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Abstract. For given graphs G and H, the Ramsey number R(G, H)
is the smallest natural number n such that for every graph F of or-
der n: either F contains G or the complement of F contains H.
This paper investigates the Ramsey number R(Sn, W) of stars
versus wheels. We show that if m isodd, n >3 and m < 2n -1,
then R(S,, W) = 3n — 2. Furthermore, if n is odd and n > 5 then
R(Sn,Wm) =3n—py, where p =4 if m =2n—4 and o = 6 if
m=2n—-8orm=2n—6.
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1 Introduction

For given graphs G and H, the Ramsey number R(G, H) is defined as the
smallest positive integer n such that for any graph F of order n, either F'
contains G or F contains H, where F is the complement of F. Chvétal and
Harary [4] established a useful lower bound for finding the exact Ramsey
numbers R(G, H), namely R(G, H) > (x(G)—1)(C(H)—-1)+1, where x(G)
is the chromatic number of G and C(H) is the number of vertices of the
largest component of H. Since then the Ramsey numbers R(G, H) for many
combinations of graphs G and H have been extensively studied by various
authours, see a nice survey paper (7). In particular, the Ramsey numbers for
combinations involving stars have also been investigated. Let S,, be a star
of n vertices and W, a wheel with m spokes. Surahmat et al. [8] proved
that R(Sn,Ws) = 2n — 1 for n > 3 odd, otherwise R(S,,W;) = 2n + 1.
They also showed R(S,,W5) = 3n — 2 for n > 3. Furthermore, it has been
shown that if m is odd, m > 5 and n > 2m — 4, then R(S,,W,,) =3n —2.
This result is strengthened by Chen et al. [3] by showing that this Ramsey
number remains the same, even if m (> 5)isodd and n > m—1 > 2.

* Permanent address: Jurusan Matematika FMIPA, Universitas Hasanuddin
(UNHAS),Jalan Perintis Kemerdekaan KM.10 Makassar 90245, Indonesia

JCMCC 55 (2005), pp. 123-128



Additionally, Zhang et al. [10] established R(S,, W) =2n+1 for n > 3,
and R(S,,Ws) =2n+ p for 5 < n < 10, where p =1if n =1 (mod 2) and
u =2 if n =0 (mod 2). Recently, Hasmawati showed that for m > 2n — 2
and n > 4, R(S,,W,,) = m+n — 2 if n is odd and m is even, otherwise
R(Sp,Wp)=m+n-1[6].

In this paper, we determine the Ramsey numbers R(S,, W,,) for open
cases of n and m. The main results of this paper are the following.

Theorem 1. Ifm is odd, n > 3 and m < 2n—1, then R(S,, Wy,) = 3n—2.

Theorem 2. Ifn is odd andn > 5 then R(Sp,W,,) =3n—p, wherep =4
fm=2n—-4andpy=6ifm=2n—-8 orm=2n-6.

Before proving the theorems let us present some notations used in this
note. Let G(V, E) be a graph. Let ¢(G) be the circumference of G, that is,
the length of a longest cycle, and g(G) be the girth, that is, the length of a
shortest cycle. For any vertex v € V(G), the neighborhood N(v) is the set of
vertices adjacent to v in G. Futhermore we define N[v] = N(v) U {v}. The
degree of a vertex v in G is denoted by dg(v). The minimum (maximum)
degree in G is denoted by §(G) (A(G)). For § C V(G), G[S] represents
the subgraph induced by S in G. A graph on n vertices is pancyclic if it
contains cycles of every length [, 3< [ < n. A graph is weakly pancyclic if
it contains cycles of length from the girth to the circumference.

2 Some Lemmas
The following lemmas will be useful in proving our results.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If §(G) > %, then
either G is pancyclic or n is even and G = K3,3.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with §(G) >
242 is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2-connected graph of order n > 3 with
0(G) = 4. Then c¢(G) > min{24,n}.

3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order 3n — 2. Suppose F
contains no S,. Let £ € V(F). Since F 2 S, then dr(z) < n — 2. Let
A = V(F)\NJz], and T = F[A]. So, |T| > 2n — 1. Since for each v € T,
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dr(v) <n—2thends(v) 2 [T| - (n—-1) > ]321 By Lemma 1, T contains
a cycle Cy,, where 3 < m < 2n — 1 < |T|. With the center z, we obtain a
wheel W,,, in F for all odd m and 3 < m < 2n — 1. Hence, R(S,, Wy,) <
3n — 2. On the other hand, Since 3K,., does not contains S, and its
complement does not contains W,,, for odd m, then R(S,,Wy,) > 3n —2.
Hence, R(Sp,Wy,) = 3n - 2. o

Proof of Theorem 2. Let n be odd, n > 5 and m = 2n — 4. Since
Kn_1UK,_2n_2 has no S, and its complement contains no Wy,, for m =
2n—4, then R(S,, W,,) > 3n—4. On the other hand, now, let F be a graph
of order 3n — 4. Suppose F contains no S, and so dp(v) <n—2,Vv € F.
Since n is odd, not all vertices of F' has degree of n — 2 (odd). Let o € F
with dp(zo) < n — 3. Let A = V(F)\N|xzo), and T = F[A]. Since for each
v € T, dr(v) <n—2and |T| > 2n — 2, then dp(v) > |T| — (n—1) > 1.
This implies that T contains a Ca,,—4 (by Lemma 1). Hence, F contains a
Wap—4, with the center zo. Therefore, R(S,, Wy,) = 3n — 4 for this case.
Now, consider the case of odd n and m = 2n — 8 or m = 2n — 6.
Graph K,_1 U[(252) K2 + (252)K2] guaranties R(Sp, Wn) > 3n— 6. Now,
let F be a graph of order 3n — 6 and suppose F' 2 S,,. Hence, for each
z € F,dp(z) < n—2. Suppose to the contrary there exists 2o € F,dr(zo) <
n—5.If A= V(F)\N[zo) and T = F[A] then |T| > 2n — 2 and 6(T) >
IT| - (n — 1) > 1. By Lemma 1, T contains a C, where m = 2n —8 or
m = 2n — 6, and so F contains W,, with the center z. Therefore, for each
v € F,n —4 < dp(v) < n — 2. Since the order of F is odd, then not all its
vertices has odd degree. Hence, there exists vp € F' with dp(vg) = n — 3.
Let A= V(F)\NJ[w), T = F[A], and so |[T| = 2n — 4. Since for each v € T,
n—4 < dp(v) < n-2, then 2n — 5 > dx(v) > n — 3, which implies

§(T) > ma'"—z, if n > 7. Now, consider the following two cases.

Case 1. T is bipartite.
Let V4, V2 be the partite sets of T. Since 2n — 5 > dx(v) > n— 3, then
[Vi|]=n—3and [Vo|=n—1,0r [Vi]=n—-2and |Va]=n—2.

If V3] = n — 3 and |Vz| = n — 1, then T is isomorphic to =K1 n-3.
Hence, T contains a C,,, where m = 2n — 8 or m = 2n — 6. This cycle
together with vo form a W,,, in F.

Let [V1| = n—2 and |V3| = n—2. Then, T is not isomorphic to Kn2n—2
since otherwise F D W,,, where m = 2n— 8 or m = 2n— 6. Since §(T) > 3,

then we can order its vertices so that vy,vs,-- , vy (u1,u2,- - , %) are the
vertices of V3 (Vg) that have degree n — 3 each, where 1 < r < n — 2. But,
now for j = 3,4, -- ,n—2 we have a cycle Cy; = (u1, vj, Ug, V1, U3, U2," "

Uj—1, Vj—2, Uj, Vj-1, Y1) in T and it implies that W, C F.
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Case 2. T is nonbipartite.
Let (T) = 0. Then, T is disconnected. The constraint of the degree of each
vertex in T forces T to be isomorphic to 2K, 2. Since A(F) = n — 2, then
no vertices of T are adjacent to any vertex of N[zp] in F. This means that
every vertex in N|xo] is adjacent to all vertices of T in F. Therefore, N[zo)
together with the vertices of one component K,_, of T form a wheel W,,
with any vertex of K,,_» as the center, where m = 2n — 8 or m = 2n — 6.

Let #(T) = 1. Let G, and G2 be the components of T\{u}, for a cut
vertex u € T. Since 2n — 5 > dp(v) > n — 3, then |G| = n — 2 and G2
must be isomorphic to K,_3, where vertex u is adjacent to all vertices of
G2, and adjacent to at least one vertex of G;.

Let B = {z € G1|(z,u) € E(T)}. Since §(T) > n—3 and |G;| =n -2,
each vertex z € G\ B must be adjacent to all other vertices of G; in T. As

Fig. 1. The proof of Theorem 2 for x(T') = 1.

a consequence, if there exist two vertices z,y of G that are not adjacent
in T, then z and y are both in B. Furthermore, since §(T) > n — 3 then
for each z € B there is at most one vertex of B which is not adjacent
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to z. Therefore, all edges in G (if they exist) will form a matching. This
matching does not cover all vertices of G; since |G| is odd. Thus, there
exists a vertex ag € G, that is adjacent to all vertices of Gy in T. Since
each vertex z of G, is adjacent to all vertices of G in F and A(F) < n—2,
then vertex z is adjacent to at most one vertex of N(v) in F, see Fig.1.
Therefore, there exists a wheel W, in F with the center ao and the rim
consists of vg, the vertices in N(vg)\{b} where (ao,b) € E(F) and other
vertices of Gy, for m =2n —8 or m = 2n — 6.

Let «(T) > 2. Then T is 2-connected. By Lemma 3, ¢(T') > min{2(n —
3),2n — 4}. Not that 6(T) > L2, and T is nonbipartite. By Lemma 2, T
is weakly pancyclic. Thus, T contains all cycles Cp,, 9(T) <m < 2n—6 <
¢(T), where g(T) is 3 or 4. Hence, F contains W,,, with the center vy and
form=2n—-8 orm = 2n —6. O

4 Open Problems

As a final remark, let us present the following open problems to work on.

Problem 1. Find the Ramsey number R(S,,W,,) for even n > 4 and all
evenm,n+1<m<2n—-4.

Problem 2. Find the Ramsey number R(S,,, W,,) for odd n > 5 and even
m,n+1<m<2n-10.
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