Exclusive Sum Labelings of Trees

Mauritsius Tuga!, Mirka Miller?, Joe Ryan?, and Zdenék Ryjacek3

! School of Electrical Engineering and Computer Science
The University of Newcastle, NSW 2308, Australia
morisQ@cs.newcastle.edu.an

2 School of Information Technology and Mathematical Science

University of Ballarat, VIC 3353, Australia
{m.miller, joe.ryan}@ballarat.edu.au
3 Department of Mathematics, University of West Bohemia and
Institute of Theoretical Computer Science (ITI) Charles University
P.O. Box 314, 306 14 Pilsen, Czech Republic
ryjacek@kma.zcu.cz

Abstract. The notions of sum labeling and sum graph were intro-
duced by Harary in 1990 [3]. In a sum labeling, a vertex is called a
working vertez if its label is equal to the sum of the labels of a pair
of two distinct vertices.

A sum labeling of a graph G is said to be ezclusive if it is a sum la-
beling of G such that G contains no working vertex. Any connected
graph G will require some additional isolated vertices in order to be
labeled exclusively. The smallest number of such isolates is called
the exclusive sum number of G; it is denoted by €(G). The number
of isolates cannot be less than the maximum number of neighbours
of any vertex in the graph, that is, at least equal to A(G), the max-
imum vertex degree in G. If ¢(G) = A(G), then G is said to be a
A-optimum summable graph. An exclusive sum labeling of G using
A(G) isolates is called A-optimum ezclusive sum labeling of G.

In this paper we show that some families of trees are A-optimum
summable graphs. However, this is not true for all trees, and we
present an example of a tree which is not A-optimum summable
graph, giving rise to an open problem.

1 Introduction

All graphs we consider here are finite, simple and undirected. For general
terms used in graph theory, please refer to [5).

A sum labeling A of a graph G is a mapping of the vertices of G into distinct
positive integers such that {u,v} € E(G) if and only if the sum of the labels
assigned to v and v is the label of a vertex w of G. In such a case w is called
a working vertez. A graph which has a sum labeling is called a sum graph.
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Any graph G will need some isolated vertices called isolates. If a graph lacks
some or all such isolates, one can add more isolates until the graph itself,
together with the additional isolates, can support a sum labeling. The least
number of the additional isolates is called the sum number of the graph; it
is denoted by o(G). A graph together with its minimum number of isolates,
is called an optimum summable graph. Moreover, let §(G) be the smallest
degree of vertices of a graph G. It is obvious that o(G) = §(G). In case
o(G) = §(G), the graph G is called §-optimum summable graph.

A sum labeling of a graph G U K, for some positive integer r is said to be
exclusive with respect to G if all of its working vertices are in K,; otherwise
it is said to be inclusive. Every graph can be made to support an exclusive
sum labeling, by adding some isolates. The least possible number of isolates
that need to be added to a graph G to obtain an exclusive sum labeling is
called the ezclusive sum number of the graph G, denoted by ¢(G), and the
graph G U K(g) is called an optimum exclusive sum graph of G.

Observation 1 Let A(G) be the mazimum degree of the vertices of a graph
G. Then ¢(G) 2 A(G).

In case ¢(G) = A(G), the graph G is said to be a A-optimum summable
graph.

We refer to [2] for the notions of tree, caterpillar, and shrub. Furthermore,
the following terms will be used in this paper.

. A leaf of a tree is a vertex with degree 1.

A near-leaf is a non-leaf that has at most one neighbour which is not a leaf.
An inner vertez is a vertex that has at least two neighbours which are not
leaves.

In [2], Ellingham proved that if T is a tree of order at least 2, then o(T) = 1.
That is, every tree is 1-optimal with respect to sum labeling. The notion
of exclusive sum labeling was inroduced by Bergstrand et al. [1]. In [7)
Miller et al. extended the idea to include all graphs. That is, graphs with
an inclusive optimal labeling may also bear an exclusive sum labeling.

Observation 2 For any graph G, €(G) 2> o(G).

Since exclusive sum labeling was extended to include all graphs it has
been a challenge to find the exclusive sum number of trees. Unlike its coun-
terpart problem in sum graph labeling, any attempt to solve this problem
so far has been unsuccessful. In this paper we present some new findings
in this interesting research area. We will show in particular that some cer-
tain classes of trees are A-optimum summable graphs and on the other
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hand, we will also show that there exist trees which are not A-optimum
summable graphs. In Section 2 we show that every caterpillar-type tree is
a A-optimum summable graph. In Section 3, it is shown that every shrub
is also a A-optimum summable graph. We also include a labelling for two
trees that can be classified both as caterpillars and shrubs; stars and dou-
ble stars. In Section 4 we provide an example of a tree which is not a
A-optimum summable graph and conclude with some open problems.

2 Exclusive sum labeling of caterpillars

Recall that a caterpillar is a graph which has the property that if we remove
all the vertices of degree 1 then what remains is a path. A caterpillar can
have more than one longest path. Such a path is called the spine of the
caterpillar. The two endpoints of a spine are called, respectively, the tail
and the head. Other vertices on the spine are called internal vertices. We
shall always consider a spine of a caterpillar as oriented in the particular
direction from tail to head. The vertices of degree one of a caterpillar, other
than tail and head, will be called the feet; these vertices are attached to the
internal vertices of the spine by edges called the legs of the caterpillar.

Let C be a caterpillar with A(C) =d.

Labeling 1 (Exclusive sum labeling of a caterpillar)

. Choose a spine of C and let P = {p;,p2, ..., px} be the set of vertices of the
spine. Let
fi = deg(ps)—2, i=2,3,.,k—1
=0, i=Lk

For 2 < i< k-1,let B; = {b;|1 < j < fi,fi > 0} be the set of

feet which are attached to the internal vertex p;. It is clear that B; =
N@)\(PNN(p:), for 2<i<k—1.Let B= 'ff)l B; be the set of all feet
of C. =

. Label the spine with a mapping L as follows.

Lip;) =14+2(:-1)(d—-2) for odd 1,
1+4(k—-i/2)(d—2) foreven 1.

This gives

L(p;) + L{piy1) = 2+ (4k—4)(d—2), forodd i,
= 2+4k(d - 2), for even 1.
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3. Let T4 = {t{,£{”} be two vertices with labels L(t{”)) = 2+ (4k—4)(d—2)
and L(tg“)) = 2 + 4k(d — 2)}. Choose a = 5 + 4k(d — 2). It is clear that
a = 1(mod 4).

4. Add d — 2 more vertices Tp = {tﬁb)li = 1,2,...,(d — 2)} and label with

L(t®) = (a+ L(p2)) + 4(i - 1).
5. Let T=T4UTg. For i =2,3,...,k — 1, label the vertices of B; as follows.
L(b‘lJ) = L(t_sb)) - L(p,-), i=L2,.,f

For convenience, from now on we will use v instead of L(v) for any v €
V(C) U K4, and each vertex will be identified by its label under L. Also,

now we let B; = {b;j|1 < j < fi} and B = ':0: B; denote the set of the
labels of the feet.

Remark 1 Fori = 1,2,...,k let B; = {t{” — pilj = 1,2,..,d - 2}. It is
obvious that B; C B;, i =1,2,..,.k. If B' = ‘:L':J‘ B; then BC B'.

Before we prove that the labeling L is an optimal exclusive sum labeling of
C, we need to consider the following facts:

Observation 8 maz(P) = pa, min(P) = p,.

Observation 4 maz(Ta) = p2 + p3, min(T4) = p1 + pe.

Observation 5 maz(Ts) = a + p2 + 4(d — 3), min(TB) = a + pa.

Observation 6 maz(B') = max(Tg) — min(P) = a + ps + 4(d — 3) — py,
and
min(B') = min(Tg) ~ maz(P) = a+ps —p2 = a.

Lemma 1 Let p € P, t(®) € T4, b € B and t® € Tg, where P, T4 and
Tp as in Labeling 1. Then p < t® < b < t®,

Proof. There are three parts to prove. -

1. We will show that p < (@ for all p € P and for all (2 € T,.
Let p € P, t(® € T4 then p < p; and either ¢(®) = py + p; or £ = ps + ps.
In both cases, we have p, < £(®),
This gives p < (@ for all p € P and for all t() € T}y.

2. We will show that t(®) < b , for all t(2) € T4 and for all b € B.
Let b € B and t(®) € T4 since,
B C B’ then b > min(B’) = a > max(T4) > t©@.
Therefore, b > t(®) Vt(®) € T4 and Vb € B.
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3. We will show that t® > b, for all t*) € T3 and for all b € B. ,
Let t € T and b € B then t® > min(T) = a + ps and max(B') =
max(Tg) — min(P) = (a + p2) + 2(d — 3) — 1.

a+py —max(B') = (a+p2) — (a+p2) +2d - 3) —pn

= p1—2(d—-3)
= 2d—2(d - 3)
>0

We have a + p; > max(B'), therefore, ¢ > max(B) > b.

iFrom these three facts we have p < t©® < b< t® Vpe P,t(®) € T4,be B
and ¢® €Tg.

Lemma 2 Let P, B, and B, be as in Labeling 1. Ifr # s then B.NB, =0

Proof. Suppose to the contrary that B, N B, # 0. Let € B.N B,.
Then

z= tgb) — p; for some tEb) € T and

z= tg-b) — p, for some tg-b) € Tp.

We get t,(b) — t;b) = ps; — pr. However,

£ =1 < max{[tP) — ¢0)||t?), ¢ € T}
= max(Tg) — min(Tp)
= 4(d - 3)

On the other hand, p, — p, > 4(d — 2).

Hence, tgb) - t;b) < 4(d—3) < 4(d - 2) < ps — pr. This contradicts the fact
that £ — ¥ = p, — p.
Therefore, we must have B. N B, = 0.

As a consequence,

Lemma 3 Ifr # s then B, N B, = 0.

Observation 7 Foralli, i =1,2,...,k, p; = 1(mod 4) and b;; = 1(mod 4)
forall j=1,2, .., f;. This givest =2(mod 4) VteT.

We are now ready to prove

Theorem 1 Let C be a caterpillar with mazimum degree A(C). Then
€(C) = A(C), that is, every caterpillar is a A-optimum summable graph.
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Proof, We will show that Labeling 1 gives an exclusive sum labeling of &
caterpillar C.

By Lemma 1, the labeling is surely a bijection from V(C UT) onto distinct
positive integers in PUBUT4UT5. Moreover, it is clear that if {u,v} € E(C)
then u + v € T. We need to prove that there are no extra edges needed,
that is, if {u,v} ¢ E(CUT) thenu+v ¢ V(CUT)=PUBUT,UTB.

. Let z € Band y € B,{z,y} ¢ E(C). Obviously, s +y¢ Bandz+y ¢ P.
We will show that z +y ¢ T.

- x4y >t,Vt € Ty due to Lemma 1.
— Note that a > p2 + ps.

z4+y 2 2a
> (a+p2)+ps3
> (a+p2)+1+4(d-2)
> (a+p2) +4(d-3)
= max(Tp).

Therefore, z +y € Tp.

. Let z € B, y € P and {z,y} ¢ E(C). It is obvious that z + y ¢ P and
z+y ¢ B. We will show that z +y ¢ T.
Let ¢ = b;; and y = pi, where i # k.
— By Lemma 1, b,'j >t,VteT4. So bij + Pk ¢ Ta
— bi; =t — p; for some t € Tp. If b;; + px € T, then b;; + px = t for
some t € T. We get bij = t — pi This says that bi; € B‘f nB;, which
contradicts Lemma 2.

. Let {pi,p;} ¢ E(C). Clearly, p; +p; ¢ P and p; + p; ¢ B. We will show
that p; + p; ¢T.

- If p; + p; = t, for some t € T4, then p; =t — p;, giving p; = p;—; or
Pi = pj+1. This of course contradicts the fact that p;,p; ¢ E(C).

- If py+pj =, for some t € Tp, thenp; =t —p; € B}. This contradicts
Lemma 1 that p < b, Vp,Vb.

By Observation 3, there is no possibility for the occurence of any unwanted
edge. Therefore, labeling L is an exclusive labeling of C with A(C) isolates.

Ezample 1. Let C be a caterpillar with A(C) = 8 and a spine of length 5.
In this case d = 8 and k = 5. Label the vertices of the spine with

pi = 12i —11, for odd 1,
= 121 — 123, for even 1.
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We get

Pi +piy1 = 98, for odd 1,
= 122, for even i.

Let T4 = {98,122} and take a = 125.

Ts = {(a+p2) +4(i—-1)|i = 1,2,..., (d—2)} = {222, 226,230, 234, 238, 242}.
Now we have the following figure.

201 149

12
197 205
1 7 2 7 49
/\ 217 209 /\
153

139 134 ’s 157

® 98 e 122 222 226 230 o234 e 238 242

Fig. 1. Exclusive sum labeling of a caterpillar.

3 Exclusive sum labeling of shrubs

A shrub is a tree which has at most one inner vertex. This special vertex
is called the root of the shrub. All neighbours of this vertex are leaves or
near leaves. In this subsection we will show that if Sh is a shrub, then
€(Sh) = A(Sh), that is, every shrub is a A-optimum summable graph.

In order to construct an exclusive sum labeling to a shrub Sh, we consider
the following sequence

un=2n+1—3, nZl.

Observation 8 For the above sequence, for alln

1. u, >0.
2, Up > Up_1.
3. up, = 1(mod 4).
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4. Fori,j,k,l any positive integers, with i > j, u; — u; = ux — v if end only
ifi = k and j = 1, that is, the differences between any two terms are all
distinct.

Let Sh be a shrub with root » and the maximum degree of the vertices is
A. Let by, bs, ..., by, be vertices adjacent to . We denote f; = deg(b;) — 1
and for i = 1,2,...,m and j = 1,2,...,, fi,(fi > 0) let ¢;; be the vertices
adjacent to b; other than r. Let ¢;, i = 1,2, ..., A be isolates, and U(n) = u,,
be the sequence as defined in (1).

Observe that m < A and for any i, = 1,2..m, f; < A. Let Sk’ =
ShUK,4.

Labeling 2 Exclusive sum labeling of shrubs,
Let L be a mapping from the vertices of Sh to a set of positive integers
defined as follows.

L(b,) = Ui, = 1, 2, ey M
L(r) =a  wherea=3(24*)-7
L(t,') = a+ U, i=12,..,A4.

L(eij) = a+uj —u; fori#j i=1,2,...m, 7=12,..f;
J a+ua—u fori=3j;

‘Observation 9

I.a=3up+2
2. a =1(mod 4)

(From now on when we mention a vertex, we mean its label under L. Let
C={gjli=12,..,m, j=12,..f;}andlet T = {t;}i =1,2,..,A}..
Figure 2 shows an exclusive sum labeling of a shrub using this schema.
Next we will show that the mapping L is an exclusive sum labeling of any
shrub-type graph.

Lemma 4 Let Sh be a shrub with mazimum vertez degree A. Let Sk =
ShUKa. If L is a mapping as defined by Labeling 2, then L(u) # L(v) for
any two different vertices u and v in V(Sh').

Proof.

1. By definition of L, it is clear that r # b; for all i = 1, 2,...,m.

2. We claim that r # c;;. Suppose there exist ¢ and j such that r = ¢;;. Then
if i # j we have a = a + u; — u; which gives u; = u; or if i = j we have
a = a+ua —u; which gives 4 = u;. These are impossible by the definition
of the sequence U.
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361
317

353
321
329
349
61
501 29 303
e 378
381 . 489 e 382
'Y
377 13 3%
389 369 o 406
405
165 ® 438
47 5 o 502
497 ¢ 401
385

Fig. 2. An optimum exclusive sum labeling of a shrub.

3. Obviously r #¢; forall i = 1,2,..., A.

4. We claim that there will be no %, j, k such that b; = c¢;i. Suppose to the
contrary that for some i, j,k, b; = c;jx. Then u; = @ + ug — u;. This gives
a = u; + u; — ux. But this contradicts a > 3u4.

5. Also, by the definition of @, there will be no i and j such that b; =1t;.

6. Let ¢ # k. We claim that ¢;; # cy. Otherwise, a + u; —u; = a + w4 — ux
which gives u; — u; = ux — w;, which is in conflict with Observation 8.

7. Finally, suppose c;; = t; then a4 uj —u; = a + ux. This gives u; = u; +ux
which is impossible since all the terms of U are congruent to 1 (mod 4).

Lemma 5 Let Sh be a shrub with mazimum vertez degree A. Let Sh' =
ShUK 4. If L is a mapping as defined by Labeling 2 then L is a sum labeling
of Sk'.

Proof. Lemma 4 shows that L is an injection from V(Sh') to a set of pos-
itive integers. It is clear that the sum of any two adjacent vertices will be
one of the isolates.

We need to show that the sum of any two non adjacent vertices is not in
V(Sh'). Since we are using the numbers congruent to 1 (mod 4) for the
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labels of V(Sh) and numbers congruent to 2 (mod 4) for the isolates, then
all we need to do is to show that the sum of any two non adjacent vertices
of V(Sh) is not in T.

. We claim that r 4+ ¢;; ¢ T7 Otherwise suppose that r + ¢;; = i then
a+ (e +u; — u;) = a + uk. This gives @ = uy + u; — u;. This is in conflict
with our choice of a.

. The sum of two vertices in B is not in T. Suppose to the contrary that
b; +b; = ti. Again, we get a = u; + u; — ux which conflicts with the choice
of a.

. If i # j then b; + c;jx ¢ T. Suppose b; + ¢jx = t; for some i # j. If j # k we
have b; + (a+bx —b;) = a+b; or if j = k, we have b;+(a+ua —ux) = a+u.
These give b; — b; = by — by or ua — ux = u; — u;, which is impossible by
Observation 8.

. The sum of two vertices in C is not in T. Observe that min(C) = ¢; —bp, =
a+ U3 — Uy. Since @ = 3ups + 2 then

2 x minC = 2a + 2u; — 2uy,
2 2a+2u; —2up
= 4up+4+4+ 2
> a+tua we have
2 x min(C) > ta = max(T)

This gives, for any i, j, k,{, that ¢;; +cx > 2 min (C) > ta = max (T') and
hence, ¢ij +cx ¢ T

Theorem 2 Let Sh be a shrub with vertex mazimum degree A, then e(Sh) =
A

Proof. Let Sh be a shrub with maximum vertex degree A. Let Sh' =
ShUZKa. If L is a mapping as defined in Labeling 2 then Lemma 4 and
Lemma 5 imply that L is a sum labeling of Sh using A isolates. Obviously, -
Sh itself contains no working vertices. Therefore L is an exclusive sum
labeling of Sh, using A isolates. Combined with Observation 1, it can be
concluded that e(Sh) = A.

3.1 Graphs that are both Caterpillars and Shrubs

The methods developed for labeling caterpillars and shrubs can be applied
to star and double star since they are both caterpillars and shrubs. We then
have

Corollary 1 Let S, be a star, then ¢(S,) = n.
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Corollary 2 Let Sy, , be a double star then €(Spm, ) = mn.

As examples Figures 3 and 4 show optimum exclusive sum labelings of a

star and a double star using the methods developed for caterpillars.

93
89 97
¢ ° 62 158
1 6 25 86 162
150 166
154 170
® 'y
109 101
°
105
Fig. 3. Exclusive sum labeling of a star (Ss).
105 153
101 149
. o
109 ©7 o IR
1 7 25, 49
o ©9% e 18
113 e 174 e 150
o . °
121 e 178 e 194
] 161 157

117

Fig. 4. Exclusive sum labeling of a double star.

4 Trees which are not A-optimum summable graphs

While there are many trees which are A-optimum summable graphs, in
general trees are not A-optimum summable graph. For example, let T be
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a tree as depicted in Figure 5. We will show that this tree can not be a A-
optimum summable graph. Suppose T is a A-optimum summable graph. We

4 4 & 4 & 4 & & b 4y dy gy

Fig. 5. A tree with A = 3 which is not a 3-optimum summable graph.

need 3 isolates, labeled by a+b,, a+bs, a+bs respectively. As a consequence,
¢j =a+ by — by, where j =1,2,...,6, with [,m =1,2,3l# m , and

di = (a+bk)—¢;
= (a+bk) - (a+bm -b)
= by + b — by
There are only 9 integers available for labeling d;,i = 1,2,...,12, which is

impossible. We conclude that T is not a A-optimum summable graph. We
then have the following.

Open Problem 1 Classify trees that are A-optimal summable.
Open Problem 2 Find general exclusive sum graph labeling for trees.

Open Problem 3 Find a general upper bound for the ezclusive sum num-
ber for trees.
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