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ABSTRACT. This paper answers the question as to whether every nat-
ural number n is realizable as the number of ones in the top portion
of rows of a general binary Pascal triangle. Moreover, the minimum
number x(n) of rows is determined so that 7 is realizable.
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1. Introduction

Consider generating the first k rows of a general binary Pascal triangle.
That is, let L = (I1l2...1x) and R = (rer3... %) be any lists of zeros and
ones placed where normally the 1s of the Pascal triangle are, with {; at
the top, L down the left diagonal and R down the right. Let the remaining
entries be filled in by the Pascal recurrence, modulo 2. Denote the resulting
triangle Ax(L, R) and let 6x(L, R) be the number of its ones. For example,
with L = (11010) and R = (0011) we obtain ds(L, R) = 8 (see Figure 1).
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Figure 1. A5((11010), (0011)).

Note that d, remains the same if any corner is used (by rotation) as its top
corner.

We say that n is realizable if it is possible to find k, L, and R so that
0x(L, R) = n, and we call Ag(L, R) a realizer of n. The first author asked
the following question in [4]: Is every natural number n realizable? We
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answer this affirmatively in Section 2, even with L = ], the all-ones vector.
When the length of the vector is important we will write 1* and likewise
0% for the all-zeros vector.

It is possible to realize 8 more quickly than in Figure 1. With L =1 and
R = (110) we find 84 (L, R) = 8. We say that n is k-realizable if it is possible
to realize n in k rows, and we denote by x(n) the minimum k such that n
is k-realizable. Of course one cannot 3-realize 8 because there are only 6
entries in the first three rows, and thus x(8) = 4. We will determine x(n) in
Section 4. For this purpose, in Section 3 we will find the maximum number
d(k) of ones being possible in a general binary Pascal triangle Ax(L, R).

2. General realizability
Consider Ax(1,1), the standard binary Pascal triangle and write P* =

Ak(L,1) if k = 2t. Then P* has the well-known recursive structure shown
in Figure 2 (see [2,3,5]). Hence, the number of ones in P* triples when the

Pt—l pt—l

Figure 2. Recursive structure of P*.

number of rows doubles, and so §(P*) = 3.

We are now ready to prove that every n is realizable even if L =1 as in
the standard binary Pascal triangle.

Theorem 1. For every natural number n < 3! there are k < 2¢ and R so
that Ag(l, R) realizes n.

Proof. An induction base is obvious for ¢ = 0. As induction hypothesis
every n < 3¢~1 is realizable by Ax = Ag(L, R) for some k = k(n) < -1,
Then Age-14k(n—3:-1) and Az as in Figures 3 and 4 realize n for 31 <
n<2-31and 2-3! <n <3, respectively. O

3. Maximum number of ones in the first rows

For given k we determine the largest n = d(k) being realizable by Ag(L, R).
An earlier completely different proof was given in [1].
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Figure 3. Agt-1g(n_ge-1) for  Figure 4. Ay for 2-3t-1 < n < 3t.
3¢l cn<2.3-1,
Theorem 2. The maximum number of ones in Ag = Ag(L,R) is

4

1 if k=1,

24+ L2+ k+1) if k=1 (mod 3),
- 3
1+§(k2+k) if k=0,2 (mod 3),k # 8,

| 27 if k=8,

Proof. We obtain lower bounds of d(k) using L = (1710) and R = (110)
where the triples 110 are repeated (see Figure 5), and where a possible zero
in the last positions of L and R is substituted by a one. Then there are
27 ones in each of the rows 35 -1, 37, and 35+ 1, 1 < j < |(k+1)/3].
It follows that d(k) > dx(L, R) = 334073 65 plus 1 - 4(k + 1)/3, plus
1—-2(k+1)/3, and plus 3 for k = 2,0, and 1 (mod 3), respectively. These
are the terms of Theorem 2 with the only exception of k = 8 where the
standard binary Pascal triangle has 2 ones more, that is, d(8) > 3% (see
Figure 6).

1
11
1 01
0110 1
11011 11
101101 1 01
060110110 1111
110110011 1 0001
101101101 110011
0110110110 1010101
110110110011 11111111

Figure 5. L = (1110) and R = (110). Figure 6. d(8) > dg(1,1) = 27.
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To obtain upper bounds of d(k) we notice that in the three corner entries
of Ay there always have to be ones. Deleting these corner entries from A
leaves A}, and we have to find upper bounds of the maximum number
f(k) = d(k) — 3 of ones in Aj.

We use the fact that z3 = z; + z2 (mod 2) and thus that there are at
most 2 ones in each of the sets {z1, z2, z3} if they are in one of the positions
of Figure 7. Then A}, can be partitioned into

r I Ty ® I
x3 o o
z3

Figure 7. At most 2 ones.

2

1)

and into

triangles A3 and one Afy ), ifk=1 (mod 2)

(2) 3triangles A3, 3 triangles A/, and one A(y_,) /o ifk =0 (mod 2)

as depicted in Figures 8 and 9.

R AVA
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V.V.V.VY  YVAANAYV

Figure 8. AL, k =1 (mod 2). Figure 9. AL, k=0 (mod 2).
Denoting by ¢k = @i(L, R) the number of ones in A}(L, R) we have
the possibilities 2 = 0, 3 = 0 or 2, and ¢4 = 0, 2, 4, or 6. Thus for small

k > 2 we have the maximum values f(2) =0, f(3) = 2, and f(4) = 6 where
the unique example for f(4) = 6 occurs for a zero in the central entry (see

Figure 10).
11

11
Figure 10. f(4) = 6.
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By the partitions (1) and (2) it follows inductively that always
(3) @k =0 (mod 2).

To prove f(k) < (k?+k~—2)/3if k=1 (mod 3) and f(k) < (k®+k —6)/3
if k = 0,2 (mod 3) induction steps from k to k + 6 using (1) and (2) are
successful unless in the case of k = 2 (mod 6). Here k/2 = 1 (mod 3) and
(k—2)/2=0 (mod 3) imply with (2)

2 _9\2 _
f(k) < 6+ (%+'§° —2)+% ((k 5 2) 4k 5 2 --6) = %(k2+k—6)+4,

that is, we obtain a surplus of 4. To manage this missing case we need two
lemmas determining for k = 1 (mod 3) the designs of A} with f(k) ones.

Lemma 1. For the last three rows By of A}, consisting of (k —1)/3 copies
of A} with vertical pairs of entries between these copies, the maximum
number b(k) of ones in B is b(k) = 2k — 2, and b(k) is attained only if B
starts at each end with one of the possibilities in Figure 11.

11011 11001
101101-... 10101 6e-..
11011 1111 e

Figure 11. Possible ends of the last three rows By of A}.

Proof of Lemma 1. Consider the vertical pairs of entries between neigh-
boring pairs of Ajs.

If both entries of one of the pairs are zero then by = 2k — 2 is attained
inductively only if B; and Bx_;4+, on both sides are maximums. In an
example every copy of A} has 6 ones in the unique design of Figure 10 and
all vertical pairs consist of zeros only.

If every vertical pair has at least one entry one then any A} with 6 ones
force on both sides a zero above, subsequently a one below, and then two
zeros in the neighboring Ajs which thus have at most 4 ones. Let ¢ denote
in By the number of A}s having 6 ones and z of them occur at both ends,
z = 0,1, or 2. Then the remaining Ajs have at most 4 ones, there are
2t — z vertical pairs having a zero above and one below, and the remaining
vertical pairs have at most two ones. It follows for the number b of ones
in Bk

bk56t+4(§-;—1—t)+2t—z+2(£;—1—1—2t+z) =2k—-4+z.

Thus bx = b(k) = 2k — 2 is possible only if z = 2, that is, at both ends of

By are Ajs with 6 ones as in the second possibility of Figure 11. It may be
remarked that k = 16 is the smallest k with a maximum Bj, of this type.q
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Lemma 2. The unique A} with f(4) = 4 is shown in Figure 10. All
possible A%s with f(7) = 18 are shown in Figure 12 where the second A7
can be rotated and where the pair 01 at the corner may be switched to 10.
All possible A}s for k =1 (mod 3), k > 10, and with f(k) = (kK +k—2)/3

11 01

1 01 111

0110 1001
11011 11011
101101 101101
11011 11011

Figure 12. All A%s with f(7) = 18.

are shown in Figure 13 where L' = R’ = (lpl3ly 110110 _3lk_2lk—1) and
where the trapezoids at the corners may be arbitrarily chosen from the
depicted two copies with 01 at one corner being switchable.

o o 11
o o o 1 01
e o o o 0110
11011
101101 or
0110110 01
111
1 001
1101 1 011
10110 1101
e 1 1 01 1 01 1 e
e e 0110 5 1106
e o o 1 01 1 01 e o o
e o ¢ 1 10 1 1 o o o

Figure 13. All Ajs for k =1 (mod 3), k > 10, and with
f(k) = (k* +k ~2)/3.

Proof of Lemma 2. The uniqueness of A} in Figure 10 was mentioned
above.

For k > 7 we partition A} into A}_3, Bk, and a horizontal pair of
entries (see Figure 14).

For k > 7 the maximum f(k) = (k*+k—2)/3 cannot be attained if A} _5
and B both do not have the maximum of ones since (3), Lemma 1, and 2
ones in the horizontal pair imply ¢k < f(k —3) =2+ b(k) — 1+ 2 < f(k).

Let k = 7. If A} has 6 ones then A% can be completed to have 18 ones
with 00 and with 01 as the horizontal pair and not with 11. If By has the

104



Figure 14. Partition of A} into A}_5, B, and a pair.

maximum of 12 ones then 18 ones for A% are possible with the pair 00 and
with 11 and not with 01. All possibilities are covered by Figure 12.

Let k = 10. If A7 has f(7) = 18 ones then we may rotate A% such that
11011 is between the horizontal pair of entries. Then 6 ones are determined
in the middle part of Bjg. For the remaining trapezoids at both sides only
those of Figure 13 with 6 ones are possible to obtain A}, with f(10) =
18 +6 + 2.6 = 36 ones.

For k > 13 the case that A}_4 has the maximum of f(k — 3) ones is
treated as follows. Here the last row of A} _, starts at both ends with 110,
011, or 111. The main part 11011 of this row determines 6((k —1)/3 —4) =
2k — 26 ones in Bi. At both ends of By together with an entry of the
horizontal pair there can occur only the six designs of Figure 15. The sixth

011011 111011 011111

e 1 0110 e 00110 e 1 0 00O
e ¢ 11 01 e ¢ 01 01 e ¢ 1 00O

e ¢ 01 1 o e o1 1 1 o e ¢ 1 0 0 o

111111 001111 101111
e 000 0O e 01 00O e 11000
e ¢ 0 0 0O e ¢ 1100 e ¢ 01 0O

e ¢ 0 0 0 o o ¢ 0 0 0 o e o 1 1 0 o

Figure 15. Possible designs at the ends of By, k =1 (mod 3).

entry in the last row of Bx can be a one only for k = 13 if there is a pair
01 or 10 in the middle of the second last row. The 5 entries at the ends
contain at most 4 ones each. To attain f(k) ones, two designs of Figure 15
have to have z = f(k) — f(k — 3) — (2k — 26) = 24 ones. This is possible
for the first two designs only since each of the other designs has at most 11
ones. All resulting possibilities are covered by Figure 13.

It remains that B, for k > 10 has the maximum of b(k) = 2k — 2 ones
and Aj,_; has less than the maximum f(k — 3) of ones. Then b(k) = 2k —2
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is possible only if A} _5 has f(k ~ 3) — 2 ones and the horizontal pair (see
Figure 14) is 11. Then by Lemma 1 the last row of A}_4 starts on each
end with 0010 or 0001, that are together at most f(k —3) —4 ones in A} _,
since by induction hypothesis all A}_3s with f(k — 3) ones start with 1101,
0111, or 1111 at the ends of the last row. Thus f(k — 3) — 2 cannot be
attained. u}

Now we are ready to handle the missing case k = 2 (mod 6) in the proof
of Theorem 2.

For k = 8 we have f(8) < 3f(3) + 3f(4) + f(3) by (2). If at least 2
of the unique Aj}s with 6 ones occur in Ag then the central A} is forced
to be without ones and thus f(8) < 3-2+ 3.6 = 24 as asserted. If
at most one of the Ajs has 6 ones and the other 2 have at most 4 then
f(8) £3-2+46+2-4+2=22. Thus there is the unique solution (see the
part of Figure 6) when all A}s have f(4) = 6 ones.

For k = 14 we consider (2). If at least 2 of the A%s have f(7) = 18 ones
then by Lemma 2 (see Figure 12) for A}, at most 8 ones occur in Ag (see
Figure 16) so that f(14) < 3f(3)+3f(7)+8 = 68. If at most one A has 18

v/’\
1-1 1-1

0 0
lél 050 lél

A 0 A 0 A 0
1-1 1-1
. 0 A 0 °* A
DAL AT
ANANNANN
[ ] o [ ] [ ]
VA NANNAY
Figure 16. A{, with 2 maximum Afs.
ones then by (3) we obtain f(14) < 3f(3)+ f(7) +2(f(7) — 2) + f(6) = 68.
For k = 2 (mod 6), k > 20, at least 2 of the A;c/zs with the maximum
of ones force most entries of Al,_,/, to be zero. Using Lemma 2, there are
at most 6 ones at each corner. Since 18 < f((k — 2)/2) — 4 for k > 20, we
obtain from (2) that f(k) < 3f(3)+3f(k/2)+ f((k—-2)/2)—4= f(k). Ifat
most one A}, /2 has f (k/2) ones then, because of (3), we also can subtract
4 on the right part of (2).

Thus the induction step now works for all residue classes modulo 6.
However, due to the exceptional case k = 8 the induction bases remain
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unsolved for k = 15, 16, and 18. .

If k = 15 then from (1) we have f(15) < 28f(3) + f(8). From another
interpretation of the partition as in Figure 8 we get f(15) < 3f(3)+3f(7)+
f(8). If Ag has at most 22 ones it follows f(15) < 56+ 22 = 78 as asserted.
Otherwise, there exists the unique Az with 24 ones. If all three A%s have
at most f(7) — 2 ones then f(15) < 6 + 3-16 + 24 = 78. It remains
that at least one A7 has 18 ones. Because of Lemma 2 we can rotate Ajg
such that Aj and A} determine the 5* row from the bottom of A}5 to
be 11110001111 or 11110000111. Then 2 of the Ajs are without ones and
f(15) < (28 — 2)£(3) + f(8) = 76. This proves f(15) = 78.

If k = 16 then from (2) we have f(16) < 3f(3)+3f(8)+ f(7). If all Ags
have at most 22 ones then f(16) < 666+ 18 = 90. If at least 2 of the Ags
have 24 ones then A} has zeros only and we get f(16) < 6+ 3-24 = 78.
If exactly one Ag has 24 ones then with f(7) — 2 ones in A} it follows
J(16) < 6 +24 + 44 + 16 = 90. Otherwise, we have f(7) = 18 ones in
A% and because of Lemma 2 and Figure 12 we can insert digits of A%
into Ajg as in Figure 17. If the unique Aj (see the part of Figure 6) is

AYA

AAA
AN N A
NANANANA
ANANANANANA
ANANNNNA
1 1 0 1 1 :
VAN ANNANANAY

Figure 17. Al with a maximum A7,
inserted in both possibilities then at least 13 zeros are forced in one of the
2 other Ags so that one Ag has at most 33 — 13 = 20 ones which implies
F(16) < 6424 +22 420+ 18 = 90 which completes the proof of f(16) = 90.
If £ = 18 from (2) we have f(18) < 3f(3) + 3f(9) + f(8). If Ag has
at most 22 ones we get f(18) < 112 as asserted. Thus Ag is unique with
24 ones. From a variation of (1) (see Figure 8) we obtain f(9) < 3f(3) +

3f(4)+ f(5) and thus f(18) < 12f(3)+9f(4)+3f(5) + f(8) < 72+9f(4).
In Figure 18 with the unique A} there are 21 small triangles hosting the 9
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different Ajs. The 3 triangles in the central region of A)g are forced to have

1 1 1 0 1 1 1
1-0 0-1 1-0 0-1
o 1 ’0\ 1 01 ’0\ 1 o
e ¢ 1-1 1 1 1—=1 e o

ATA R 20 NTA
...IAI...OOOOO...IAI...
SOUUATACATAC S
UOUCUANVA LSS
Figure 18. A}g with a maximum Aj.

only ones or only zeros. All other 18 triangles are forced to have 1 one or 2
ones. At least one of the 3 central triangles has only zeros since otherwise
every A) has at most 4 ones yielding f(18) < 72+9-4 = 108. If at least 2 of
the 18 triangles have exactly 1 one then f(18) < 72+42-3+16-2+2-1 =112,
Otherwise, say the upper 6 triangles of the 18 triangles in Figure 18 have
to have 2 ones each. This is possible in the unique way of Figure 18 and it
forces the 3 central triangles to have zeros only so that f(18) < 72+18-2 =
108. This completes the proof of f(18) = 112 and the proof of Theorem 2.

m]
4. Minimum number of rows to realize a number

Of course, the value n = d(k) is k-realizable. The values of n between
d(k — 1) and d(k) are not (k — 1)-realizable. However, are all these values
k-realizable?

Theorem 3. For the minimum number «(n) of rows of A such that n is
k-realizable we have

k(1) =1, x(2) = x(3) = 2, x(26) = x(27) = 8,

K(n) = [m_%] ifn=%(k2+k+7),ksl (mod 3),

k(n) = [\/371 -4 - %] otherwise.
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Proof. The values of x(n) for n < 3, n = 26, and n = 27 are obvious (see
Figure 6 where a one at a corner can be replaced by a zero). In general,
d(k) — ¢ for ¢ < 3 is k-realizable since the ones at the 3 corners of A can
be replaced by zeros.

For r > 4, r = 0 (mod 2), we consider for £ > r the upper triangle
A(L, R) of Ax(L, R) with d(k) ones and so that L = (1T10) and R = (T10).
Then A, has y(r) = d(r) — 2 ones for »r = 1 (mod 3) and y(r) = d(r) ones
otherwise (k # 8). We will construct an interval of consecutive numbers
y(r + 1) so that all n = d(k) — y(r) — 4, i > 0, are k-realizable. If these
intervals overlap one another then n = d(k) — j, 0 < j < y(r) is k-realizable
so that because of d(k) — d(k — 1) < (2k +1)/3 < y(r) all values of n
between d(k — 1) and d(k) are k-realizable for k < 3y(r)/2.

The construction starts in row r of A, by choosing in row r — 5 + 1
a one at the position »/2 —j for 1 < § < r/2 + 1. This one together
with row r — j + 2 determines the whole row r — j 4 1. From row r/2 + 1
upwards, zeros are chosen in position 1 of every row (see Figure 19). Then

0

00

000

0000
000O00O0

1 00001
1100011
00100100
101101101

Figure 19. The construction for » = 8.

y(r) — 22(r) ones are subtracted from d(k) in A, where 2(r) denotes the
number &(,_zy/2 of ones in one of the two identical triangles A,_z)/2(L, R)
at both lower corners of A, and with L = 1, R = (001) if the corner inside
the row r of Ay is interpreted as the top of A(,_g)/2.

Now the top triangle A(r42)/2 consists of zeros only and we will use
the construction in the proof of Theorem 1 to realize all numbers j for
0 < j < 3" in the first 2* rows of A¢r49)/2. In the proof of Theorem 1
we have realized all these values of 5 with L = 1 and now we rotate the
triangles so that L = 1 becomes a row of A(,;2)/2 having ones only and
followed by a row of zeros. Thus we can subtract from d(k) the numbers

y(r) —2z(r)—j for0<j <3 ir2t <=2 <2t 427,

(4) y(r) —2z(r)—j for0<j <3 +2.3!
120 42071 < T2 < ot
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An overlapping of the intervals is guaranteed if

3¢ for r < 261 4 28 _ 4,
3t 4230

for r =2t 4 2t _ 4,
3£ +2. 3t—l

for r < 202 _ 4,
341 for r =22 — 4,

() y(r+2)-y(r)~2(z(r+2)-2(r)) <

Using z(r +2) — z(r) > 1 and y(r + 2) — y(r) < (4r + 8)/3 the inequalities
(5) are valid for ¢ > 3 and the last two also for ¢t = 2. In the remaining
cases for r < 10 we can check that y(r) = 53, 37, 25, 15, and 7 and that
2(r)=10,7, 4, 2, and 1 for r = 12, 10, 8, 6, and 4, respectively, and that
the corresponding intervals are overlapping one another.

Thus it is proved that all values n between d(k — 1) and d(k) are
k-realizable.

Now it follows from Theorem 2 that

k(n) = [(VI2n =11 — 1) /2]

for (k2 +k+3)/3 <n < (k* +3k+5)/3if k = 0 (mod 3) and also for
(k? ~k+7)/3 <n < (k* +3k+5)/3if k=2 (mod 3) and that

k(n) = [(V12n =27 - 1) /2]

for (k2 —k+7)/3 <n < (k?+3k+5)/3if k=1 (mod 3). Because of the
ceiling function this may be written as in Theorem 3. m)

Several further problems remain open. For example, what is the number
Sc(L, R) of ones in Ak for L = 1 and R = (101)? What is the maximum
number of ones in Ax(L, R) for L = 1? How many pairs L and R determine
a Ag with equal numbers of ones and zeros?
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