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Abstract

We use a new technique for decomposition of complete graphs
with even number of vertices based on 2n-cyclic blended labeling to
show that for every k > 1 odd, and every d,3 < d < 29k — 1, there
exists a spanning tree of diameter d that [actorizes Kaay..

1 Introduction

Let H and G be simple graphs. A G-decomposition of a graph H on n ver-
tices is a partition of H into pairwise edge disjoint subgraphs Gy, G\, ..., G,
all isomorphic to a given graph G with at most n vertices. If G has exactly
n vertices and none of them is isolated, then G is called a factor of H and
such a G-decomposition is called a G-faclorization of H. The decomposi-
tion is cyclic if there exists an ordering (2, 22, ..., 2,) of the vertices of H
and isomorphism ¢; : Go — Gi, i = 1,2,...,s such that ¢; (25) = 2iq;
for each j = 1,2,...,n. Subscripts are taken modulo n.

Many papers have been written on graph decompositions. Decompo-
sitions of complete graphs and complete bipartite graphs received special
attention. However, most of these papers deal with decompositions into
isomorphic graphs of smaller order. Not that much is known about decom-
positions of complete graphs into isomorphic spanning trees. An obvious
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necessary condition for the existence of a G-decomposition of K, is that
the number of edges of G divides the number of edges of K,. It follows
that a factorization of a complete graph with an odd number of vertices
into spanning trees is impossible. Therefore, we deal only with complete
graphs with an even number of vertices Koay.

It is a well known fact that K2, can be factorized into Hamiltonian
paths Ps,. It is also easy to observe that a cyclic factorization of Kz,
into symmetric double stars is possible. First result giving a more general
answer is due to P. Eldergill. In his thesis [1] he introduced a method for
cyclic decomposition of Ka, into symmetric trees. By a symmetric tree he
means a tree symmetric with respect to an edge.

Eldergill's method is, similarly as many other methods of decomposi-
tion, based on a graph labeling. Two important types of vertex labelings
were introduced in 1960’s by A. Rosa. In [7] he defined a p-labeling and
a graceful labeling, which he used for cyclic decompositions of Kay41 into
2n+1 copies of a graph with n edges. Graceful or p-labelings were often used
to construct new types of labelings, which in some sense generalize their
properties. Among them are: p-symmetric graceful labeling introduced in
[1] by P. Eldergill, allowing decomposition of K2, into symmetric graphs,
or a blended p-labeling introduced by D. Fronéek [3]. A blended p-labeling
exists for a wider class of graphs than symnetric trees and guarantees a
decomnposition of Ky42. A generalization of the blended p-labeling, called
2n-cyclic blended labeling, was recently developed by Fronéek and the au-
thor [5).

In this paper we use a method based on 2n-cyclic blended labeling for
decomposition of Kai, where k is not a power ol 2. More specifically, we
use the method to show that there exists a spanning tree of diameter d that
factorizes Ky for any d,3 < d < 4k — 1. This complements an analogous
result obtained by Fronéek in [2] for the complete graphs Kqxq2.

2 Known methods and results

As we already mentioned, A. Rosa defined two fundamental labelings, p-
labeling and graceful labeling (also called S-valuation).

Definition 2.1 Let G be a graph with n edges and the vertex set V(G)
and let A be an injection A : V(G) — S where S is a subset of the
set {0,1,2,...,2n). The length of an edge (z,y) is defined as l(z,y) =
min{JA(z) — A(y)], 2n+1— [A(z) — A(w)|}. If the set of all lengths of n edges
is equal to {1,2,...,n} and S C {0,1,2,...,2n}, then X is a p-labeling; if
S C {0,1,2,...,n} instead, then A is a graceful labeling.

Every graceful labeling is indeed also a p-labeling, and a graph which
admits a graceful labeling is called graceful.

68



For our further needs we state here the notions related to decomposition
of K, into symmetric graphs. To simplify our notation we will from now
on occasionally unify a vertex with its label. It means that rather than
“the vertex z such that A(x) = i", we will say just “the vertex i".

Definition 2.2 A connected graph G with an edge (2,y) (called a bridge)
is symmetric if there is an automorphism ) of G such that ¥(z) = y and
¥(2) = y. The isomorphic componenis of G — (z,y) are called banks and
denoted by H,H', respectively. A labeling of a symmelric graph G with
2n+1 edges and banks H, H' is p-symmetric graceful if H has a p-labeling
and Y(i) = i+n (mod 2n) for cach vertezi in H. A labeling of a symmetric
graph G with 2n—1 edges is symmetric graceful if it is p-symmelric graceful
and the bank H is moreover graceful. A graph which admits a p-symmelric
graceful labeling or symmetric graceful labeling is called p-symmetric grace-
ful or a symmetric graceful, respectively.

The following theorem was proved by Eldergill for symmetric trees.
Since the assumption that the graph must be acyclic was never used, the
theorem is true for symmetric graphs in general.

Theorem 2.3 (Eldergill) Let G be a symmetric graph with 2n — 1 edges.
Then there exists a cyclic G-decomposition of Ko, if and only if G is
p-symmetric graceful,

It is easy to observe how the construction of a p-symmetric graceful
labeling is based on a p-labeling or a graceful labeling defined by A. Rosa.
Since any graceful graph with n—1 edges yields a symmetric graceful graph
with 2n—1 edges, one can find an infinite class of symmetric graceful graphs
whenever an infinite class of gracelul graphs is known. It is well known that
all caterpillars are graceful. Therefore, it is easy to construct a spanning
tree of diameter d for any odd number d. Factorizations into spanning trees
with even diameters are slightly more complicated. Eldergill's method is
too restrictive, allowing decompositions only into symmetric graphs, which
all are of odd diameter. To answer the question about spanning trees with
even diameters we need a method which is more general.

To find a more general method, Frontek defined in [3] a blended p-
labeling, which guarantees a G-decomposition of K442, when G has the
labeling. With the blended p-labeling (further just blended labeling) avail-
able, Fronéek found a construction of spanning trees of any diameter be-
tween 3 and 4k + 1 that factorize Kqp42 for any k > 1.

A vertex set of a graph G with a blended labeling can be split into two
equal partite sets V5 and V), where |Vy] = |1] = 2k + 1. Subgraphs of
G induced on vertices of V5 and V; are denoted by Hp, H, respectively,
and Hp, denotes a bipartite subgraph with partite sets Vg, V. If a blended

labeling is restricted to these three subgraphs, the labeling on Hy and H, is
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the usual p-labeling which guarantees cyclic decompositions of the complete
graph Kap4 into k copies of Ho or Hy, while the labeling of Hy, is called
bipartite p-labeling. Bipartite p-labeling of a graph Hp, with 2k + 1 edges
allows a decomposition of the complete bipartite graph Kap41,26+1 into
2k + 1 isomorphic copies of Ho,.

Vo Vi

00 301

1g 1,

2 2
Hy 3o 3 H

40 HOI -'l|

Figure 2.1: Blended labeling of a tree on 10 vertices

So far, there is no result on decomposition of Ky into spanning trees
with all possible diameters. To obtain such a result, a different approach
must be used. A cyclic decomposition of each of the partite sets separately
as in a method based on blended labeling is not possible when decomposing
K. It is so because by splitting vertices of Ky into two equal partite sets
Vi,i = 0,1, the number of vertices in a partite set is even, namely |V;| = 2k,
and a cyclic decomposition of Koy into 2k copies of a graph H; does not
exists. The reason is that 2k does not divide the number of edges of Kas.

The known method which allows decomposition of Ky into other than
symmetric graphs is based on a swilching blended labeling. This labeling
is a modification of the blended labeling and was defined by Froncek and
Kubesa in [4]. A switching blended labeling is still too restrictive to answer
the question about the diameters. It can be shown that trees with certain
diameters do not allow switching blended labeling at all, since this labeling
requires a specific “strong” type of automorphisin, which does not exist, for
these diameters.

Therefore, we use a new technique for decompositions of complete
graphs with an even number of vertices developed recently by Fronéek and
the author in [5]. This technique allows decompositions of the complete
graphs Kaq where ¢,k > 1 and k is odd. It also gives the complete answer
to the question about the diameters of spanning trees of such complete
graphs.

3 Decomposition of Ksuk, 2n-cyclic labeling

Here we describe a method of factorization of complete graph on 2nk ver-
tices into n isomorphic “locally dense” factors. The method is based on
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Eldergill’s cyclic factorization of K, into symmetric trees.

Definition 3.1 Let T be a symmetric tree on 2n vertices with a
p-symmetric graceful labeling. We define the graph U(T, s; k) with the un-
derlying tree T, where s is the label of any vertez of T,0< s<n -1, to
have the vertez set

2n-1
VU, k)= Vi, Vil =k, VinV; =0for i #j,

i=0

and the edge set

E(U(T,s;k)) = {(zy)lz€eViyeV;A (i,j) € E(T)}
U {(z,y)lz,y € Vo} U {(z,9)|2,y € Voyn).

In other words, the graph U(T, s; k) is a union of 2n—1 bipartite graphs
K1 on the vertices of the partite sets V;, V; whenever i is adjacent to j
in T and two complete graphs K. on the vertices of the vertex sets V, and
Ve+n for the chosen vertex with label s in T'. Each vertex set V; is of size
k and its index i is the label of the corresponding vertex in T

It is easy to observe that Kani can be decomposed into isomorphic
copies of U(T, s; k). This was proved in [5] and we therefore just state the
relevant result here.

Lemma 3.2 Let T be a lree on 2n vertices with a p-symmelric graceful
labeling. Then there is a U(T, s; k)-factorization of Kan. into n isomorphic
copies of U(T, s; k) for any k > 1.

A graph U(T, s; k) can be further 2n-cyclically decomposed into & iso-
morphic copies of a graph G with 2nk — 1 edges, which consequently
gives a G-decomposition of Kayn into nk isomorphic copies of G. A G-
decomposition of U(T, s;k) is gnaranteed by a 2n-cyclic blended labeling
of a graph G. We state all related notions here.

Definition 3.3  Let G be a graph with at most 2nk vertices such that there
ezils a G-decomposilion, Go,G\,...,G., of a graph U on 2nk vertices. We
say that the G-decomposilion is 2n-cyclic if there exists an ordering
(00, 101 20: (ERE] (k - 1)0, Ol; 1l12|)' (R} (k - 1)1; [ERE) 021, 1'.’11—la2'.’n—l;
LERE} (k - 1)212—!)
of the vertices of U, and an isomorphisms ¢ : G4 ~— G,, where r =
1,2,...,s, such that ¢,.(2;) = (x +r); (mod k) for everyx =0,1,..., k-1
andi=0,1,...,2n - 1.

Definition 3.4 Let G be a gmph.q with 2nk — 1 edges, for k odd and
k,n > 1, and the vertez set V(G) = U;‘_L_';l Vi, where |Vi| = k and ViNV; = 0
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for i # j. Let A be an injection, A : V; = {0;,1;,2;,...,(k — 1);}, for
i=0,1,...,2n - 1.
The mixed length of an edge (xi,y;) is defined as

Lii (@i, y3) = My;) — A(2:) (mod k)

Jor z; € Vi, y; € V; and the pure length of an edge (zi,y:) with z;,y; € V;
as

Li(zi, yi) = min{[A(z:) — Awa)l, k = |A(=2:) — Awi)l}-

We say that G has 2n-cyclic blended labeling if there ezists a tree T on
2n vertices with a p-symmetric graceful labeling such thal

(i) for each edge (i,j) € E(T), is
{lii (20, v)l(2i,v;) € B(G)} = {0,1,2,...,k— 1}

(ii) and for some vertex s € T and its symmetric image t = s+n (mod n)
{les(2u, y)(25,9s) € E(G)} = {1,2,...,(k—-1)/2}, and
{lu(zi,y)l(ze, ) € E(G)} ={1,2,...,(k - 1)/2}.

The edges of pure length are called pure edges, and the cedges of mixed
length are called mized edges. The labeling is in fact a generalization of the
blended labeling. We shall notice that similarly as a graph with a blended
labeling, also a graph G with a 2n-cyclic blended labeling can be split into
subgraphs H, and H, on verlices of the partite sets V, and V; with pure
edges, and 2n — 1 subgraphs H;; for cach (7,j) € E(T) with mixed edges.
When a 2n-cyclic blended labeling is restricted to H, and H;, we have just
the usual p-labeling, while when restricted to H;; we obtain a bipartite
p-labeling.

Theorem 3.5 (Fronéek, Kovdrovd) Let a graph G with 2nk — 1 edges,
for k odd and k,n > 1, have e 2n-cyclic blended labeling. Then there exists
a 2n-eyclic G-decomposition of U(T, s; k) into k copies of G and also a
G -decomposition of Ka,. inlo nk copies of G.

Proof. Was proved in [5]. O

4 Diameters of spanning trees factorizing
Ky where k is odd

Now we answer the question about diameters ol spanning trees. In our
attention are complete graphs Ky,,. The method of decomposition based
on 2n-cyclic blended labeling can be used whenever the number of vertices
of Ky, is not a power of two. By this condition we are left with complete
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graphs Koq, where k is odd and k,q > 1. Therefore we construct spanning
trees of Kaq; with 27-cyclic blended labeling. Because for each such a
spanning tree there must be also an underlying tree on 27 vertices with p-
symmetric graceful labeling, we first introduce a class of symmetric graceful
trees, which will be used in constructions.

All symmetric graceful trees we deal with are caterpillars. A calerpil-
lar is a path with attached vertices of degree one, and all caterpillars are
known to have graceful labeling. A caterpillar on n vertices, which is a star
K,,n with a path P,_, attached to its central vertex is called a broom and
denoted by B(n, h). By X(2n,h) we denote the syminetric caterpillar with
banks H, H’' both isomorphic to B(n, h) and the symmetric edge connecting
the endvertices of the paths P,_p, 1 < h < n — 1. In other words, the tree
X(2n, h) is a union of two stars K, and the path Pa(,_j) connecting their
central vertices. To obtain a symmetric graceful labeling of X (2n, /) it is
sufficient to find a gracelul labeling of one bank H = B(n, h) since labels of
the other bank H' are induced by the isomorphism (i) = i + n (mod 2n)
(see Def. 2.2).

There are of course more ways how to assign the labels to the vertices
of B(n,h) to obtain a graceful labeling. We will consider the [ollowing
labeling.

Graceful labeling of a broom B(n, )

e The label 0 is assigned to the central vertex of K ;, the labels n —
1,n—2,...,n — h to h attached vertices of degree one. Lengths of
the edges aren —1,n—2,...,n—h.

e The vertices of the path P, _, receives the labels:

() On-h-1,L,n—h-2,...,25% 1,22k for n — h even,

(i) On—h-11n-h-2,.. 2=k 2=l for n — h odd,
consecutively.

The edges of the path have remaining lengths n—h—1,n—h-2,...,1.

6 03 1 2 10 9 11 8 14
5 13
4 12
Figure 4.1: Symmelric graceful labeling of X (16, 4).

Before we state the theorem we also defline two types of trees with
bipartite p-labelings.
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Construction of S; and Sy,

By S; and S;; we denote double stars with bipartite p-labeling on a
vertex set V;,UV;, V; = {0;,1;,2;,.. ., (k-1);}, Vi= {Oj, 1;,24,..., (k—l)j},
where k =2m +1 form > 1.

e The double star S; is constructed as two stars K} ;1 with the central
vertices m; and m; connected by the edge (m;,m;) of the mixed
length 0. The vertices of degree one connected to the central vertex
m; are 0,1;,...,(m —1);. The edges have mixed lengths m +1,m +
2,...,2m. The vertices of degree one connected to the central vertex
mj are 0;,1;,...,(m —1); so that the edges have the missing lengths
1,2,...,m.

¢ The double star S;; is isomorphic to Sy so that there is an isomor-
phism f : V(S;) — V(Sy;) defined by f(2,) = (2m — z), for every
vertex z, € V(Sy).

Sy St
0; 0; 0; o o 0;
1; ?:2 é g 1; 1; 0 o l;
2; 2; 2; 2;
3; 0 o 3; 3i ; i 3 3;
4; 0 o 4; 4; 4;

Figure 4.2: Double stars S; and S;; on partite sets wilh number of ver-
lices k = 5.

Construction of C;(D) and Cy;(D)

By C;(D) and Cy;(D) we denote the trees with a bipartite p-labeling
and diameter D on a vertex set V; UV;, V; = {0;,1;,2;,...,(k — 1)},
Vi ={0;,1;2;,...,(k = 1);}, where k = 2m + 1 for m > 1. The diameter
D is odd, ranging from minimum 3 to maximum k. Let D = 2¢ 4 1, where
1<t<m.

e The tree C/(D), for t odd, has the diametrical bipartite path
PD+l =m;, O;i: (7""" l)i’ lj': LEEE ("n— "_-__g—l)iv ('_—fl)_n (%)i’ ("' - !-'-_3—1))1
“any 1,'_, (m - l)j, 0,', mj.

For L even, Ppy, = m;,05,(m — 1), 1,...,(5 = 1);,(m — 4);,
(m—4);, (5 - 1)i,..., 1, (m = 1), 0;,m;.

The edges on the path have the mixed lengths m+1,m+2,...,m+
t,0,m—-t+1,m—t+2,...,m=1,m, and the missing lengths are
1,2,...,m—tandm+it+1,m+t+2,...,2m.
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We obtain the edges of the missing lengths by adding two stars Ky,m_¢
with the central vertices on the path Pp,;. When ¢ is odd, the central
vertices are (431), and (45}),. The vertices of degree one are in the

other partite set than the central vertex. They are {51 + 1,41 +
2,...,m — 5 — 1. When ¢ is even, the central vertices are (£ — 1),
and (% - 1)].. The vertices of degree one in the opposite partite set
are £,£+1,....m-£ -1

Te tree C/(D) is isomorphic to C;(D) by the isomorphism
f:V(C1(D)) — V(Ci1(D)) defined as f(z,) = (2m — z), for every
vertex z, € V(Cy(D)).

Ci(3) Ci(7)
0; 0; 0; 0;
1; 1; 1; 1;
2; 2; 2; 2;
3; 3J 3,‘ 3)
4; o o 4; 4; o o 4;
5; 0 o 5; 5 o o 5
6; o o 6; 6; o o 6
Cri(5)

0; o o 0;

l;0 o 1

2; 0 o 2;

3: 3j

4; 4;

9i 5;

6; 6;

Figure 4.3: Ezamples of trees Ci(D) and C;;(D) on partile sels with

number of vertices k = 7.

Theorem 4.1 For anyd, 3<d < 2% — 1, there exists a lree T with the
diameler d such that there is a T-faclorizalion of the complele graph Kaay,
where k. =2m + 1 and g,m > 1.

Proof. To obtain a spanning tree of Kaa with any odd diameter is easy.
We can take for instance X (29, k), which cyclically factorizes K2. and has
the diameter d = 2(29" ' = h)+1, where 1 < h < 29 ' = 1. If h = 2971 - 1,
the caterpillar X (29, h) is a double star with the diameter ¢ = 3, which is
the smallest possible. The only spanning tree of K, with smaller diameter
d = 2 is the star, and a factorization into stars does not exists. Il h = 1,
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X(29,h) is path Paq, and the diameter is the longest possible d = 29 — 1.
Further we will concentrate only on spanning trees with even diameter.
We will complete the prool in three steps, constructing spanning trees
of even diameters with a 2%-cyclic blended labeling. We always consider a
spanning tree T with the vertex set V(Ury) = U:T’;o_l Vi, where V;NV; =0
fori#jandV; ={0;,1;2;,...,(k-1);},1=0,1,2,...,29 - 1.

(i) Stretching the underlying double star into Hamiltonian paths
(diameters: 4 < d < 29)

As the underlying tree, we consider X (29 h) with the symmetric
graceful labeling given above. We will construct subgraphs H;; with
mixed edges for each (i,j) € E(X(29,h)) and subgraphs Hy and
Haq-1 with pure edges separately.

We construct each H;; corresponding to an edge (i,j) on the path
Py(a4-1_p) as a double star. More precisely, we alternate double stars
S I and S] I

When 29-! ~ I is even, H;; = S; for

() € {(2,27) = h =1 —2), (2 +2771,29 = h = 1 - 2)},
where 0 < 22 < %—" -1.
H;; = S, for

(i) € {27 = h—2,x), (29 —h—z,2+29")}
) u (‘.’""‘:—h”'_’"“:—-h +-2q—-1) ,
wherelgxg-"’"—,_:z'l—l. {5 B }
When 297! — h is odd, H;; = S; for

(Ghie{@2 ' =h—-1-2), (@+29",20~h—-1-1u)}
U {(Z5h=t, 202hat o 90-1)),

where 0 < 2 < 3”—'1# -1.

. Hyj =5y for
(B, j) €{(2"' = h—=a,2), (27 - h—z,2 +297")},
where 1<z < ﬂ:"—"

The subgraphs H;; corresponding to the 2h vertices of degree one in
X (29, 1) are constructed as the stars Ky ay4.1-

For (i,j) € {(0,2°"" = 1),(0,297' = 2),...,(0,27"" = B},

the star K s,+1 has the central vertex (m + 1)y and the attached
vertices ol degrec one are all 2m + 1 vertices of V.

For (i,j) € {(2¢7",29=1),(29°",27 = 2),..., (2", 27 - )},
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the star K am41 has the central vertex mg,-1 and again 2m+1 leaves
in V;.

Obviously, in each star K} am4+1 we have 2m + 1 edges, one of each
mixed length 0,1,...,2m.

To obtain Hy and Hae-1 we add the star K, ,, on vertices of V; for
i € {0,277 !'}. The central vertex of K; ,, is m; and the leaves are

(m + 1);,m + 2);,...,(k = 1);, so that we have all required edges of
pure lengths 1,2,...,m.

Now if we “glue” all subgraphs H;;, Ho, and Hae-1 together, we
obtain a tree T with 2%-cyclic blended labeling which guarantees a
2%-cyclic T-factorization of U(X(29,h),0,k) and consequently a T-
factorization of Kaq;. To the diameter d of T each of the 29 — 2h — 1
double stars S;, S;; contributes by 1. All stars K, and K 1,2m+1
contribute all together by 3. Then such a spanning tree T has the
diameter d = 27 — 2h + 2. For h ranging from 1 to 297! — 1 we get
spanning trees with all even diameters d from the interval 4 < d < 29.

V3 030

00 V4
130 ol7
230 027
330 Vo Vi 03
V‘) 430 0oo 004 047 ‘/6
':'-’ X loow ><__-oly 00s
=° 20 e Ole
230 N ‘ 21 [N —O032g
320 R0 30 340 036

d=28

Figure 4.4: Spanning trees of Ko with 8-cyclic blended labeling and di-
ametersd=4 and d = 8.
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(ii) Stretching the bipartite paths (diameters: 29 +2<d < 2% -k +1)

The longest diamcter of previous case we obtained for h = 1 when
the underlying tree was the path X (2%,1) = Pa. The underlying
tree cannot be stretched anymore, and to obtain longer diametcr than
d =27 we have to increase the diameters of the subgraphs H;;.

Suppose the underlying tree is X (29,1) = Psy again with the symmet-
ric graceful labeling given above. We start with a spanning tree T' of
the odd diameter d = 29 —1. Again each subgraph H;; corresponding
to the edge (¢, j) € E(Ps) is a double star Sy or Sy;.

For (i':]) € {(2q-l —1—33,3"), (2q—1—1:,37+2q_l)},

where 0 < z < 2972 — 1, the subgraph H;; is constructed as Sj.

For (i,j) € {(2,2971-2—-2,), (z+2771,29 -2~ 12,)}
U{(22-1,3-29"2 - 1)},

where 0 < 2 < 2972 - 2, the subgraph H;; is constructed as Sis.

We choose the endvertices of Pa;, which are 297! — 1 and 2¢ — 1,
to construct two subgraphs Ha,-1_;, Hae—1 with pure edges. The
subgraph Haq-1_) is the star K, ,, with the central vertex 0; and m
vertices of degree one (mn+1);, (m+2);,...,(2m);, wherei = 297! 1.
The subgraph Ha. . is also the star K, ,, with the central vertex m;

and m vertices of degree one (m + 1);, (m + 2);,...,(2m);, where
i=29-1

By gluing all subgraphs Haa_y, Hag-1., and H;; we get the spanning
tree T of U(Pas,29" ' —1;k) with a 27-cyclic labeling. We can choose
a diametrical path of T so that the subgraphs H;; = S, corresponding
to the first and the last edge on Ps. contribute to the diameter d by
2 and all the other 2¢ — 3 subgraphs H;; by 1. Two stars K, do
not extend diameter, and so d = 27 + 1.

Now we can replace the first double star Sy corresponding to the first
edge on Paq by a tree Cy(D). Diameter D of C(D) is odd, ranging
from 3 to k, which extends the diamecter d of the spanning tree always
by 2 from 27+2t02¢Y -1+k.

Similarly we replace stepwise all 27 — 1 double stars S; and Sy by
trees Cy(D) and C};(D), respectively. When one of the stars is re-
placed and D is changed gradually we obtain spanning trees with the
next %51 even diameters. The longest diameter is d = 29 — 1+ k+
(29 — 2)(k — 1) = 2% — k + 1. Overall we obtain spanning trees with
even diameters 29 +2<d<2%k -k +1
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Figure 4.5: Spanning trees of Ko with 8-cyclic blended labeling and di-
ameters d = 10 and d = 36.

(iii) Stretching subgraphs with pure edges (diameters: 2%k -~k +2<d <
29 - 1)
In this case the underlying tree is of course again the path Py. The
subgraphs H;j, for each (i,7) € E(Pas) are constructed as for the
longest diameter in the previous case. It means that they alternate
between the graphs Cy(k) and Cy; (k). The only way how to increase
the diameter d of the spanning tree T is to extend the diameter of
.the subgraphs Haq-1_; and Hje_; with pure edges.

We start with the odd diameter d = 29k — k + 2 which is obtained
if both subgraphs Has-1_; and Hae_, are the stars K, ,, with the
central vertices m;, where i € {2971 - 1,29 —1}.

Then we convert one of the stars, say in partite set V; for
i=2""1—-1 10 a broom B(m+1,s), where 1 < s < m-1. If
m + 1 — s = 2r, the vertices of the path P,,,,_, are m;,2m;, (m +
)i...,(m+7r-1);,(2m + 1 — r);, and the star K , has the central
vertex (2m+1-—r); with attached vertices of degree one, (m+r);, (m+
r+1)i...,2m—-7r);. Hm+1—s=2r+1, the path P41, has the
vertices mj, 2m;, (m + 1)i,...,(2m + 1 — 7);, (m + r);, and the star
K, s has the central vertex (m + r);. The vertices of degree one are
(m+r+1);,(m+r+2);,...,(2m —r);. The edges have in both cases
pure lengths m,m—1,...,1. The diameter of each broom B(m +1, s)
ism+1-—s.

When s is changing {rom m—1 to 1, we obtain the spanning trees with
even and odd diameters 2%k —k+3,2%k - k+4,...,2% -k+m+1=
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29k — ‘—'aﬂ + 1. We can repeat the procedure with the brooms in
the partite set Vaq_; to obtain the spanning trees with the missing
diameters 29k — &1 +2,20k — &L 43, 29k — &£l 4 = 29k - 1.

d=26

Figure 4.6: Spanning tree of Kag with 4-cyclic blended labeling and di-
ameter d = 26.

Now we constructed spanning trees of all diameters 3 < d < 2% -1 and so
the proof is complete. 0O

It remaius to solve the problem for the case when the number of ver-
tices of Ky, is a power of two, for Kas. In this case 2n-cyclic blended
labeling cannot be used, since the assumption that the munber of vertices
of the complete graph is divisible by some odd k is not satisfied. So far we
have only partial results based on decomposition of Kaq into 2972 copies of
U(T, s;4), where ¢ > 3.
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