Tables For Constant Composition Codes
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Abstract

A constant composition code of length n over a k-ary alphabet
has the property that the numbers of occurrences of the k symbols
within a codeword is the same for each codeword. These specialize
to constant weight codes in the binary case, and permutation codes
in the case that each symbol occurs exactly once. Constant compo-
sition codes arise in powerline communication and balanced schedul-
ing, and are used in the construction of permutation codes. Using
exhaustive and probabilistic clique search, and by applying theorems
and constructions in past literature, we generate tables which sum-
marize the best known lower bounds on constant composition codes
for (i) 3<k <n <8, (i) k=3,9 <n < 12, and (jii) various other
interesting parameters with n > 9.
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1 Introduction

Let C be a k-ary code of length n and distance d on the alphabet {1,..., k}.
As usual, the elements of C are codewords.

We say C has constant weight composition [n1,...,nx] if every code-
word has n; occurrences of symbol i for i = 1,...,k. (Since the alphabet
is immaterial to a code, we may view the composition [rn1,...,nx] as an
unordered multiset, and not restrict the alphabet to'{1,...,k}.) Code C
is a constant composition code, or simply a CCC. Let A([n1,...,nk], d) de-
note the maximum size of such a CCC. Since distinct codewords with the
same composition always disagree in at least two positions, it is clear that
A([nl, ooy nk], 2) = n!/ﬂq! s nk!.

When writing compositions, the exponential notation ntini? ... nik may
be used to abbreviate

ty t2 tn

AR T T TR

Among the most studied CCCs are those with composition 17, called per-
mutation codes. Permutation codes have been shown in [4] and (5] to have
nice application to powerline communication, where changes in amplitude
or frequency must respect some overall average.

For later reference, we include some elementary facts concerning upper
and lower bounds on A([n1,...,n«),d). Proofs can be found in (12].

Lemma 1.1. Ifd > 2(n—n,), then A([n, ..., nk],d) = 1. Ifd =2(n—m1),
then A([n1,...,nk),d) = |n/(n —mn1))].

Proposition 1.2. (recursive Johnson bound)
A(fn1,m2, ..., nal,d) < -:—IA([nl —1,n,...,m), d).

Corollary 1.3. A([n1,...,nk),n) = |n/max{n;}].

In the references, various other lower bounds and exact values have been
obtained for cases such as d =3,4,2(n—ng) — 1, k=2,3, ny = --- = N,
and n a prime power. There are also useful upper bounds relating to the
Plotkin bound; see 3], [7], and [10].

Obviously, the problem of finding lower bounds or exact values for a
particular A([n1,...,n«),d) can be reduced to clique search in a graph on
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nl/ny!. .. ni! vertices. For exhaustive search, we have used an implemen-
tation of the algorithm in [8] and [9). When the graph is too large for
exhaustive search, we have used reactive local search, as discussed in 1],
which gives an approximate max-clique and hence a lower bound. For still
larger graphs, we invoke a greedy search. This finds a clique by simply
running through all possible vertices once (say in lexicographic order) and
adding a vertex to the current clique if it is adjacent to all others in that
clique. When such a graph is still too large for a practical search of any
kind, its size can be reduced using automorphism groups; see [4]. For what
follows, we briefly mention one special case. A code C of length n admits a
cyclic automorphism if, whenever w € C, then all cyclic shifts of w belong
to C. When using clique search for codes admitting cyclic automorphisms,
it suffices to consider vertices whose first entry is a fixed symbol - the least
frequent is best - but carefully eliminate those vertices for which nontrivial
shifts are too close. If such vertices are excluded, the size of the resulting
code is of course n times the size of the clique found.

Constant composition codes with k = 2 are known as constent weight
binary codes and are well-studied. Extensive tables for such codes can be
found in [2]. So we restrict our attention in what follows to k > 3. However,
we note that the Johnson bound is used in our tables (and in past results)
to reduce the composition [ny,n,1] to the binary case.

2 Tables

Following are four tables which summarize the current status of lower
bounds and known exact values on A([n1,...,nk,d) for k > 3. Table 1
considers all (non-binary) compositions and distances with n < 8. Table
2 concerns all ternary compositions and all distances with 9 <n <12
Tables 3 and 4 provide a selection of lower bounds for various compositions
with n > 9. A variety of algebraic, combinatorial, and computational con-
structions by the same authors in [3] and [4] provides several new entries
in these tables, particularly for n > 13, where we have merely illustrated
some of these constructions with selected entries. In addition, some exact
values in Table 4 appear in the recent paper [7] and many of the bounds on
ternary compositions for n < 10 are found in [12]. We note that the bound
A([6,2,2],4) > 80 (found by clique search) agrees with that stated in 1 2];
however, the code given in that reference is cyclic containing a “short orbit”
2100021000.

Subscripts on entries in each table point to justification for the claimed
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code, given in the legend preceding the tables. Exact values (where an
upper bound is known to meet a given lower bound) are shown in bold.
Superscripts on these values indicate, also according to the legend, the
(simplest) reason for the stated upper bound. If either a superscript or
subscript is missing, it indicates a reference to one of the easy facts in the
introduction: Lemma 1.1, Proposition 1.2, or Corollary 1.3.

Legend

subscripts for lower bounds
]

3

clique computation
algebraic construction in [6]
simple direct construction
greedy search as in [3]
exact value obtained in (7]
from larger d or smaller n;
(12]

[11]

cyclic codes via cyclotomy as in (3]

o h O QO O AD OR

<

superscripts for upper bounds
nonrecursive Johnson bound in (7]
(strengthened) Plotkin bound (10}
n2)

exhaustive search referenced in (6]
exhaustive clique search

[T Y~ -~ |
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n | comp | d size n| comp | d size
9 19 14 18144, | [13 | 1% |6 | 271908,
9] 1° |5 1944, | |13 18 | 9| 3588,
9| 1° |6 1512, [ | 13| 1'26 | 4 | 9360,
9| 172! | 3 50400, | | 13 [ 126 | 6 | 4680,
9| 1t2¢ | 7 36, [ |18 128 | 7 [ 1560,
912 |8 991113 1128 |8 936,
10 10 |4 86400, | | 13| 1126 | 9 208,
10 10 [ 5 13680, | [ 13| 1'2¢ |10 117,
10| 110 | ¢ 4320, | | 13| 1'2¢ |11 78,
10 10 |9 350, | [13] 1126 [12 137
10| 182! | 3 504000, | { 13 | [6,4,3) | 9 13,
10| 25 (9 75 1113]|[6,6,1] | 7 26,
117 110 | 4] 950400, | | 13| [5,4,4] | 8 39,
1mf 1" s 79204 | [ 13| 4!3% | 6 312,
18 N I R 154, | |13 433 | 7 156,
11| 192 | 3 | 5443200, | | 13| 4133 | 8 78,
11| 1'2% | 4 1320, [ ] 13 ) 4'3% [ 9 26,
11125 | 6 660, | | 13| 4%1' | 7 78y
12| 7 220, ([ 18| 431! | 9 39,
11| 1'2% [ 9 55, [ [ 13| 3%1' | 6 312,
11} 1'25 |10 117 ][ 13] 31! | 8 156,
11| 3124 | 4 1320, | [ 13| 3%1! |10 52,
11| 3127 | 5 660, | { 13| 3'2° | 4 | 9360,
11] 329 | 6 286, | | 13| 3'25 | 6 | 4680,
1|32 |7 7, || 18] 3125 [ 7 884,
11 327 | 8 55, | | 13| 3'2% | 8 494,
12| 177 |1 [ 11404800, | | 13| 325 | 9 156,
12 12 | 8 950404 | | 13| 3'25 |10 78,
12 26 |n 8 |14 1™ [10[ 6552,

Table 3: Various compositions and distances with 9 < n < 14,
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n comp d | size n comp d size
15 1% 13| &4, 32 194 28 | 372992,
15 6133 12| 10p 37 9%10* 24 444,
15 4331 12| 15 39 13° 27 27
16 47 0 | 403, | [48| 761 [42 48,

16| 4* |12} 60,56 87 49 49;,
17| 435! | 12| 68, | |56 | [24,24,8] | 35 19,
20| 5 16| 165 | | 60 | [36,12,12] | 35 25,
91| [10,6,5] | 14| 21,| 63| &7 |56 63,
DA | 547 |20 244 | |72 o® 64 64,
2% | 19,8,8] | 26| 265 || 72| [27,27,18] | 48 64,
30| 65 |25 254 | |80 [27,27,26] [ 54 805,
30| [12,12,6) | 20| 25, | [84 | 217 |64 64,
31| [15,10,6] | 20 | 31, | | 80 | [50, 20, 20] | 54 81,

Table 4: Various compositions and distances with n > 15.
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