph G, where a = (0,1)(2, 3).

Algorithm 3.2: TRANSNORB(G)

for k «— 0to [H| do N[k] — 0
foreachge G
construct G,
for each cliquc A of G,
do j+—0
do { for each cycle C € Adoj — j+LEN(C)
N[j) — N[j]+1
for k «— 0 to [H| do N[k} — N[k)/|G|
return (V)

Example 3.2. Let the holes be as in Example 3.1 and let the group C=(a,,7),
where

a = (0,1)(2,3)
B8 = (0, 2)(1,3)
¥ (0,1,2)(4,5,6)(7,8,9).

]

We tabulate the numbers F1x (k, g), for cach g € G, in Table 1. Each value N (k]
in this table is computed by summing the entrics in the relevant column, and then
dividing by |G| = 12.

O

Once a possible automorphism group G has been chosen, we first find the or-
bit representatives, using the techniques described above. Then we determine the
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Table 1: Computation of N [k]

Fix(k, g)
glk=0] 1] 2] 3] 4] 5|6
1 110397679429
a 1| 6{11{12]119} 61{9
B 1| 6{11{12)19} 619
af 1| 6[11[12]19] 6(9
0% 11 11 01} 1] 0}0
72 1| t{o0f 1| 1} o0]0
ay 1 1) 0 1] 11010
By 1{ 1ol 1] 1{o0]o0
v8 1f 1ol 1| 1{0]0
ay? 1ty 10 1] 1fofo0
Bv? 11l o)l 1| 1] o0lo
afy? 1{ 1] 0f 1} 1fo0fO0
Nk 1] 3] 61012 5[3

possible transverse (-designs having G as an automorphism group. The construc-
tion of the transversc ¢-designs is done using standard techniques, which we now
summarize briefly.

Given any orbit A of wransverse £-subscts of X and any orbit I" of transverse
k-subsets, the quantity
|[KeT:K2T|

is independent of the choice of orbit representative T € A (a proof of this fact can
for be found, for cxample, in [7]). This motivales the following dcfinition.

Let H be a partition of X, let G be a subgroup of SYM(.X') preserving 7, and
suppose 0 < t < k < |X|. Then the orbit incidence matrix for transverse ¢-
versus k-subsets (with respect to the partition ) is the N|¢] by N[k] matrix Aee
such that

1. the rows of A, arc labeled by the orbits Ay, As, ..., A Ny Of transverse
t-clement subsets,

2. the columns of Ay are labeled by the orbits 'y, T'a, . .. T’ v of transverse
k-clement subscts, and

3. the [A;, T'j]-enury is A [Ai, '] = {K € 1;: K 2 T} where T € A is
any fixed representative.
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The following theorem, in the case of transverse designs of type 1Y (i.e., the
ordinary ¢-designs), first appeared in [6]. The matrices in this case are often called
the Kramer-Mesner matrices.

Theorem 3.1 [f there is a (0, 1)-valued solution U to the matrix equation
AU = AJ,

where J = [1,1,..., l]T. then there is a (simple) transverse t-(v, k, ) design
with holes H.

Proof: The k-element subsets in the union of the orbits I';j, where U[j] = 1, form
the blocks of the desired transverse ¢-design. u

We can solve the maltrix equation AU = AJ for a (0, 1)-valued solution U
using a simple backtracking procedure if the size of the matrix A,y is sufficiently
small. Other methods are described in [7].

4 Transverse Steiner quadruple systems

4.1 Necessary conditions

An investigation of transverse STS (i.c., group-divisible designs with block size
three) was done by Colbourn [1], who determincd the existence of transverse STS
of all possible types on at most 60 points. The following thcorem establishes some
necessary conditions for a wransverse SQS to cxist. Note that a transverse SQS
with one or two holes trivially exists because there are no transverse triples. On the
other hand, no transverse SQS with threc holes can exist because the transverse
triples cannot be covercd by transverse quadruplcs.

Theorem 4.1 Suppose that a transverse SQS of type hihy - - - hy, exists, where
n>4. Thenv = Y .., h; and the following hold:

1. hi + hj =v (mod 2) forall i # j,

2. There exists a transverse STS of type Hh,— forall £=1,2,...,n,and
ikl

3. Y hihjhe =0 (mod 4),
1<i<j<ks<n
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Proof: Let (X, M, B) be a transverse SQS with holes H = {H,, ..., Hn}, where
|H;| = h; fori = 1,2,...,n. Supposei # jandletz € H;andy € Hj.
Then, for cach z € {Jj_, He\{H; U H;}, there is a unique block {z,y, 2,2}
that contains z,y, z. This induces a pairing z, 2’ of the points not in H; U Hj.
Therefore n

> \Hi| = |Hi| - |H;l =0 (mod 2).

e=1
Hence,

h; + h; = |H:| + IH_,l = Z |[Hel =v (mod 2),
o=\

yiclding condition 1. Now let z € FH, and consider the blocks that contain . Let

T={B\{z}:z € Be B},

and let P = X\H,. Thenevery pairy € H;,z € [, wherei # j # € # 1
is in a unique block B of B and hence in a unique triple B\{z} in T. Thus
(P,H\ {He},T) is a wansverse STS of type []; ., hi.

Lastly, there arc 3, <; < j<k<n hihjhe transverse triples zyz, each in a unique
block. Thus, because each block contains four of them, 4 must divide this sum.
[ |

Corollary 4.2 Suppose that a transverse SQS of type hihy - - - hy, exists, where
n>4.Thenv =Y., h; and the following hold:

1. hy=hy=---=h, (mod 2), and

2. v=0 (mod 2).
Proof: Let (X, H, B) be a transverse SQS with holes H = {//4,. .., Hn}, where
|Hi| = hifori = 1,2,...,n. Now fix i and j where 1 < 7 < j £ n. Then,
because . > 4, there exists a k such that 1 < k < nand k # 4, . By Thcorem4.1

part 1, h; + hi = h; + hie (mod 2). Therelore by = h; (mod 2) forall < and j.
The fact that v is even now follows from Theorcm 4.1, part 1. ]

4.2 Uniform designs

The following result about uniform transverse SQS was cstablished by Mills
in [10).
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Theorem 4.3 (Mills, 1990) For u > 4, u # 5, a transverse SQS of type h* exists
only if and only if hu is even and h(u — 1)(z —2) = 0 (mod 3).

Remarks: With reference to the case u = 5, Mills (10] notes the non-existence of
a transverse SQS of type 25 (which was proved by Stanton and Mullin in [11]).
The existence of a transverse SQS of type 65 is shown by Mills in [9, Lemma 7].
Mills reports the existence of a transverse SQS of type 42, but he does not present
a construction for it. We give a construction in the Appendix. Hartman and Phelps
[3, Section 7] comment on the relevance of this design to the Granville-Hartman
bound for embeddings of SQS.

Now we statc and prove a thcorcm on the existence of (uniform) transverse
SQS of type hS.

Theorem 4.4 There exists a transverse SQS of type h® for all h = 0,4,6, or 8
(mod 12).

Proof: Apply Theorem 2.4 with ¢ = 3, slarling with transverse SQS of Lypes
45 and 65 (these designs are constructed in the Appendix and [9, Lemma 7],
respectively). [ |

It is an open problem Lo settle the existence of transverse SQS of type ® when
h=2o0r10 (mod 12),h > 2.

4.3 New constructions

In this section, we give several new constructions for nonuniform transverse SQS.

Theorem 4.5 There exists a transverse SQS of type m*((s — 2)m)! if and only
if s(s — 1)m2 = 0 (mod 6), (s — 1)m = 0 (mod 2), and (m, s) # (1,7).

Proof: Lci (8] showed that a large sct of transverse STS of type m?® exist if and
only if s(s — 1)m2 = 0 (mod 6), (s — 1)m = 0 (mod 2), and (m, s) # (1,7).
Apply Theorem 2.2, with £ = 2. |

The next series of thecorems modify the Doubling One-Factor (or DOF) con-
struction, which was first described by Hanani as a recursive construction for
Steiner quadruple systems. This mcthod constructs a onc-factorization of K, on
each of two disjoint SQS(v). It then uscs a pairing between the one-factors from



each SQS(v) to construct a sct of quadruples with the property that cach triple
consisting of one point from one SQS(v) and two points from the other SQS(v)
is covered by exactly one of the quadruples. The result is an SQS (2v).

Theorem 4.6 If there exists a transverse SQS of type m* and one of type n¥,
where z,y 2 2 and m(x — 1) = n(y — 1), then there exists a iransverse SQS of
lype m=n¥,

Proof: Let (X, H, B) be a transverse SQS of type m* and let (X, H’,B’) be a
transverse SQS of type n¥, where m(z — 1) = n(y — 1). Then the complete
z-partite graph Ko m,...,m (Whose parts arc the holes in H) is a regular graph
of degree N = m(z — 1), where mz is even, and so it has a one-factorization,
F ={F,F,,...,Fx}. Thc complete y-partitc graph Ky, n,...» (Whose parts are
the holes in H') is also a regular graph of degree N, and it has a one-factorization,
F' = {F{,F;,...,Fy}. Thus we can pair thc one-factors of F and F’, con-
structing a set of blocks

B" = {{a,b,¢,d'} : abe€ F;,dd € Fj,1 <j < N}.

Now, an admissiblc triple of points from X is in a uniquc block in B; an
admissible triplc of points from X’ is in a unique block in B’; and an admissible
triple consisting of two points from X and onc point from X’, or two points from
X’ and one point from X, is in a unique block in B”. Thercfore, we have a
transverse SQS of type m®n¥, namely (X U X/, HUH',BU B’ U B"). [ |

Corollary 4.7 [f there exists a transverse SQS of type m® withz > 2and g =
m(z — 1), then there exists a transverse SQS of type m*g>.

Proof: A transverse SQS of type g2 is a trivial design having no blocks. Therefore
it follows by Theorem 4.6 that there cxists a transverse SQS of type m*g2. W

Theorem 4.8 Suppose mn is even, there exists a transverse SQS of type
(mn)"(s + t)! and there exists a transverse SQS of type m"™s'tl. Then there
exists a transverse SQS of type m™s't!,

Proof: Let Hy, Hs,...,H, and X be disjoint scts with |H;| = mn (i =
1,2,...7) and |X| = s + ¢. Construct a transverse SQS of type (mn)™(s + t)!,
having blocks B, where these = + 1 sets are the holes.

Next, forcach ¢ = 1,2,...,r, parlition /; into subsets //;1, Hi2,..., Hin
where |H; j| =mforj =1,2,...,n. Also, partition X = SUT, where |S| = s
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and |T| = t. For1 < i < r, construct a transverse SQS of type m™s'¢! on the
holes {H;,1, H;2,. .., Hin,S, T}, having block set B;.

Finally, for 1 < ¢ < j < r, we construct a set of blocks contained in H; U H;
that correspond to the blocks B” in the construction given in Theorem 4.6. More
precisely, for 1 < ¢ < r, construct an n-partite graph G; = K m,...,m Whose
paris are the holes in //;. Each G; is a regular graph of degree N = (n — 1)m
having an even number of vertices, and hence it has a onc-factorization, F; =
{F} F2,...,FNY}. Then for each pair 4,5 with 1 < i < j < r, we can pair the
one-factors of F; and F;, constructing a sct of blocks

Bij={{a,b,c,d'}:abe F!,dd € F}',1 <h < N}.

The desired design has blocks
sul | Byl U B
1<i<r 1<igji<r
It can be shown that this design is a transverse SQS of type m™s!t!. |

We close this scction with a noncxistence result.
Theorem 4.9 There does not exist a transverse SQS of type 1135,

Proof: If a transverse SQS of type 1!3% were to exist, then the derived design
with respect to the point in the holc of size 1 would be a transverse STS of type
35. Adding a “point at infinity”, oo, to the remaining holes (cach having size
3), we get a linear space (or pairwise balanced design) on 16 points having five
blocks of size four that intcrsect in the point oo, and 30 blocks of size three. The
146 non-isomorphic lincar spaccs of this type were enumerated by Heathcote in
[4]. For cach of these 146 lincar spaces, we delcted the point oo and applied a
backtracking algorithm (o try to extend it (o a transverse SQS of type 1!3%. No
cxtension was possible. =

4.4 Small transverse Steiner quadruple systems

In this section, we present Tables 2 and 3 that summarize the existence and nonex-
istence results we have for transverse Steiner Quadruple systems on at most 24
points. Only the types of designs that are admissible according to Theorcm 4.1
are listed in the tables. New designs found by the algorithms described in Sec-
tion 3 are noted in the tables, and the designs appear in the Appendix.
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Table 2: Transverse SQS on 4, 6, . .., 18 points

v type existence | remarks

4 14 Yes Theorem 4.3

v type existence | remarks

8 1° Yes Theorem 4.3
24 Yes Theorcm 4.3

v type existence | remarks

10 1% Ycs Theorem 4.3
25 No Remark following Thcorem 4.3
1432 Yes Appendix or Corollary 4.7

v type existence | remarks

12 31 Yes Theorem 4.3
294! Yes Appendix or Theorem 4.5
1751 No Theorem 4.5

v type existence | remarks

14 1M Yes Theorem 4.3
27 Yes Theorem 4.3

v type existence | remarks

16 11 Yes Theorem 4.3
28 Yes Theorem 4.3
11331 Yes Appendix
11032 Yes Appendix
1733 Yes Appendix
1434 Yes Appendix
1135 No Theorcm 4.9
44 Yes Theorcm 4.3
1971 Yes Theorcm 4.5

v type cxistence | remarks

18 RY Yes Thcorem 4.3
274! Yes Appendix
2144 Yes - Appendix
11351 ? ?
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Table 3: Transverse SQS on 20, 22 and 24 points

v type existence | remarks
20 14 Ycs Theorcm 4.3
11371 ? ?
210 Yes Theorcm 4.3
45 Yes Appendix
54 - Yes Theorem 4.3
2162 Yes Appendix or Corollary 4.7
2681 Yes Theorem 4.5
276! ? ?
3551 ? ?
v type existence | remarks
22 14 Yes Thecorem 4.3
16337! ? ?
11034 Yes Theorem 4.6
1123171 ? ?
11391 ? ?
11632 Yes Theorcm48 (s =Lt =3, m=1,n=r=4)
136 Ycs Appendix
1872 Yes Appendix or Corollary 4.7
o1 Yes Theorem 4.3
278! Yes Appendix
3571 ? ?
416! Yes Appendix
v type exisience | remarks
24 1145171 ? ?
1454 ? ?
11311! Yes Thcorem 4.5
11951 ? ?
2710! Yes Theorem 4.5
21041 Yes Appendix or Thcorem 4.8 (s = 2,t = 4,
m=2n=r=23)
2144 ? ?
264181 ? ?
38 Yes Theorcm 4.3
359! Yes Theorem 4.5
418! Yes Theorem 2.4 or Theorem 4.5
6" Yes Theorem 4.3
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S5 Conclusion and opeﬁ problems

The parameter case 1'39" in Table 3 is particularly interesting. If such a de-
sign werc 1o exist, it would have scveral interesting properties. The derived de-
signs through the nine points in the group of size 9 would yicld nine disjoint
Steiner triple systems of order 13 on the remaining 13 points. This would leave
52 triples uncovered, which would therefore be covered by 13 quadruples. It can
be shown that these 13 quadruples would form a projective planc of order 3, i.e., a
2-(13,4, 1) design. Hence, the problem of constructing a transverse SQS of type
11391 s cquivalent to taking a projective planc of order 3 (there is a unique one,
up to isomorphism) and partitioning all the non-collincar triples of points into nine
block-disjoint Steiner triple systems of order 13.

The problem of constructing transverse t-designs with £ > 3 remains difficult
(other than the designs corresponding (o orthogonal arrays, of course). Here is
one interesting infinite class of transverse 4-designs that we construct by using a
result of Etzion. In [2, Corollary 7], Etzion established the existence of a large set
of transversc SQS of type g2 forevery r > 2and g 2 2. Therearen = (27—3)g
designs in the large set. Then, applying Theorem 2.2, we have the [ ollowing result.

Theorem 5.1 Letr > 2 and g > 2, and denote n. = (27 - 3)g. Then a transverse
4-(27g + n, 5, 1) design of type g% n! exists.

It would be of interest 1o find additional constructions for transverse t-designs
witht > 3and A = 1.
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6 Appendix: Small transverse Steiner quadruple
systems

In this appendix, we list the transverse Siciner quadruplc systems we found
using the algorithms described in Section 3. For each design, we give its type,
an automorphism group G, and a set of base blocks. The base blocks, when
developed by the automorphism group G, will yield the blocks of the design. The
holes are always written as {Hy, Ha, ..., H,} where [Hi| < |Hg) < -0+ < |H,.
H consists of the first || points, H consists of the next | H2| points, etc.

...............................................................

G={(0,1)(2,3),(0,2)(1, 3),(0,1,2)(4,5,6)(7,8, 9).
Base blocks: {0,1,2,3} {0,1,4,9} {0,1,5,8} {0,1,6,7)
TYPE M. o

G=((0,2)(4, 6)(1,3)(5, 7)(8,9)(10, 11),
(0,4)(2,6)(1,5)(3,7)(8,10)(9, 11),
(0,2,4)(1,3,5)(8,9,10)).

Basc blocks: {0,2,4,11} {0,2,5,9} {0,3,5,10) {1,3,5,11}
TYPC13L o
G=((0)(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13, 14, 15)).

Base blocks: {0, 1,2, 3} {0,1,4,15} {0,1,5,12} {0,1,6,9}
{0,1,7,14} ~ {0,1,8,10}  {0,1,11,13} {0,4,5,6} {0,4,8,14}
{0,4,9,12}  {0,4,10,13} {0,7,8,9} {0,7,11,15) {0,10,11,12}
{1,2,4,11}  {1,2,59}  {1,2,6,15} ({1,2,7,13} {1,2,8,12}
{1,2,10,14} {1,4,5,7}  {1,4,6,13} {1,4,9,14} {1,4,10,12)
{1,5,6,11}  {1,5,8,15} {1,5,10,13} {1,6,7,8} {1,6,12,14}
{1,7,9,10} {1,7,12,15} {1,8,9,13} (1,8,11,14} {1,9,11,12}
{1,10,11,15} {4,5,8,12} {4,5,9,13} {4,5,11,15} {4,7,8,10}
{4,7,9,15})  {4,7,12,13} {4,8,11,13} {4,9,10,11} {4,11,12,14}
{7,8,12,14} {7,10,11,14}
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1Y o L R LR R XX R CREE:
G=((1,2,3)(4,5,6)(7,8,9)(10,11,12)(13, 14, 15)).

Basc blocks: {0,1,2,3} {0,1,4,15} {0,1,5,12} {0,1,6,9}
{0,1,7,14} {0,1,8,10} {0,1,11,13} {0,4,5,6} {0,4,8,14}
{0,4,9,12} {0,4,10,13} {0,7,8,9}  {0,7,11,15} {1,2,4,11}
{1,2,5,8} {1,2,6,15} {1,2,7,10} {1,2,9,14} {1,2,12,13}
{1,4,5,9} {1,4,6,13} {1,4,8,12} {1,4,10,14} {1,5,6,11}
{1,5,7,13} {1,5,10,15} {1,6,7,8} {1,6,12,14} {1,7,9,11}
{1,7,12,15} {1,8,9,15} {1,8,11,14} {1,9,10,13} {4,5,7,11}
{4,5,8,13} {4,5,12,15} {4,7,8,10} {4,7,9,14} {4,7,12,13}
{4,8,11,15} {4,9,11,13} {7,8,11,13}

TYPC 173, ottt ittt

G={(0,1,2)(3,4,5)(7,10,13)(8, 11, 14)(9, 12, 15),
(7,8,9)(10, 11, 12)(13, 14, 15)).

Base blocks: {0,1,2,6} {0,1,3,15} {0,1,4,11} {0,1,5,7}
{0,1,8,14} {0,1,9,12} {0,1,10,13} {0,3,4,12} {0,3,5,13}
{0,3,6,11} {0,3,7,14} {0,3,9,10} {0,4,5,8} {0,4,6,7}
{0,4,9,14} {0,4,10,15} {0,5,6,15} {0,5,9,11} {0,5,10,14}
{0,6,8,10) {0,6,9,13} {0,6,12,14} {0,7,11,15} {0,7,12,13}
{0,8,11,13} {0,8,12,15} {3,4,5,6} {3,4,8,11} {3,4,9,15}
{3,4,10,13} {3,6,7,15} {(3,6,8,12} {3,6,10,14} {3,7,11,13}
(3,8,10,15} {3,9,11,14} {3,9,12,13} {6,7,10,13} {6,8,11,14}
{6,9,12,15}

1R I S R RARRRERLE

G=((0,1)(2,3)(4,7)(10,13)(5,8)(11,14)(6,9)(12, 15),
(0,2)(1, 3)(4,10)(7, 13)(5, 11)(8, 14)(6, 12)(9, 15))-

Base blocks: {0,1,2,3} {0,1,4,15} {0,1,5,14} {0,1,6,13}
{0,2,4,12} {0,2,5,11} {0,2,7,15} {0,2,8,14} {0,3,4,9}
{0.3,5,7} {0,3,6,8} {0,4,7,14} {0,4,8,10} {0,4,11,13}
{0,5,8,13} {0,5,9,12} {0,5,10,15} {0,6,7,11} {0,6,9,15}
{0,6,12,14} {0,7,10,13} {0,8,12,15} {0,9,11,14} {4,7,12,15}
{4,8,11,15} {4,8,12,14} {4,9,10,15} {4,9,12,13} {5,8,11,14}.
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G=((0,2,4)(1,3,5)(6,8,10)(7,9, 11)).

Baseblocks:  {0,2,4,17}  {0,2,5,16}  {0,2,6,15} {0,2,7,14}
{0,2,8,13} {0,2,9,11} {0,2,10,12} {0,3,5,13} {0,3,6,9}
{0,3,7,10} {0,3,8,17} {0,3,11,15} {0,3,12,14} {0,5,6,11}
{0,5,7,17} ~ {0,5,8,10) {0,5,9,14) {0,5,12,15} {0,6,8,14)}
{0,6,10,17} {0,6,12,16} {0,7,8, 15) {0,7,11,12} {0,7,13,16}
{0,8,11,16} {0,9,10,16} {0,9,12,17} {0,9,13,15} {0,10, 13,14}
{0,11,13,17} {1,3,5,16}  {1,3,6,11} {1,3,7,17} {1,3,8,15}
{1.3,9,12} * {1,3,10,14} {1,6,8,12} {1,6,9,14) {1,6,13,16)
{1,7,9,16}  {1,7,11,15} {1,7,13,14) {1,8,10,16} {1,8,13,17}
{1,9,11,13} {1,10,12,17} {1,10,13,15} {1,11,12, 16} {6,8,10,15}
{6,8,11,13} {6,9,11,17} {6,9,12,15} {6,11,12, 14} {7,9,11,14}

G=((2,3)(4, 5)(6,7)(8, 9)(10, 11)(12, 13)(14, 15)(16, 17),
(2,5)(3,4)(6,9)(7,8)(10, 13)(11, 12)(14, 17)(15, 16)).

Base blocks: {0,2,6,17) {0,2,7,15} {0,2,8,13} {0,2,9,10}
{0,2,11,16} {0,2,12,14} {0,6,10,15} {0,6,12,16} {1,2,6,12}
{L2,7,11} {1,2,8,14}) {1,2,9,16) {1,2,10,15} {1,2,13,17}
{1,6,11,17} {1,6,13,14} {2,6,10,16} {2,6,11,14} {2,6,13,15)
{2,7,10,14} {2,7,12,17} {2,7,13,16} {2,8,10,17} {2,8,11,15)
{2,8,12,16} {2,9,11,17} {2,9,12,15} {2,9,13, 14},

TYPE A5, oo

G=((0,4,8,12,16)(1,5,9,13,17)(2, 6, 10, 14,18)(3,7, 11, 15, 19)).

Basc blocks:  {0,4,8,19}  {0,4,9,18}  {0,4,10,14} {0,4,11,13}
{0,4,12,17} {0,5,9,15}  {0,5,10,18} {0,5,11,19} {0,5,13,17)
{0,6,8,14}  {0,6,9,13} {0,6,11,17} {0,6,15,19} {0,7,8,17)

{0,7,10,12} {0,7,11,15} {0,7,13,18} {0,7,14,19} {0,9,14,17)
{0,10,13,19} {0,10,15,17} {0,11,14,18} {1,5,9,14} {1,5,15,19)
{1,6,10,19) {1,6,11,18} {1,7,9,19}  {1,7,10,13} {1,7,11,14}
{1,10,14,18} {2,6,11,14} {2,7,11,19}

53



0 o L PRI

G=((0,1)(3,2)(4,5)(6,7)(8,14)(9, 15)(10,16)(11,17)(12,18)(13,19),
(0, 3)(1, 2)(4,6)(5, 7)(8,9,10,11,12,13)(14, 15, 16,17, 18, 19)).

Base blocks: {0,2,4,7} {0,2,5,6} {0,2,8,18} {0,3,4,6}
{0,3,5,7} {0,3,8,19} {0,4,8,17} {0,4,9,18} {0,5,8,16}
{0,5,9,19} {0,6,8,15} {0,6,9,16} {0,7,8,14} {0,7,9,15}
{4,6,8,19} {4,7,8,16}

g 17T e 3T P

G=((4,5,6)(7,8,9)(10,11,12)(13, 14, 15)(16,17,18)(19,20,21),
(4,7,10)(5,8,11)(6,9, 12)(13,16,19)(14, 17,20)(15, 18, 21)).

Base blocks: {0,1,2,3}  {0,1,4,21} {0,2,4,20} {0,3,4,19}
{0,4,7,18}  {0,4,8,17} {0,4,9,16} {0,13,16,21} {1,2,4,19}
(1,3,4,20} {1,4,7,17} {1,4,8,16} {1,4,9,18} {1,13,16,19}
{1,13,17,21} {1,13,18,20} {2,3,4,21} {2,4,7,11} {2,4,13,18}
{2,4,14,17} {2,4,15,16) {3,4,7,10} {3,4,8,12} {3,4,9,11}
(3,4,13,17} {3,4,14,16} {3,4,15,18} {4,7,12,20} {4,7,13,16}
{4,7,14,19} {4,7,15,21} {4,8,13,21} {4,8,14,20} {4,8,18,19}
{4,9,13,20} {4,9,14,21} {4,9,15,19} {4,15,17,20}

1 £ T L P ERTREES
CG=((0,1)(2,3)(4,5)(6, 7), (0,3)(1,2)(4,7)(5, 6)).

Base blocks: {0,1,2,7} {0,1,4,5} {0,1,8,21} {0,1,9,20}
{0,1,10,19} {0,1,11,18} {0,1,12,17} {0,1,13,16} {0,1,14,15}
{0,2,4,6) {0,2,8,20} {0,2,9,21} {0,2,10,18} {0,2,11,19}
{0,2,12,16} {0,2,13,15} {0,2,14,17} {0,3,4,7} {0,3,8,19)
{0,3,9,18} {0,3,10,21} {0,3,11,20} {0,3,12,15} {0,3,13,17}
{0,3,14,16} {0,4,8,18} {0,4,9,17} {0,4,10,16} {0,4,11,15}
{0,4,12,21} {0,4,13,20} {0,4,14,19} {0,5,6,7}  {0,5,8,17}
{0,5,9,19} {0,5,10,15} {0,5,11,16} {0,5,12,20} {0,5,13,21}
{0,5,14,18} {0,6,8,16} {0,6,9,15} {0,6,10,20} {0,6,11,17}
{0.6,12,19} {0,6,13,18} {0,6,14,21} {0,7,8,15} {0,7,9,16}
{0,7.10,17} {0,7,11,21} {0,7,12,18} {0,7,13,19} {0,7,14,20}
{4.5.8,21} {4,5,9,20} {4,5,10,19} {4,5,11,18} {4,5,12,17})
{4,5,13,16) {4,5,14,15} {4,6,8,20} {4,6,9,21} {4,6,10,18}
{4,6,11,19} {1,6,12,16} {4,6,13,15} {4,6,14,17} {4,7,8,19}
{47,918} {4,7,10,21} {4,7,11,20} {4,7,12,15} {4,7,13,17}
{4,7,14,16}
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TYPC 278, it
G=((0,2,4,6,8,10,12)(1,3,5,7,9, 11, 13)(14, 15, 16, 17, 18, 19, 20)).

Base blocks:  {0,2,4,20} {0,2,5,18} {0,2,6,13} {0,2,7,17)
{0,2,8,15}  {0,2,9,16} {0,2,10,21} {0,2,11,14} {0,3,4, 15)
{0,3,5,9}  {0,3,6,20} {0,3,7,19} {0,3,8,14} {0,3,10, 16}
{0,3,11,21} {0,3,13,18} {0,4,8,16} {0,4,9,19} {0,4,13,17)
{0,5,6,15}  {0,5,7,21} {0,5,8,20} {0,5,11,19} {0,5,13, 14}
{0,7,9,14}  {0,7,11,20} {0,7,13,16} {0,9,11,18} {0,9,13, 21}
{0,11,13,15} {1,3,5,16} {1,3,9,20} {1,3,11,19} {1,5,9,15}

...............................................................

G=((0,1,2)(4,5,6)(8,9,10)(12, 13, 14)(16, 17, 18)(19, 20, 21),
(0,3)(1,2)(4,7)(5, 6)(8,11)(9, 10)(12, 15)(13, 14)).

Base blocks: {0,4,8,12} {0,4,9,21} {0,4,13,18} {0,5,8,20}
{0,5,9,18} {0,5,10,15} {0,5,11,17} {0,5,12,16} {0,5,13,21}
{0,5,14,19} {0,8,13,17} {0,9,12,20} {0,9,13,19} {0,9, 15,17}
{4,8,13,19} {4,9,12,16} {4,9,13,17} {4,9,14, 19}
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TYPE 21041, Lottt e

G=((0, 2,4)(6,8,10)(12,14,16)(1,3,5)(7,9,11)(13,15,17),

(0, 2)(6, 8)(12,14)(1, 3)(7,9)(13, 15)).

Base blocks:
{0,2,10,21}
{0,3.6,9}
{0,3,13,15}
{0,6,13,22}
{0,7,13,20}
{0,8,12,15}
{0,9,16,22}
{0,13,19,21}
{1,3,6,14}
{1,3,17,18}
{1,6,19,22}
{1,7,19,21}
{1,8,17,23}
{1,12,18,21}
{1,14,17,21}
{6,8,17,20}
{6,9,17,21}
{6,14,16,19}
{7.9,17,20}
{7,14,16,18}

{12,15,17,23} {13,15,17,22}

{02,423}
{0.2,11,20}
{03,7.8}
{0,3,16,18}
{0,6,18.21}
{0.7,18,22}
{0.8,16,23}
{09,17,23}
{0,14,16,21}
{13,7,15}
{1,6,8,15}
{1,7,9,14}
{1.8,10,18}
{19,11,18}
{1,12,19.23}
{1,15,17,20}
{6.9,11,23}
{6,12,18,22}
{6,14,17,18}
{7.12,18,23}
{7.,14,17,19}

{0,2,5.22}

{0,2,16,19}
{0,3,10,20}
{0,3,17,19}
{0,6,19,20}
{0,7,19,23}
{0.8,17,22)

{0,12,18,20} {0,12,19,22}
{0,14,17,20} {0,15,17,21}

{1,3,10,21}
{1,6,12,20}
{1,7.12,22}
{1.8,11,19}
{1,9,12,15}

{1,13,18,22} {1,13,19,20}

{6,8,10,23}
{6.9,12,14)

{6,12,19.21} {6,13,18,20}

{0.2,6,15}
{0.2,17,18)
{03121}
{0,6,8,14}
{0,7.9,15}
{0,8,10,19}
{09,11,19}

{1,3,11,20}
{1,613,21}
{1,7,13,23}
{1,8,13,14}
{1.9,16,23}

{6.8,11,22)
{69,13,15}

{6,15,17,19} {7.9,11,22}

{7,12,19,20} {7,13,18,21}

{0,2,7,14}
{0,3,5,23}
{0,3,12,14}
{0,6,12,23}
{0.7.12,21}
{0.8,11,18}
{0,9,13,14}
{0,13,18,23}
{1,3,5,22}
{1,3,16,19}
{1,6,18,23}
{1,7,18,20}
{1.8,16,22}
{1.9,17,22}
{1,14,16,20}
{6.8,16,.21}
{6.9,16,20}
{6,13,19,23}
{7.9.16,21}
{7,13,19,22}

{7.1517,18} {12,14,16,23} {12,14,17,22}
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