On the Non-Existence of Some Orthogonal
Arrays

R. Dios
New Jersey Institute of Technology
Newark, New Jersey 07102, U.S.A.

D.V. Chopra
Wichita State University
Wichita, Kansas 67260, U.S.A.

Abstract

In this paper we consider the problem of the non-existence of
some orthogonal arrays (O-arrays) of strength four with two levels,
the number of constraints k satisfying 4 < k < 32 and index set A
where 1 < A < 64.

1. Introduction and Preliminaries.
For ease of reference we present some basic results and definitions on
balanced arrays (B-arrays).

Definition. A balanced array (B-array) T of strength t with two levels, k
constraints, and /N runs is merely a matrix T with two elements (say, 0 and
1), k rows, and N columns having the following combinatorial structure:

In every (t x N; t < k) submatrix T* of T, every (t x 1) vector a of

weight i(0 < i < t), (the weight of a vector is defined as the number of 1’s
in it) appears with the same frequency A; (say). The vector (Ag,Ay,.., As)
is called the index set of the B-array.
Definition: If A\; = A for each i, then the B-array is called an orthogonal
array (O-array) with index . We will also use OA(N,k,s,t), N = Ast, to
denote an O-array with parameters N,k,s,t. We specialize here to the case
whent =4. :
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Definition: A B-array T with index set (A—1,A, A, A\, A—1) is called a near
Q-array.
Remark: It is quite obvious that if we attach to a near O-array with &
rows, two vectors, one of weight 0 and another of weight k, we obtain an
O-array with k rows and index set .

The following result on O-arrays is due to Rao [11]:
Result 1: For O-arrays with ¢ > 2 and with s levels, k must satisfy the
following inequality: For ¢t =2u, As* —1> (§)(s—1)+ (§)(s = 1)® + ...+
(¥)(s —1)*. For t =4 and s = 2, the above is reduced to

22>k +k (1.1)
The next result on near O-arrays is from Chopra and Dios [5).

Result 2: Consider a near O-array T'(k X N) with ¢ = 4 and index set
(A=1,2,2\ A—=1). Then the following inequality is true:

LoLy > L3 + I3 (1.2)
where Ls = NDy — D%, Lz = N2D3 —3NDyD; + 2D¥,

Ly = N3Dy — 4N%D3 + 6ND; D} — 3D} with D, = 3", j'z;,0< 1 < 4.
For a given A, the D,’s are polynomial functions in k and are given as
follows:

Do = N =2C1,D, = kCy, D2 = k2B + kCy,

D3 = k3 A3 + 3k By + kC1, Dy = k(A — 1) + 6k3 Az + TkaBa + kCy

where A3, B3, and C) are given by 2A—1,4A -1, and 8\ — 1 respectively
and k, is defined by k, = k(k - 1)(k - 2)...(k — 7 + 1).
Remark: It is quite obvious that (1.2) is merely a polynomial inequality
involving the parameters k and X of the array T witht =4 and s = 2. Fora
given ), we obtain a polynomial inequality in & (the number of constraints).

B-arrays and O-arrays have been extensively used to construct sym-
metrical as well as asymmetrical factorial experiments. The rows of the
arrays will correspond to factors and columns to treatment combinations.
They are also generalizations of other areas of combinatorial mathematics
(e.g., balanced incomplete block designs form a sub-class of B-arrays with
strength two). To gain further insight into the importance of B-arrays and
O-arrays to combinatorics and design of experiments, the interested reader
may consult the list of references (by no means an exhaustive one) at the
end of this paper, as well as further references listed therein.
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2. Main Results with Discussion.

There are two important problems arising in the study of orthogonal
arrays: (i) to determine the maximal number of factors k in any OA with
fixed values of ), s, ¢; (i) to determine the minimal value of A (meaning
thereby minimal number of runs) for given values of k, s, and ¢.

Hedayat, Sloane, and Stufkin (6] in their book, Orthogonal Arrays, ad-
dress both of these problems at great length, and is an excellent source book
for O-arrays. They list numerous open problems on O-arrays throughout
the book. Tables 12.1-12.3 provide minimal possible index of O-arrays
with s, k, and ¢ satisfying (s =2,4 <k<32,2<t<10), (s=3,4<
k<32,2<t<10),and (s=4,4<k<322<t< 10) respectively.
In this paper, we are concerned with Table 12.1 for the case t = 4. The
construction of these tables has been carried out by using, as well as other
results, the following trivial observations:

(a) The nonexistence of an OA (s, k, s,t) implies the nonexistence of an
OA (Ast,k+1,s,t).

(b) An OA (N, k, s, t) of index A implies the existence of an OA (N, k-1, s,t)
of index ), an OA (£,k~1,s,t—1) of index ), and an OA (sN,k+1,s,t)
of index sA.

(c) An OA (s*,t +1,s,t) with A = 1 always exists. Many of the minimal
entries for A in Table 12.1 are given in the form of an interval \; — g
indicating an O-array for A = ), is known to exist but nothing is known
about the existence of O-arrays for other values of A in the interval.

3. Comments with Illustrations on Tables I-IV.

The four tables presented here lead us to the non-existence of O-arrays.
Table I is merely extracted from Table 12.1 of Hedayat, Sloane, and Stufkin
[6]. According to this table, if we pick, for example, k¥ = 30, then the
minimal value of A is any integer satisfying 33-64, thus amounting to 32
values of A. Of these 32 values, the existence of an O-array with A = 64 is
known but each of the remaining 31 values is an open problem.

Table II is obtained using (1.2). For each ) satisfying 1 < A < 64, we
obtain a polynomial inequality in k by using (1.2). In this inequality, we
substitute values of k starting at k& = 4 and stopping as soon as we obtain
the first condraction (e.g., if the first condraction occurred at k = k*(say),
then the maximum value of & is k* —1). As an illustration, if we pick the
entry 30 in the k column, we have four values of ) satisfying 55-58. It
means that (1.2) was contradicted for each of these four A values at k = 31.

Table III is merely another way of writing Table I so that a valid com-
parison can be made with Table II. For the sake of illustration, let us pick
A = 57 in the interval 55-58. If we trace A = 57 in Table I, we find it in
every interval of A values starting at k = 24 and ending with k¥ = 32. Using
this argument, we go from Table I to Table III. In Table III, we also list
the k values of Table II in column 3.
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Finally, we focus on Table IV. For k = 30, the earlier interval from
Table I is 33-64, while the new interval from Table III is 55-58. Since O-
arrays with (k = 31, A = 59 — 62) and (k = 32, A = 63 — 64) are possible,
then the interval 55-58 is modified to 55-64. Thus the original interval 33-
64 is replaced by new interval of 55-64, thereby showing the non-existence
of O-arrays with (k = 30,33 < X < 54). Observing the entries in Table
IV, there is a significant improvement on earlier results.

Table I

Minimal possible index A of orthogonal arrays with 2 levels, k factors
and strength 4.

A k A

1 19 | 14-16
1 20 | 15-32
2 21| 17-32
4

4

22 | 20-32
23 | 22-32
6-8 | 24 | 22-64
10| 6-8 | 25| 23-64
11| 6-8 | 26 | 26-64
12| 7-8 |27 | 29-64
13 8 28 | 29-64
14 8 29 | 29-64
15 8 30 | 33-64
16 | 10-16 | 31 | 37-64
17 | 12-16 | 32 | 37-64
18 | 13-16

Chopra and Dios [5] provide a table for maximal & for A satisfying
1<2<20. This is extended to 1 < A < 64 and presented as Table 2.
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Table I1

Maximum possible & (the number of factors/constraints) for orthogonal
arrays of strength 4 with 1 < )\ < 64.

5 | 2021 | 18
6 | 2223 19
7 | 2426 | 20
8 | 2728 21
9 |29-31] 22
10 | 3234 | 23
10 | 3537 | 24
11 | 38-40 | 25
12 [ 4143 | 26
10 | 13 | 4447 | 27
11 | 13 | 4850 | 28
12 | 14 | 5154 | 29
13 | 14 | 55-58 | 30
1415 | 15 | 59-62 | 31
16-17 | 16 | 63-64 | 32

©| 0o} 3| O] | | SO D] ] >~
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Table III

Rewriting Table I in terms of bounds on k for a given A for comparison
with Table II.

A k Table II k values A k Table II k& values
1 45 5 24 | 20-25 20
2 6 6 25 | 20-25 20
3 6 7 26 | 20-26 20
4 | 78 8 27 | 20-26 21
5 6 9 28 | 20-26 21
6 | 911 10 29 | 20-29 22
71 9-12 10 30 | 20-29 22
8| 915 11 31 20-29 22
9 15 12 32 | 20-29 23
10| 16 13 33 | 24-30 23
11| 16 13 34 | 24-30 23
12 | 16,17 14 35 | 24-30 24
13 | 16-18 14 36 | 24-30 24
14 | 16-19 15 37 24-32 24
15 | 16-20 15 38 24-32 25
16 | 16-20 16 39-40 | 24-32 25
17 | 20-21 16 41-43 | 24-32 mm
18 | 20-21 17 44-47 | 24-32 27
19 | 20-21 17 48-50 | 24-32 28
20 | 20-22 18 51-54 | 24-32 29
21 | 20-22 18 55-58 | 24-32 30
22 | 20-24 19 59-62 | 24-32 31
23 | 20-24 19 63-64 | 24-32 32
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Table IV

Revised table for the minimal possible index A with 2 levels, k factors
and strength 4.

k | Table I A | Revised A | k | TableI X | Revised X
4 1 1 19 14-16 16
5 1 1 20 15-32 24-32
6 2 2 21 17-32 27-32
7 4 4 22 20-32 29-32
8 4 4 23 22-32 32
9 6-8 6-8 24 22-64 35-64
10 6-8 6-8 25 23-64 38-64
11 6-8 8 26 26-64 41-64
12 7-8 8 27| 29-64 44-64
13 8 8 28 29-64 48-64
14 8 8 29 29-64 51-64
15 8 8 30 33-64 55-64
16 10-16 16 31 37-64 59-64
17 12-16 16 32 37-64 63-64
18 13-16 16
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