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Abstract. A toial vertez irregular labeling of a graph G with v ver-
tices and e edges is an assignment of integer labels to both vertices
and edges so that the weights calculated at vertices are distinct.
The total vertez irregularity strength of G, denoted by tvs(G), is the
minimum value of the largest label over all such irregular assign-
ments. In this paper, we consider the total vertex irregular labeling
of complete bipartite graphs Km,» and prove that

tvs(Kmm) 2 ma.x{ [:i';] ) |'2m +nn - 1]} if (m,n) #(2,2).

1 Introduction

In this paper all graph are finite, simple, undirected, and connected. The
graph G has v vertices and e edges. A total vertez irregular labeling on
a graph G with v vertices and e edges is an assignment of integer labels
to both vertices and edges so that the weights calculated at vertices are
distinct. The weight of a vertex v in G is defined as the sum of the label of
v and the labels of all the edges incident with v, that is,

wi(v) = A(v) + Z A(uv)
uwveEE

The notion of a total vertex irregular labeling was introduced by Baéa,
et al.[1]. The total vertez irregularity strength of G, denoted by tvs(G), is
the minimum value of the largest label over all such irregular assignments.
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Bata et al.[1] proved that for tree T with n pendant vertices and no
vertices of degree 2, [2f2] < tws(T) < n.

In the same paper, Baga et al.[1] gave the lower bound and upper bound
on total vertex irregular strength of any graph with minimum degree § and
maximum degree A as described in the following theorem.

Theorem 1. [1] For a graph G with minimum degree § and maezimum
degree A, then [JZ&T-I <tvs(G) L |V|+A-25-1. ]

So if G is r—regular then [l%_li-_";—".l < tws(G) < |V| — r — 1. Hence the

total vertex irregularity strength of cycles Cp, tv8(Cp) = [242]. Because
Cs =~ K32, we have tvs(K32) = 2. And also if G is regular hamiltonian
graph then tvs(G) < [M:,i'z.l . Baga et al.[1] also proved that tvs(Ki,,) =

[242] and tvs(K,) = 2 for all n > 2 and asked to find a total vertex
irregularity strength of K, .

In this paper we give the total vertex irregularity strength of the com-
plete bipartite graph K n(m < n). In what follows, the graph K, ,, has
vertex set V = ViUVa, where Vi = {uy,ug, ..., um} and Va2 = {v1,va, ..., v},
and the edge set E = {e;; = (u,v;)| 1=1,2,--- ,m and j=1,2,---n}.

2 Main Result

In this section, we first present the total vertex irregular strength of special
case of complete bipartite graph that is tvs(K2 ), tvs(Kn,n), tvs(Kn n+1),
tv8(Knnt2) and tvs(K, qn). Then we give the lower bound on the total
vertex irregular strength of K, ,, for m < n.

Theorem 2. The total vertez irregularity strength of Ka,, tvs(Kay) =
[242], forn > 3.

Proof. There are n vertices of degree 2. The weight of each vertex is the
sum of three numbers, then the smallest weight must be 3 and the largest
weight at least n + 2. Then tvs(K2 ) > [232].

To show that tus(Ka,) < [242], let set of bipartition has two vertices
z1, 2 and the second partition has vertices v, vo,- - ,vy,. Let the labeling
A is as follows:

Mw) =i +2 - [42] - |42,
Mzam) = [H2],
ig:vz;J i) —[ HTJ,
)=
Mz2) = li
Thus the weights are as follows:
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wt(v;) =14 + 2,
e = £ 151+ 2,

wi(z2) = Z L52] + |22

It is easy to see that the labeling is vertex irregular. Thus tvs(Kz2,) =
[242] for n > 3. [}

Theorem 3. The total vertex irregularity strength of Kp n, tvs(Knn) =3,
forn >3.

Proof. K, is a regular graph of degree n. Then the weight of each vertex
is the sum of n+1 numbers. The smallest weight must be n+ 1. Since there
are 2n vertices in K, ,, then the largest weight is at least 3n. Therefore

tvs(Knn) > [n+1] = [3 n—-!-l-l =3forn >3.
To show that tvs(Ky, ») < 3, we label the vertices and edges of the graph
K, » in the following way.
1for i=1,
’\(u")_{Zfor i=23,-,n;
y_J2for j=1,
Alvs) = { 3for j=2,3,,m;

1for i+j<n+1,
Meij)=4 2for i+j=n+2,
3for i+j2>n+3.
Thus, the weights of vertices u; and v; of K, , (respectively) are:
wi{y;)=n—1+2i for i=1,2,---,n,
wit(vj))=n+2j for j=12,---,n
It is easy to see that the labeling is vertex irregular. Thus tvs(K, ) = 3
forn > 3. [ ]

Theorem 4. The total vertez irregularity strength of Kn nt1, tvs(Kn nt1) =
3 forn>3.

Proof. According to the Theorem 1, tvs(Kp n+1) = ’--3,:%1-] = [3 - ;;_?_—2- =
3 for n > 4. For n = 3, we will proved that 2 is not irregularity strength of
K3,4. The smallest weight of vertices K33 4 is 4, i.e. the sum of four numbers.
As K3 4 has 7 vertices, the largest weight of vertices K34 is at least 10. If
10 is the sum of four numbers, then at least one edge has label at least 3.
If 10 is the sum of five numbers, then all edges has label 2. This is not true
because there is one edge has label 1. So tvs(K34) > 3.

To show that tvs(Kp ns1) < 3, we label the vertices and edges of Ky, n41
as described in the following formula:
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Mu;))=2 for i=1,2,---,n;
1for j=1,
'\(vj)={2for i=23,---,n+1;
1for i+j<n+1,
Meij) =< 2 for i+j=n+2,
3for i+j2n+3.
Thus, the vertex-weights of Ky 41, i.e.
wt(y;)=n+2+2 for i=1,2,---,n,
wt(vj)=n—-1+2j for j=1,2,--- ,n+1
It is easy to see that the labeling is vertex irregular. Thus tvs(Kn n41) =3
forn>3. [ ]

Theorem 5. The total vertez irregularity strength of Ky ni2, tvs(Knnt2) =
3forn>4.
Proof. According to the Theorem 1, tvs(Ky, nt2) > [37':,%3] = [3 - n—z—H.I =
3 for n > 5. For n = 4, we will proved that 2 is not irregularity strength of
K4 6. The smallest weight of vertices Ky g is 5, i.e. the sum of five numbers.
As K4 ¢ has 10 vertices, the largest weight of vertices Ky g is at least 14. If
14 is the sum of five numbers, then at least one edge has label at least 3. If
14 is the sum of seven numbers, then all edges has label 2. This is not true
because there is one edge has label 1. So tvs(K,6) > 3.

To show that tvs(Kp nt2) < 3, we label the vertices and edges of Ky, n+2
in the following way.

M) = 1 for i=1,n,
W)=V2fr i=23,n-1;
_Jlfor j=1,2,---n+1
Aly) = { 2for j=n+2
lfor i+j<n+1,
,\(e.-,-)= 2for n+2<i+j<n+4,
3for i+j=>2n+5.

Thus, the vertex-weights of K, n42, are as follows
n+3+2 for i=1,2,---n—-1,
n+2 for i=mn;
n+j for j=1,2,3,4,
n—4+2i for j=5,6,---n+2
It is easy to see that the labeling is vertex irregular. Thus tvs(Ky ny2) = 3
for n > 4. [ ]

Theorem 6. For everya > 1 and alln, the total vertex irregularity strength
of Knan, tvs(Knan) = [n(a+12'| .

n+1

wi(u;) =

wi(vy) =

Proof. We first show that tvs(Kp,an) > [2,:%11] . There are an vertices of
degree n. The weight of each vertex is the sum of n+1 numbers, the smallest
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weight must be n + 1 and the largest weight at least n + an = n(a + 1).
Then tvs(Kp an) 2 [M]

n+1
To show that tvs(Ky,an) < [%’%—Q] , we label the vertices and edges of

Ky an a8 described in the following formula:
Mu))=1 for i=1,2,.--,n;
Mvj))=k with £=1,2,---,a for n(k—1)+k<j<k(n+1).
k with k=1,2,:--,a,
Meij) = for nk—1)+k<i+j<k(n+1), ifa>n,
a+1for an+1)+1<i+j<n(e+1), ife<n-1.
Thus, the weights of vertices u; and v; of K, 4, are:
wt(us) = { 1+ %a(n— 1)e+1)+a+(a—1)i for i<a,
1+za(n—-1)(a+1)+i+(a—1)i for i>a+1,
wt(v;)=n+j for j=1,2,--- ,an. .
iFrom this formula we immediately can see that wt(u;) # wt(u;) if i # j
and wi(u;) # wt(v;) for all ¢ and j.
For n = 1 we have tvs(K1,.) = [%*] (see [1]). For n > 1 we have
|E(Knan)| 2 |V(Knan)|- So that tvs(Kpen) can be determined by the
largest label of edge labels. Now, consider three cases for a and n.

Case 1: For n = a, then we obtain a(n + 1) = n(a + 1). So the minimum
value of the largest label over all edge labels A(e;;) is at most a = [5‘{."—4’_"1—11] .
Case 2: For n < a write n = a — r, where 1 < r < a. We obtain

an+1)=ala—r+1) =a’>+a—ar

and
nla+1)=(@a—-r)a+1)=a®+a—ar—r.

So that a(n + 1) > n(a + 1). The minimum value of the largest label over
all edge labels A(e;;) is at most k, with k = 2,3,--- ,a.
Furthermore there are 2 cases for , i.e.

1. f1<r<n,then 0 < = < 1. So that I-a—nL_H-I=a.

n+1
2. Ifn<r<a,then1$;%<a—1.Sotha.t2$[ —-;_’T'_T.I <a-1.

So, if n < @ then the minimum value of the largest label over all edge labels

is at most 2 < [a—;;"'_—.l = ["—5,‘%12] <a.

Case 3: For n > a write a = n — r, where 1 < r < n. We obtain
an+l)=Mn-r)(n+1)=n*+n—nr—r

and
nla+1)=nn—-r+1)=n+n—nr
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So that a(n + 1) < n(a + 1). Because of 0 < 47 < 1, then the minimum
value of the largest label over all edge labels A(e;;) is at most a + 1, i.e.

T an+a+r
6+1= [a+n+1-‘ - [ n+1 ]

_[an4+n] [n(a+1)

“la+l || n4+1 |’
So, the total vertex irregularity strength of K, 45 is the minimum value of
the largest label over all edge labels A(e;;), tvs(Kyp an) < {%‘II . There-

fore, for every a > 1 and all n, tvs(Kp gn) = [%] [ ]

For example, the labeling of K4 ;2 is showed in following table.

Ky,12 Vi | V2 | V3 | Vs | Vs | Ve | VU7 | Vs | Vg | V0] V11| V12 Wt(ui)
1{111}1111]12|2|2]2 2 3 3
Uy 1111111112 12]|]2}|2]2 3 3 3 24
U2 1111111212212 (|2]3 3 3 3 26
us 1{1(1(2|2}2|2}2(3]3 3 3 3 28
Ug 1j11212]1212]213]3]3 3 3 4 31
wt(v,-) 5167 (8]9|10{11[12[13] 14 ] 15| 16

In general, we give the lower bound on tvs(K,, ) for m < n as described
in the following theorem.

Theorem 7. For m < n, let K,y be a complete bipartite graph different
from Ko 5, then tvs(Kpm ) > max { l‘%'ll-l , |'2minn—1‘| }

Proof. Let U = {u;,u2, -+ ,um} and V = {v1,vs,--- ,9,} be the partite
sets of Ky, ., where m < n.

— We know that the smallest label of vertices and edges of Ky, , is 1. Then the
smallest weights of vertices of K, », is at least m+1, i.e. wt(v1) > m+1 for
v; € V. Then the weights of vertices of K,, , are at least m+1,m+2,m+
3,---. If we can be make consecutive the weights of vertices in V, then the
largest weights of vertices v € V is at least m + n, let wt(v,) > m + n. So,
for this case, at least one edge incident with v,, or v, has label at least

[m+n'| )

m+1
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— We have to obtain the weights of vertices of K,, , to be distinct and to
give vertices and edges labels with the largest label as small as possible. In
order to us get the minimum value of the largest label over all vertex and
edge labels, we can make consecutive the weights of vertices. So the largest
weights of vertices is at least 2m + n. There are two cases for this weights:

e Case 1: If wt(um) = 2m + n for u,, € U. At least one edge incident
with u,, or u,, has label at least 2—,"’%5 . But, because one of the edges
which incident with u,, has got label 1, then at least one edge incident
with 2, or u,, has label at least [%‘3’1—]1] = [2min=1],

e Case 2: If wt(v;) = 2m + n for some v; € V, i = 2,3,--- ,n. At least

one edge incident with v; or v; has label at least [ﬁ]

Now, we consider [22=1 4 1] and [TII—-I and choose which minimum.

Because of m < n, then we can write m=n —7r, where 0 <r<n-1. We

get
[2m—1+1'| _ [2n—2r—1+1] _ [3n—2r—1]’
n n n

2m+n| [ 3n—2r
m+1| |n+l-r|"

Of course 3n —2r — 1 < 3n — 2r, and

and

n+1l,r=0,
n ,r=1,
n+l—r= n—1,r=2

2 ,2r=n—1

Thenn+1—r>nifr=0andn+1l-r<nifi<r<n-1.

So, 2;_“1‘31 > 3—"—‘-—2'; if 1 <r <n-—1orm< n. Thereby, if m < n at least

one edge incident with v in Km . or v has label at least [3min=l],

— — s 3n=2r _ 3n_ 3n-2r-—-l 3n—-1
If » = 0 or m = n, we obtain THor = ny and == = S So that

3n n-1] . 3n n-1] .
[n+1-|_[ - ]1fn¢23nd [n+1.|<[ - ]1fn—2.

We can be chosen the minimum of the largest labels of Ky » is [22=2 + 1]
if n # 2 and [m+1] ifn=2.
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So, for this case, if m < n, with (m,n) # (2,2), at least one edge incident
with v in K, 5 or v has label at least

[2m+n—1'| @

n

Thereby, according to the equation 1 and 2, we obtain total vertex irregu-
larity strength of Ky, 5, (m,n) # (2,2) is

tvs(Kypn) > max { I-'—","%] , [2min=l] } n
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