Star-Wheel Ramsey Numbers

Hasmawati*, Edy Tri Baskoro, Hilda Assiyatun

Department of Mathematics
Institut Teknologi Bandung (ITB),
Jalan Ganesa 10 Bandung 40132, Indonesia
{hasmawati, ebaskoro, hilda}@dns.math.itb.ac.id

Abstract. For given graphs G and H, the Ramsey number R(G,H) is the smallest natural number n such that for every graph F of order n: either F contains G or the complement of F contains H. This paper investigates the Ramsey number $R(S_n,W_m)$ of stars versus wheels. We show that if m is odd, $n \geq 3$ and $m \leq 2n-1$, then $R(S_n,W_m)=3n-2$. Furthermore, if n is odd and $n\geq 5$ then $R(S_n,W_m)=3n-\mu$, where $\mu=4$ if m=2n-4 and $\mu=6$ if m=2n-8 or m=2n-6.

Keywords: Ramsey numbers, stars, wheels

1 Introduction

For given graphs G and H, the Ramsey number R(G, H) is defined as the smallest positive integer n such that for any graph F of order n, either Fcontains G or \overline{F} contains H, where \overline{F} is the complement of F. Chvátal and Harary [4] established a useful lower bound for finding the exact Ramsey numbers R(G, H), namely $R(G, H) \geq (\chi(G) - 1)(C(H) - 1) + 1$, where $\chi(G)$ is the chromatic number of G and C(H) is the number of vertices of the largest component of H. Since then the Ramsey numbers R(G, H) for many combinations of graphs G and H have been extensively studied by various authours, see a nice survey paper [7]. In particular, the Ramsey numbers for combinations involving stars have also been investigated. Let S_n be a star of n vertices and W_m a wheel with m spokes. Surahmat et al. [8] proved that $R(S_n, W_4) = 2n - 1$ for $n \geq 3$ odd, otherwise $R(S_n, W_4) = 2n + 1$. They also showed $R(S_n, W_5) = 3n - 2$ for $n \ge 3$. Furthermore, it has been shown that if m is odd, $m \ge 5$ and $n \ge 2m - 4$, then $R(S_n, W_m) = 3n - 2$. This result is strengthened by Chen et al. [3] by showing that this Ramsey number remains the same, even if $m \ (\geq 5)$ is odd and $n \geq m-1 \geq 2$.

^{*} Permanent address: Jurusan Matematika FMIPA, Universitas Hasanuddin (UNHAS), Jalan Perintis Kemerdekaan KM.10 Makassar 90245, Indonesia

Additionally, Zhang et al. [10] established $R(S_n, W_6) = 2n + 1$ for $n \ge 3$, and $R(S_n, W_8) = 2n + \mu$ for $5 \le n \le 10$, where $\mu = 1$ if $n \equiv 1 \pmod{2}$ and $\mu = 2$ if $n \equiv 0 \pmod{2}$. Recently, Hasmawati showed that for $m \ge 2n - 2$ and $n \ge 4$, $R(S_n, W_m) = m + n - 2$ if $n = n \le 1$ is odd and $n = n \le 1$ is even, otherwise $R(S_n, W_m) = m + n - 1$ [6].

In this paper, we determine the Ramsey numbers $R(S_n, W_m)$ for open cases of n and m. The main results of this paper are the following.

Theorem 1. If m is odd, $n \geq 3$ and $m \leq 2n-1$, then $R(S_n, W_m) = 3n-2$.

Theorem 2. If n is odd and $n \ge 5$ then $R(S_n, W_m) = 3n - \mu$, where $\mu = 4$ if m = 2n - 4 and $\mu = 6$ if m = 2n - 8 or m = 2n - 6.

Before proving the theorems let us present some notations used in this note. Let G(V, E) be a graph. Let c(G) be the *circumference* of G, that is, the length of a longest cycle, and g(G) be the *girth*, that is, the length of a shortest cycle. For any vertex $v \in V(G)$, the *neighborhood* N(v) is the set of vertices adjacent to v in G. Futhermore we define $N[v] = N(v) \cup \{v\}$. The degree of a vertex v in G is denoted by $d_G(v)$. The minimum (maximum) degree in G is denoted by $\delta(G)$ ($\Delta(G)$). For $S \subseteq V(G)$, G[S] represents the subgraph induced by S in G. A graph on n vertices is *pancyclic* if it contains cycles of every length l, $3 \le l \le n$. A graph is *weakly pancyclic* if it contains cycles of length from the girth to the circumference.

2 Some Lemmas

The following lemmas will be useful in proving our results.

Lemma 1. (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq \frac{n}{2}$, then either G is pancyclic or n is even and $G = K_{\frac{n}{2},\frac{n}{2}}$.

Lemma 2. (Brandt et al. [2]). Every non-bipartite graph G with $\delta(G) \ge \frac{n+2}{3}$ is weakly pancyclic and has girth 3 or 4.

Lemma 3. (Dirac [5]). Let G be a 2-connected graph of order $n \geq 3$ with $\delta(G) = \delta$. Then $c(G) \geq \min\{2\delta, n\}$.

3 The Proofs of Theorems

Proof of Theorem 1. Let F be a graph of order 3n-2. Suppose F contains no S_n . Let $x \in V(F)$. Since $F \not\supseteq S_n$, then $d_F(x) \le n-2$. Let $A = V(F) \setminus N[x]$, and T = F[A]. So, $|T| \ge 2n-1$. Since for each $v \in T$,

 $d_T(v) \leq n-2$ then $d_{\overline{T}}(v) \geq |T|-(n-1) \geq \frac{|\overline{T}|}{2}$. By Lemma 1, \overline{T} contains a cycle C_m , where $3 \leq m \leq 2n-1 \leq |\overline{T}|$. With the center x, we obtain a wheel W_m in \overline{F} for all odd m and $3 \leq m \leq 2n-1$. Hence, $R(S_n, W_m) \leq 3n-2$. On the other hand, Since $3K_{n-1}$ does not contains S_n and its complement does not contains W_m , for odd m, then $R(S_n, W_m) \geq 3n-2$. Hence, $R(S_n, W_m) = 3n-2$.

Proof of Theorem 2. Let n be odd, $n \geq 5$ and m = 2n - 4. Since $K_{n-1} \cup K_{n-2,n-2}$ has no S_n and its complement contains no W_m , for m = 2n - 4, then $R(S_n, W_m) \geq 3n - 4$. On the other hand, now, let F be a graph of order 3n - 4. Suppose F contains no S_n , and so $d_F(v) \leq n - 2$, $\forall v \in F$. Since n is odd, not all vertices of F has degree of n - 2 (odd). Let $x_0 \in F$ with $d_F(x_0) \leq n - 3$. Let $A = V(F) \setminus N[x_0]$, and T = F[A]. Since for each $v \in T$, $d_T(v) \leq n - 2$ and $|T| \geq 2n - 2$, then $d_{\overline{T}}(v) \geq |T| - (n - 1) \geq \frac{|\overline{T}|}{2}$. This implies that \overline{T} contains a C_{2n-4} (by Lemma 1). Hence, \overline{F} contains a W_{2n-4} , with the center x_0 . Therefore, $R(S_n, W_m) = 3n - 4$ for this case.

Now, consider the case of odd n and m=2n-8 or m=2n-6. Graph $K_{n-1}\cup [(\frac{n-3}{2})K_2+(\frac{n-3}{2})K_2]$ guaranties $R(S_n,W_m)\geq 3n-6$. Now, let F be a graph of order 3n-6 and suppose $F\not\supseteq S_n$. Hence, for each $x\in F, d_F(x)\leq n-2$. Suppose to the contrary there exists $x_0\in F, d_F(x_0)\leq n-5$. If $A=V(F)\backslash N[x_0]$ and T=F[A] then $|T|\geq 2n-2$ and $\delta(\overline{T})\geq |T|-(n-1)\geq \frac{|T|}{2}$. By Lemma 1, \overline{T} contains a C_m where m=2n-8 or m=2n-6, and so \overline{F} contains W_m with the center x_0 . Therefore, for each $v\in F, n-4\leq d_F(v)\leq n-2$. Since the order of F is odd, then not all its vertices has odd degree. Hence, there exists $v_0\in F$ with $d_F(v_0)=n-3$. Let $A=V(F)\backslash N[v_0], T=F[A]$, and so |T|=2n-4. Since for each $v\in T, n-4\leq d_T(v)\leq n-2$, then $2n-5\geq d_{\overline{T}}(v)\geq n-3$, which implies $\delta(\overline{T})\geq \frac{|T|+2}{3}$, if $n\geq 7$. Now, consider the following two cases.

Case 1. \overline{T} is bipartite.

Let V_1,V_2 be the partite sets of T. Since $2n-5\geq d_{\overline{T}}(v)\geq n-3$, then $|V_1|=n-3$ and $|V_2|=n-1$, or $|V_1|=n-2$ and $|V_2|=n-2$.

If $|V_1| = n - 3$ and $|V_2| = n - 1$, then \overline{T} is isomorphic to $=K_{n-1,n-3}$. Hence, \overline{T} contains a C_m , where m = 2n - 8 or m = 2n - 6. This cycle together with v_0 form a W_m in \overline{F} .

Let $|V_1|=n-2$ and $|V_2|=n-2$. Then, \overline{T} is not isomorphic to $K_{n-2,n-2}$ since otherwise $\overline{F}\supseteq W_m$, where m=2n-8 or m=2n-6. Since $\delta(\overline{T})\ge 3$, then we can order its vertices so that v_1,v_2,\cdots,v_r (u_1,u_2,\cdots,u_r) are the vertices of V_1 (V_2) that have degree n-3 each, where $1\le r\le n-2$. But, now for $j=3,4,\cdots,n-2$ we have a cycle $C_{2j}=(u_1,v_j,u_2,v_1,u_3,v_2,\cdots,u_{j-1},v_{j-2},u_j,v_{j-1},u_1)$ in \overline{T} and it implies that $W_m\subseteq \overline{F}$.

Case 2. \overline{T} is nonbipartite.

Let $\kappa(\overline{T})=0$. Then, \overline{T} is disconnected. The constraint of the degree of each vertex in \overline{T} forces \overline{T} to be isomorphic to $2K_{n-2}$. Since $\Delta(F)=n-2$, then no vertices of T are adjacent to any vertex of $N[x_0]$ in F. This means that every vertex in $N[x_0]$ is adjacent to all vertices of \overline{T} in \overline{F} . Therefore, $N[x_0]$ together with the vertices of one component K_{n-2} of \overline{T} form a wheel W_m with any vertex of K_{n-2} as the center, where m=2n-8 or m=2n-6.

Let $\kappa(\overline{T}) = 1$. Let G_1 and G_2 be the components of $\overline{T} \setminus \{u\}$, for a cut vertex $u \in \overline{T}$. Since $2n - 5 \ge d_{\overline{T}}(v) \ge n - 3$, then $|G_1| = n - 2$ and G_2 must be isomorphic to K_{n-3} , where vertex u is adjacent to all vertices of G_2 , and adjacent to at least one vertex of G_1 .

Let $B = \{x \in G_1 | (x, u) \in E(\overline{T})\}$. Since $\delta(\overline{T}) \ge n - 3$ and $|G_1| = n - 2$, each vertex $x \in G_1 \setminus B$ must be adjacent to all other vertices of G_1 in \overline{T} . As

Fig. 1. The proof of Theorem 2 for $\kappa(\overline{T}) = 1$.

a consequence, if there exist two vertices x, y of G_1 that are not adjacent in \overline{T} , then x and y are both in B. Furthermore, since $\delta(\overline{T}) \geq n-3$ then for each $x \in B$ there is at most one vertex of B which is not adjacent

to x. Therefore, all edges in $\overline{G_1}$ (if they exist) will form a matching. This matching does not cover all vertices of G_1 since $|G_1|$ is odd. Thus, there exists a vertex $a_0 \in G_1$ that is adjacent to all vertices of G_1 in \overline{T} . Since each vertex x of G_1 is adjacent to all vertices of G_2 in F and $\Delta(F) \leq n-2$, then vertex x is adjacent to at most one vertex of $N(v_0)$ in F, see Fig.1. Therefore, there exists a wheel W_m in \overline{F} with the center a_0 and the rim consists of v_0 , the vertices in $N(v_0) \setminus \{b\}$ where $(a_0, b) \in E(F)$ and other vertices of G_1 , for m = 2n - 8 or m = 2n - 6.

Let $\kappa(\overline{T}) \geq 2$. Then \overline{T} is 2-connected. By Lemma 3, $c(\overline{T}) \geq \min\{2(n-3), 2n-4\}$. Not that $\delta(\overline{T}) \geq \frac{|\overline{T}|+2}{3}$, and \overline{T} is nonbipartite. By Lemma 2, \overline{T} is weakly pancyclic. Thus, \overline{T} contains all cycles C_m , $g(\overline{T}) \leq m \leq 2n-6 \leq c(\overline{T})$, where $g(\overline{T})$ is 3 or 4. Hence, \overline{F} contains W_m , with the center v_0 and for m = 2n - 8 or m = 2n - 6.

4 Open Problems

As a final remark, let us present the following open problems to work on.

Problem 1. Find the Ramsey number $R(S_n, W_m)$ for even $n \geq 4$ and all even $m, n+1 \leq m \leq 2n-4$.

Problem 2. Find the Ramsey number $R(S_n, W_m)$ for odd $n \geq 5$ and even m, $n+1 \leq m \leq 2n-10$.

References

- J.A. Bondy, Pancyclic graph, J. Combin. Theory Ser. B, 11 (1971), 80-84.
- S. Brandt, R.J. Faudree and W. Goddard, Weakly pancyclic graph, J. Graph Theory, 27(1998), 141-176.
- 3. Y.J. Chen, Y.Q. Zhang and K.M. Zhang, The Ramsey Numbers of Stars versus Wheels, European J. Combin., (2004).
- V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, III: Small off-Diagonal Numbers, Pacific. J. Math., 41(1972) 335-345.
- G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
- 6. Hasmawati, Tesis Magister, Departemen Matematika ITB Indonesia, (2004).
- S. P. Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, July (2004) #DS1.9, http://www.combinatorics.org/
- 8. Surahmat and E. T. Baskoro, On The Ramsey Number of a Path or a Star versus W_4 or W_5 , Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 165-170.