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We give a constructive proof that a planar graph on n vertices
with degree of regularity k exists for all pairs (n, k) except for two
pairs (7,4) and (14,5). We continue this theme by classifying all
strongly regular planar graphs, and then consider a new class of
graphs called 2-strongly regular. We conclude with a conjectural
classification of all planar 2-strongly regular graphs.

1 Introduction

In the first two parts of this paper we investigate regular and strongly
regular graphs that are planar, classifying such graphs completely.
Finally, we define a new type of graph, which we call 2-strongly
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regular graph (or, in general -strongly regular graph) which satisfies
the same requirement as a strongly regular graph, allowing, however,
two possible degrees (or, in general ! degrees).

We shall assume that all of our graphs are connected. A graph is
a k-reqular graph if every vertex has degree k. Let 6(z, y) be the num-
ber of vertices adjacent to both z,y. We say that a k-regular graph
G on n vertices is a strongly regular graph (SRG) with parameter set
(m, ky A, 1), denoted by srg(n, k, A, i), if there exist nonnegative inte-
gers A, p such that for all vertices u, v the number of vertices adjacent
to both u,v is A (respectively, p), if u,v are adjacent (respectively,
nonadjacent). For more definitions, the reader might want to consult

[1].

2 Regular Planar Graphs

It has been well known that for positive integers n and k£ < =, there
exists an k-regular graph on n vertices if and only if nk is even. So
it is natural to ask whether under those conditions a regular planar
graph on n vertices exists. Since the minimum degree §(G) of a
planar graph is at most 5, one must have 0 < &k < 5. For these basic
results one can refer to any text book on graph theory, for example
[2].

For k = 0,1, 2 isolated points, parallel edges and cycles answer
this question affirmatively.

y Y

]

Figure 1: (4,3) and (6,3) graphs
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Case k = 3: For n = 4, we have K4. We can then construct bigger
graphs inductively. First of all, » has to be even. If G, is a 3-regular
graph on 2n vertices, consider its outer boundary. Let z,w,y be a
path of length 2 on this outer boundary. Take a new vertex z; on
the edge zw and a new vertex y; on the edge wy. Add an edge z,1n
using a curve completely in the outer region of G5,. One can easily
see that this is a 3-regular planar graph on 2n + 2 vertices. This
procedure is illustrated in Figure 1.

Casek = 4: If n = 2t,t > 6, we take acycle C = {v,vq,+-- v, 01 }.
Then we add twocycles {v;, v, , v, vi1}and {vy, vg, -+, vg, 3},
one in the interior region and one in the exterior region of C.

(Dotted Eines are delctod)

Figure 2: (9,4) graph

If n = 2t + 1, we must have ¢ > 2 since Kj is not planar. First,
we take n > 9. We can then take the 4-regular graph on 2t vertices
described before. Inner cycle has at least 4 vertices. That means we
can select two parallel edges in this inner cycle. We remove them
and take an extra vertex in the interior region of this cycle and join
it to the end vertices of the edges which are removed. This will give
a 4-regular planar graph on 2t + 1 vertices. This is illustrated in
Figure 2.

Proposition 1. IfG is a 4-regular graph on T vertices, then it can-
not be planar.
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Proof. If is enough to show that G contains a homeomorph of Knm
for some n > 3,m > 3.

Figure 3: Homeomorph of K33

Clearly G is not K7, therefore it has a pair v1, v2 of nonadjacent
vertices. Let the other vertices be vs,- - -, v7. Since viv; € E(G), v
and v, must have at least 3 common neighbours.

Case 1: vy, vy are both adjacent to vs, v4, vs, ve. This means that vy
is also adjacent to vs, vy, Us, vg and we have a copy of K34 in G.
Case 2: vy, v, have only three common neighbours. Let those be
v3, 04, Vs. Without loss of generality, we can assume that v ve, v2u7 €
E(G).

If vg, v7 are nonadjacent, they must be adjacent to vs, v4, vg giving
a copy of Ka4 on the partition {vs, v4, vs} U{v1, v2, v6, v7}.

If vgv7 € E(G), then vg is adjacent to two of v3, vg, vs. But then
vsv7 € E(G) as shown in the figure 3. This is clearly a homeomorph
of K33. Thus G is not planar. O

Case k = 5: If we want a 5-regular planar graph on n vertices,
then n must be even. Moreover 3 < 3n — 6. This gives n > 12.
Figure 4 gives a 5-regular graph on twelve vertices.

Before we proceed, we need following lemma:

Lemma 2. If there ezists a 5-regular planar graph on n vertices,
then there ezists a 5-regular planar graph on n + 10 vertices.
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Figure 4: (12,5) graph

Proof. Let G be a 5-regular planar graph on n vertices. Let z be a
vertex of G' with neighbours z;, 25, z3, Z4,%5. Remove the vertex z
and replace it by a configuration as in Figure 5.

Figure 5: Configuration for Lemma 2

The new vertices are y;,y2,**,¥s, 21,22, , 25, & and the new
edges are z; yi, 2 ¥i, 2% Yi-1, Yi-1 Yi, %i-1 %, 1 <i< 5; herei—11is
taken modulo 5, and # z;,1 < i < 5.

One can see that this produces a 5-regular planar graph on n+10
vertices. O
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This means that we need to find the required planar graphs for
n = 12, 14,16, 18,20. The value n = 12 is already cleared.

Proposition 3. There is no planar, 5-regular graph on 14 vertices.

Proof. Suppose G is a planar graph on 14 points which is 5-regular.
This has 35 edges. This means that exactly one region is a quadrangle
and all the other regions are triangles. In fact we can draw the
graph in such a way that the outer region is a quadrangle with the

boundary {z,y,z, w,z} (say). Now each of the edges zy, yz, zw, wz
must belong to one more triangular region.

x y

w z

Figure 6: (14,5) configuration

Let these regions be zys, yzt, zwu, wzv. One can easily chech that
the vertices s,t,u,v must be all distinct. Now each of the vertices
z, 9, z, w have one more neighbour. Let those be a, b, ¢, d respectively.
Again these have to be distinct for otherwise one cannot complete
the required degrees of some of the earlier vertices and still keep
the graph planar. Since all the remaining regions are triangles one
can see that graph G must have the configuration shown in Figure
6 and then it is impossible to complete the construction to make
the degrees of the enclosed two vertices equal to 5 and still keep the
graph planar. Hence a planar graph for the pair (14,5) does not
exist.
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This means the value 24 has to be considered separately along with
16, 18 and 20. Figure 7 gives a 5-regular planar graph on 16 and 20
points.

a=16 n=20

Figure 7: (16,5) and (20,5) Graphs

The value » = 18 is cleared by Figure 8.

Finally, for n = 24, take two copies G and G of 5-regular graph
on twelve vertices. Let zy and z'y’ be two corresponding edges on
the outer boundary. Remove these edges and add edges z z',y y'.
The resulting graph is 5-regular on 24 points. Thus, for each even
number n > 12, n # 14, there exists a 5-regular graph of order n.

3 Strongly Regular Planar Graphs

Having proved that all planar connected regular graphs of degree
k < 5 exists on n vertices except when n =7, k = 4 and n = 14 and
k = 5, the next natural question is to determine which connected
strongly regular graphs are planar. Let I'(z) and A(z) be the sets
of vertices adjacent to z, respectively, nonadjacent to an arbitrary
vertex z. Counting in two ways the number of edges between I'(z)
and A(z) yields the following very useful (and well-known) lemma.

Lemma 4. The parameters (n,k, ), p) of a SRG satisfy
k(k=A-1)=(n—-k—1)p. (1)
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Figure 8: (18,5) Graph

Our main result on this question is the following theorem.

Theorem 5. Ezcept for the octahedral circulant graph srg(6,4,2,4),
the cycle graphs Cy,, n = 4,5, and the complete graphs K, K2, K3, K4
on 1,2,3 and 4 vertices, all other SRGs are nonplanar.

Proof. By abuse of notation, we shall use srg(:, -, -, ) also for a possi-
ble parameter set of a SRG. Employing Lemma. 4, we show that there
are only a finite number of possible planar strongly regular graphs,
namely we shall prove that the following are the only (connected)
planar strongly regular graphs

srg(1,0,0,0) = K, (singleton); srg(2,1,0,0) = K2 (path);
srg(3,2,1,0) = K3 (complete); srg(4,2,0,2)=Cj (cycle);
srg(4,3,2,0) = K4 (complete); srg(5,2,0,1)=Cs (cycle);
srg(6,4,2,4) = Cig(1,2) (octahedral circulant);

(2)

Assume that G is a SRG, with parameter sets (n, k, A, ). One knows
that if a graph G is planar then its degrees are less than or equal to
5,50 k < 5. Now, we will apply Lemma 4 for each of the six possible

values of k:
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Case k = 0. We obtain the totally disconnected graph srg(n,0,0,0),
unless n = 1.

Case k = 1. Thus, A = (2 — n)p. Therefore, the only possible
parameter sets for a SRG are srg(l,1,), 1), an impossibility, or
srg(2,1,0,0) = K,.

Case k = 2. Thus, we need 2(1 — A) = (n — 3)p. This constraint
on the parameters renders the possibilities: srg(5,2,0,1) = Cs,
s79(4,2,0,2) = Cy (cycles), srg(3,2,1, ) = Ka, srg(n,2,1,0) (n >
3) (the last turns out to be a disjoint union of triangles and hence
not connected).

Case k = 3. Thus, we need 3(2 — ) = (n — 4)p. By arithmeti-
cal reasoning we derive the possibilities: srg(4,3,2,p) for p < 2,
srg(5,3,1,3),srg(7,3,1,1), srg(5,3,0,6), srg(6,3,0,3),srg(7,3,0,2),
srg(10,3,0,1).

Case k = 4. Thus, we need 4(3 — A) = (n — 5)p. By congruence con-
siderations, we arrive at the possibilities: srg(n,4,3,0), srg(5,4,3, p)
(r < 3), srg(6,4,0,12), srg(6,4,1,8), srg(6,4,2,4), srg(7,4,0, 6),
srg(7,4,1,4), srg(7,4,2,2), srg(8,4,0,4), srg(9,4,0,3),
srg(9,4,1,2), srg(9,4,2,1), srg(11,4,0, 2), srg(13,4,1,1),
srg(17,4,0,1).

Case k = 5. Thus, we need 5(4 — A) = (n — 6)u. As before,
we have the possibilities: srg(n,5,4,0), srg(6,5,4,x) (r < 9),
srg(7,5,0,20), srg(7,5,1,15), srg(7,5,2,10), srg(7,5,3,5),
srg(8,5,0,10), srg(8,5,2,5), srg(9,5, 1,5), srg(10,5,0,5),
srg(11,5,0,4), srg(11,5,2,2), srg(11,5, 1,3), srg(11,5,3,1),
srg(16,5,0,2), srg(16,5,2,1), srg(21,5,1,1), srg(26, 5,0, 1).

Now, by Kuratowski’s theorem, a graph G is planar if and only
if it has no subgraphs isomorphic to subdivisions of the complete
graph Ks or the bipartite graph K33. If n > 6, the graphs having
parameters sets

srg(n,2,1,0); srg(n,4,3,0); srg(n,5,4,0) (3)

cannot be (connected) strongly regular as the following analysis shows.
If srg(n, k, k- 1,0) exists, it must contain a complete graph on k+1
vertices: Let z be a vertex with k adjacent vertices. As p = 0, they
must be adjacent to each other. In case of k = 2, we have a planar
connected graph only when n = 3, but for £ > 4, we have a com-
ponent containing K5 and hence is nonplanar. Therefore, the only
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possible connected planar SRGs (among the ones listed in the five
cases above) are

srg(1,0,0,0) (singleton); srg(2,1,0,0)= P, (path);

srg(3,2,1,0) = K3; srg(4,2,0,2) = C4 (square cycle);

srg(4,3,2,0) = Ka; srg(5,2,0, 1) = Cs (pentagon cycle);

srg(5,4,3,0) = Ks; srg(6,3,0,3) = Cig(1,3) (circulant);

srg(6,4,2,4) = Cig(1,2) (octahedral); srg(6, 5,4,0) = Ké;

srg(8,4,0,4) = Cig(1,3) (circulant);

srg(10,3,0,1) = P (Petersen); srg(16,5,0,2) (Clebsch);
Certainly, the first six graphs are planar as one can see easily.

By the same theorem of Kuratowski, K5, K¢ are nonplanar. The

famous Petersen and Clebsch graphs are certainly nonplanar (see
[3, 5]). The octahedral graph is planar as one can see next

)

Certainly, Cig(1,3) and Cis(1,3), which are unique and contain
a K33, are nonplanar: assume that vertex v; is adjacent to vz, v3, V4.
Now v, has to be adjacent to vy, Vs, V6, and vs has to be adjacent to
vy, Us, V. Similarly for vs. We have the theorem. O |

Remark 6. A similar argument as the last one reveals that any
srg(2n,n,0,n) is unique and contains a Ka3, n > 3 therefore it
is nonplanar. ’
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4 2-strongly regular graphs

Definition 7. A connected graph is called 2-strongly regular (2-SRG)
with parameters (n,r; < rp, A, p) if every vertex has two possible de-
grees ry < 13, end &(z,y) = A, respectively, u if =,y are adjacent,
respectively, nonadjacent.

In other words, we impose a strongly regular-like condition with-
out the regularity. One might suspect that there should be more
2-SRGs than SRGs, since we allow two possible degrees to occur.
Later we will conjecture that surprisingly, there is essentially one
construction (yielding an infinite class on nonisomorphic 2-SRGs,
though).

We start with some observations gathered in a proposition.

Proposition 8. Let G be a 2-SRG. Then, between any two vertices
there is a path of length at most 2. Moreover, a cycle Cy,, n > 4,
cannot be a component in a point-union of a 2-SRG.

Proof. Let v, w be two arbitrary vertices of G. If v, w are adjacent,
there is nothing to prove. Assume now that there are two vertices
v, w with a minimal path of length at least three (so v,w are non-
adjacent), given by v,¢;,¢3,...,w. Obviously, §(v,c;) > 1 (since
¢1 is a common vertex to v and ¢3). That implies that g > 1, so
0(v,w) = p > 1. Thus, there is a common vertex to v and w. That
contradicts the minimality of the path v, ¢y, cs, ..., w.

To prove the second claim, let n > 4. We assume that there is a

cycle C,, =< a3,az,...,a, >, n > 4 with a; a contact point in G.
Let £ € G - C,, adjacent to a;. It follows that 6(z,az) = p > 1. But
d(z, a3) = 0, which is a contradiction. 0O

Our next result shows a diophantine relation among the param-
eters of a 2-SRG similar to the one of a SRG.

Theorem 9. Let G be a 2-SRG of parameters n, A, u, vy < ro. Pick
a vertez z of degree ry. If ezactly a > 0 of its neighbors have degree
ro then

(n—ry - Dp=ry(ry = A=1) +a(ry— 1), (4)
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Pick a verter y of degree ry. If ezactly B > 0 of its neighbors have
degree ro then

(n-—r1 - 1)[.!.=1‘1(T1—)\— 1)+,3(f‘2—7‘1). (5)
Moreover, a and f3 are independent of the considered vertices, and
B=ritat+p-A-1. (6)

Proof. We prove the theorem using a similar idea as for the classical
SRGs. We take any vertex z of maximal degree r;. Let I'(z) and
A(z) be the set of vertices adjacent, respectively, nonadjacent to z.
We count the edges between I'(z) and A(z). Certainly, A(z) contains
exactly n—re—1 vertices. For each of these vertices there are exactly
4 common vertices between them and z, which vertices must be in
I'(z). We obtain (n — ry — 1)p edges between I'(z) and A(z).

Let v be one of the a vertices of degree ry adjacent to z. Since
é(z,v) = ], it follows that exactly A neighbors for v (also common to
z) that are in ['(z), and the rest of (r— A—1) must be in A(z) (thus
a(rz — A — 1) edges between A(z) and I'(z)). Similarly, for each of
the ro — a vertices of degree r;, producing (rz — a)(r; — A — 1) more
edges between A(z) and I'(z). This analysis renders the equation

(m=re—-Dp=(rz—a)(ri=A-1)+a(r:— A-1),

which by simplification produces the first claim. The proof of the
second equation is similar.

Regarding the further claim of our theorem, the equations (4)
and (5) are linear equations in a, respectively, 8. Since their leading
coefficient is (r; — r1) # 0, each equation has a unique solution.

Solving the system given by both (4) and (5) we obtain

roff — ria
—_— 7
n—1 (@)
A = n—1+ri—nr+a-natra—rf+nf-0 ()
- n—-1 ’
Simplifying the expression of A, we obtain (6). 0O

A vertex w whose neighbors are all of degree r is called an r-
island. In some cases, one can find a stronger relation among the

parameters of a SRG.
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Theorem 10. LetG be a 2-SRG of parameters (n>1,r <72y p).
If there is @ vertex x of degree ro that is an r1-island, then

(R=ro—Np=ry(r; —A—- 1); . 9)
a veriex y of degree ry that is an rg-i.;land, then
(n—r1 —1)[l.=7‘1(1’2—)\—1). (10)

Moreover, there is no vertezr of degree ry that is an ri-island, or a
vertez of degree ry that is an ro-island. Furthermore, the two cases
(9), (10) are mutually ezclusive.

Proof. The equations are obtained by replacing @ = 0 in (4) and
,B =n in (5).

Now assume that we have both a vertex z of degree r; that is an
ri-island, and a vertex y of degree r; that is an ro-island. It follows
that

(n-—rg— 1)[[ =1’2(1‘1 -A- 1),
(n—— r - 1)[&:1‘1(1‘2— A— 1).

Solving the previous system for ), 2, we obtain
A=ri+rp—m, p=r,.

It follows that every nonadjacent pair of vertices have exactly r,
common neighbors. That is impossible since there is at least a vertex
z of degree r; that cannot be adjacent to y.

There cannot be any vertex of degree r; that is an r;-island, since
that will force 8 = 0, which implies that z < 0, unless & = 0. If
@ = 0, then there is a (in fact any) vertex of degree r, that is an r;-
island. But then, that will force any of its neighbors to have 8 # 0,
which is a contradiction. Certainly a vertex of degree r, cannot be
an rp-island since then a would be equal to r,. But, then every
vertex of degree r, would have only neighbors of degree r, and the
graph would be disconnected (since it contains vertices of degree r,,
as well). O

The previous theorem suggests some examples of 2-SRGs, for in-
stance, one-point union of complete graphs
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We use the notation K,(f) for the one-point union of s copies of
K. Thus, the previous graphs are K;s), K:S?’), K f‘”.

Based on our observations and extensive computations, we make
the following

Conjecture 11. Any2-SRG is a one-point union of complete graphs.

There are more conditions that the parameters of a 2-SRG must
satisfy. We will deduce some in our next result.

Theorem 12. Let G be a 2-SRG. Then the number of vertices of
degree rq, respectively, ro is

n(ry — a) nf
B—a+rs B—a+ry

Proof. Take A;, respectively, Az to be the sets of vertices of degree
r1, respectively, ro. We will count the number of edges between A,
and A; in two ways (assuming Theorem 9). Let s be the number of
elements of A;. For each vertex, say a; in A;, there are exactly 8
vertices in A, adjacent to a;. Thus, we obtain sf edges between A,
and A,. Similarly, for each vertex, say a; in Ag, there are precisely
ro— o vertices in A; adjacent to a;. Therefore, we obtain (n—s)(rz—
o) edges between A; and Az. It follows that 88 = (n — s)(r2 — @),

, respeclively,

from which we deduce s = —mal—c?-. The second claim is implied
- 2
by the fact that the number of vertices is n. O
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It is well-known that for (connected and not complete) SRGs of
parameters (n, k, A, ), we have the following inequalities

1<A+1<k, O0<pu<k<n-1.
We prove some analogous inequalities for a 2-SRG graph.

Proposition 13. Let G be a 2-SRG. Then
1<A4+1<r,0<p<ry<n~1.

Proof. Certainly A > 0. Now, take a vertex z of degree r, and one of
its neighbors y of degree ry (since z is not an ro-island). Then, the
A common neighbors of z and y have to be among the r; — 1 vertices
other than  which are adjacent to y. Therefore, A + 1 < ry.

Now we prove the second inequality. If 4 = 0, Proposition 8
implies that every two vertices are adjacent, so we are dealing with a
complete regular graph, which cannot happen for a 2-SRG. If & = r,,
then there are two vertices having exactly r; neighbors. But then, the
two vertices would have at least degree ro4-1, which is impossible. O

Remark 14. For classical strongly regular graphs, k cannot be n—1.
However, for a 2-SRG, r2 can be n — 1, for instance in the case of
one-point union of K, ’s.

Our next result gathers some inequalities and other divisibility con-
ditions on the parameters, some of which generalize the previous
ones.

Theorem 15. For a 2-SRG G, the following divisibilities are true

rot+ri+p—A—1|n(r;— @), (11)
n-1 I Tzﬁ — ro. (12)

Moreover, the following inequalities hold

raf > ra+n -1, (13)

mraytitOtlon —pn (14)
r9 —nr;

1‘12ﬂ2n—1+(,\+1~r1_”’)r1- (15)

rg—m
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Proof. The divisibility claim follows immediately from the expres-
sion (7) of u and Theorem 12. The inequality (13) follows from the
divisibility n — 1| ry8 — r1e, by observing that r38 # ria (it would
imply that g = 0, which cannot happen under our conditions).

Certainly a < r; and § < r;. Using Theorem 9 and inequality
(13), we obtain

remt+at+p-A-1)2ra+n-1,

n—1+(A+1—r1— p)r,
rea —m )

therefore r2.2 a2

.1W-—n'_.l and the
T2

obtained inequality for a. O

For the second inequality, one uses 8 >

Remark 18. In fact, @ < r2, otherwise we would have a vertez of
degree r; that is an ry-island.

Regarding planarity for 2-SRGs, we have the following result (the
proof is straightforward).

Theorem 17. Assuming Conjecture 11 true, the only planar 2-SRG's
are one-point unions of complete graphs K, K3, K4, namely

KP; s K.

One can extend the new type of graph, which we called 2-SRG, to
a strongly regular-like graph with parameters n, A, i1, where we force
exactly ! degrees on vertices, say r; < rz < ...< ri. It is likely that
it is going to be much more difficult to study these types of graph.
We shall attempt that analysis elsewhere.
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