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Abstract. A graph G(V, FE) is called a sum graph if there is an
injective labeling called sum labeling L from V to a set of distinct
positive integers S such that xy € E if and only if there is a vertex
w in V such that L(w) = L(z)+ L(y) € S. In such a case w is called
a working vertez. Every graph can be made into a sum graph by
adding some isolated vertices, if necessary. The smallest number of
isolated vertices that need to be added to a graph H to obtain a
sum graph is called the sum number of H; it is denoted by o(H).
A sum labeling which realizes H U K,(c) as a sum graph is called
an optimal sum labeling of H.

Sum graph labeling offers a new method for defining graphs and
for storing them digitally. Traditionally, a graph is defined as a set
of vertices and a set of edges, specified by pairs of vertices which
are the endpoints of an edge. To record a graph on a computer, the
edges are usually stored either in the form of an adjacency matrix
or as a linked list. Using sum graph labeling we only need to store
the set of vertices, together with some additional isolates, if needed.
While previously the edges in a graph were specified explicitly, using
sum graphs, edges can be specified implicitly.

A sum labeling L is called an exclusive sum labeling with respect
to a subgraph H of G if L is a sum labeling of G where H contains
no working vertex. The ezclusive sum number ¢(H) of a graph H
is the smallest number r such that there exists an exclusive sum
labeling L which realizes HUK, as a sum graph. A labeling L is an
optimal exclusive sum labeling of a graph H if L is a sum labeling of
H U K¢y and H contains no working vertex. While the exclusive
sum number is never smaller than the corresponding sum number
of a graph, labeling graphs exclusively has other desirable features
which give greater scope for combining two or more labeled graphs.
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In this paper we introduce exclusive sum graph labeling and we con-
struct optimal exclusive sum graph labeling for complete bipartite
graphs, paths and cycles. The paper concludes with a summary of
known results in exclusive sum labeling and exclusive sum numbers
for several classes of graphs.

1 Introduction

A simple undirected graph G is called a sum graph if there exists a label-
ing L of the vertices of G into distinct positive integers such that any two
distinct vertices » and v of G are adjacent if and only if there is a vertex
w whose label L(w) = L(u) + L(v). However, for the sake of simplicity, we
will from now on identify vertices with their labels under L and we will
write simply u instead of L(u).

Since the vertex with the highest label in a sum graph cannot be adjacent
to any other vertex, every sum graph must contain at least one isolated ver-
tex. If G is not a sum graph, it is always possible to add some finite number
of isolated vertices to G to obtain a sum graph. The sum number o(G) of
a graph G is the smallest number of isolated vertices that will achieve this
result.

Since the introduction of the notion of a sum graph by Harary [5] in 1990,
there have been quite a few papers published on this topic. One of the earli-
est interesting results was due to Ellingham [2] who proved the conjecture of
Harary (5] that o(T") = 1 for every T # K. A particularly interesting and
intriguing result is due to Gould and R&dl [4] who proved that there exist
graphs G = (V, E) such that o(G) € ©(|V|?). Subsequently, Nagamochi et
al. [13] proved that graphs with sum number on the order of 6(|V|?) should
in fact be quite common. However, the methods used in [4] and [13] provide
no means of constructing such graphs and a concentrated effort by several
researches over more than a decade has failed to produce an example of
any such graph or a class of graphs. In fact, the only known class of graphs
G that even achieves as much as o(G) € O(|E|) is the class of wheels W,
with n spokes; as shown in [11) and [8].

o(W,) = n/2+2  for even n;
=n for odd n.

With the possible exception of the graphs considered in [11], no graphs

are known whose sum number exceeds |V'| in an asymptotic sense. Efforts
to find graphs of large sum number have of course led to a consideration
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of graphs with many edges; for example, complete graphs K,, and com-
plete bipartite graphs K, ,. However, for these graphs it turns out that
0(G) € O(|V|). Bergstrand et al. [1] proved that (K,,) = 2n—3. Hartsfield
and Smyth [7] showed that 0(Km,n) € O(|V]) for all values of m and n, and
Miller et al. [12] proved that o(H2,n) = 4n — 5, where Hy,, is the cocktail

party graph.

A simple undirected graph G is called integral sum graph if there exists
a labeling L of the vertices of G into distinct integers such that any two
distinct vertices 4 and v of G are adjacent if and only if there is a vertex
w whose label L(w) = L(u) + L(v). Both sum and integral sum graph la-
belings use distinct integer labels; the only difference is that in sum graphs
the labels are positive integers while in integral sum graphs the labels can
be also negative integers or zero. The integral sum number ((H) is the least
number r of isolated vertices such that H UK, is an integral sum graph.

Motivated by our desire to find graphs of sum number on the order of
6(|V[?), we introduce exclusive sum graph labeling and exclusive sum num-
ber of a graph. In sum graphs, if L is a sum graph labeling then so is kL
where k is any positive integer. In exclusive sum labeling, not only is this
also true but furthermore, k; L + ko, under some conditions on the integers
k; and ko, is also an exclusive sum labeling.

Since finding exclusive sum graph labelings seems to be easier, we expect
that there is a bigger chance to find a graph of order ©(|V|?) with exclusive
sum labeling than with (inclusive) sum labeling. In this paper we present
exclusive sum labelings for all complete bipartite graphs, paths and cycles.
Later in this paper (Section 5) we also summarize known results in exclusive
sum labelings and exclusive sum numbers for particular families of graphs.

2 Exclusive sum labeling

In a sum graph G, a vertex w is said to label an edge uv € E(G) if and
only if w = u + v. Alternatively, we also say that w witnesses the edge
uv. The multiplicity of w, denoted by p(w), is defined to be the number of
edges which are labelled by w. If u(w) > 0, then w is called a working vertex.

If L is a sum labeling of G = H U K, in such a way that H contains no
working vertex then L is said to be an ezclusive sum labeling of H within G
(or just exzclusive sum labeling of H if G is understood); otherwise, L is said
to be an inclusive sum labeling of G with respect to H (or just inclusive sum
labeling of H if G is understood). We also say that L labels the graph H
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exclusively if L is an exclusive sum labeling of H and L labels the graph H
inclusively otherwise. Examples of exclusive sum labeling are the optimum
sum labeling of complete graph K, for n > 4 and of odd wheels; examples
of inclusive sum labeling are the sum labeling of trees and of even wheels.
Note that wheels are not the only class of graphs that are labeled exclu-
sively or inclusively depending on order; the exclusiveness or otherwise of
complete bipartite graphs K, », also depends on m and n.

The ezclusive sum number, e(H) of a graph H is the smallest number r of
isolated vertices such that G = H U K, is a sum graph and H is labeled
exclusively.

Obviously, every exclusive sum graph is a sum graph but not vice versa
and so the exclusive sum number is always greater than or equal to the
sum number, that is,

Observation 1 For any graph G, €(G) 2 o(G).

It is easy to see that for every sum graph labeling (exclusive or not) we
have

Observation 2 If L is a sum graph labeling of a graph G then so is kL,
where k is any positive integer.

However, in the case of an exclusive sum labeling we can do better, as shown
in [10].

Theorem 1 [10] If L is an ezclusive sum graph labeling of a graph H in
G = HUK, then so is the labeling L'(u) = kyL(u) + k; for v € H and
L'(u) = k1 L(u) +2k2 for u € K., where ks is any integer which results only
in positive distinct values in L' and k, is any positive integer that does not
divide 6k;.

The following observation gives a lower bound for exclusive sum number.

Observation 3 Let A be the mazimum degree of vertices in a graph G.
Then ¢(G) 2 A(G).

Note that if ¢(G) = A(G) then the graph G is called a A-optimum ezclusive
sum graph of G. This will be considered in Section 5.

3 Exclusive Sum Labeling of Complete Bipartite
Graphs

Hartsfield and Smyth [8] showed that the sum number of a complete bipar-
tite graph K, for ¢ > p > 2 is equal to [2242=2]. n 2001 He et al. [9]
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showed that this result is only realised for a limited range of p and q. The
correct sum number for K,, , was given independently by three sets of au-
thors [19},[9], [14], all published in the same issue of Discrete Mathematics
in 2001.

Figure 1 shows an example of a sum labeling for Ky 3, using the method
proposed by Pyatkin [14].

192 193 194 195 196 197 198
L L ® L ] ® ®

Fig. 1. Sum labeling for Ko 3.

However, in the case of exclusive sum number, the following lemma which
is modified from the Hartsfield and Smyth’s paper [8] is true in general and
provides a lower bound on the exclusive sum number for the graph K ,.

Lemma 1 Forp>2andq>2,e(Kpq) >2p+g-—1.

Proof

Let L be any exclusive sum labeling of a complete bipartite graph K, 4,
g > 2,p=>2 Let Pand Q be the two partite sets, where |P| =p > 2,
|Ql = q¢ > 2. Suppose that the labels of P = {z,z3,...,2p} under L
are arranged into an ascending sequence, so that z; < 41, 1< j <
p — 1. Similarly, arrange the labels of @ = {y1,¥2, ..., yq} into an ascending
sequence. Observe that each of the following sums is distinct

D+ <L+ <..<Tp+tn<zp+y <..<zZp+y,.

Since there are exactly p+q—1 distinct sums, it follows that at least p+q—1
isolated vertices are required to label the graph exclusively. m]
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Next choose k such that k > max {2p — 2,p + ¢ — 2} and suppose that L
labels the vertices of P and @ as follows.
P={1+4i0<i<p-1}
Q={1+4jlk<j<k+g-1}
Let R be the set of isolated vertices which are labeled by

{(144i)+(1+4K)|0 < i < p-2}U{(1+4(p—1))+(1+4j)|k < j < k+g-1}.

It is clear that |R| = p + ¢ — 1. Note that the labels used for P and Q
are 1 (mod 4) and the labels used for the isolated vertices R are the sums
of two numbers of 1 (mod 4), that is, 2 (mod 4). Therefore, K, ; contains
no working vertex.

The sum of any two numbers from P or @ cannot be in R by the choice
of k. Moreover, since numbers congruent to 3 (mod 4) and 0 (mod 4) do
not occur in this labeling, we conclude that no extra edges are induced
between the isolates or between the graph and the isolates. Therefore, we
have shown that L is an exclusive sum labeling of K, , which realises the
lower bound of €(K,q).

We have the following theorem:

Theorem 2 Forp>2and ¢>2,e(Kp,)=p+q—1.

Figure 2 shows an example of an exclusive sum labeling for K3 o.

% %6 54
® ® ® ® [ ) ® ® ® ® o o
Fig. 2. Exclusive sum labeling for K3g.

In the next section we present the exclusive sum numbers of paths and
cycles.
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4 Paths and Cycles

4.1 Paths

Let v1,v2,...,v, be the vertices of the path P,. Label the vertices v; with
v; = 2+ (42 — 1)n, for odd i and v; = 2z ~ ((i/2) — 1)n, for even i, where
z > n(n—2). Then v; +v;41 = 3z, for odd ¢ and v; +v;41 = 3z +n, for even
i. Thus P, has an exclusive labelling with 2 isolated vertices, vp—2 + vp—1
and vy, + vp.

To prove that there is no additional edge between other vertices, we consider
three cases as follows.

(i) There is no additional edge between v; and v; when i,j are both
even/odd. o

If i and j are both even then we have v; + v; = 4z — (22 — 2). If i and j
are both odd then we have v; + v; = 2z + (%’i —1). These values are not
the same as the two isolated labels.

(ii) There is no additional edge between v; and v; when i and j have
opposite parity. o

Suppose that ¢ is even and j is odd. Then v; +v; = 3z — (*=3= — 2). Again
this value is not the same as the two isolated vertices labels.

(iii) There is no additional edge between v; and vy,.

For odd n, v1 +v, = 2z + (2f2 — 1) and for even n, v +vn, = 3z — (3 —1).
Both values are not the same as the two isolated labels.

We have just proved

Theorem 3 The exclusive sum number for paths, ¢(P,) = 2, for n > 3.

4.2 Cycles
We start this subsection with the following lemma.

Lemma 2 There are at least three distinct edge labels in any exclusive
sum labeling of C,,.

Proof It is obvious for n = 3. Now we assume that n > 3. Let w be the
largest vertex on C),. Let u and v be adjacent to w, and (u,w) and (v, w)
be their corresponding edges. Without loss of generality, we suppose that
u < v. Since n > 3, it follows that there is a vertex ¢ and a corresponding
edge (t,u). It is clear that ¢ + v # v +w and u + w # v+ w. Since v > u
and w > t, we see that v +w # u +t. Therefore, the sums ¢t + u,u +w and
v + w are all distinct. O

It is necessary to deal separately with odd and even cycles.
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0Odd cycles It is simple to find a required labelling for C3, for example,
label the cycle vertices with 1,3 and 8 (and isolates with 4,9 and 11). From
now on, we assume n > 4.

Let 2, for 1 < i < n, be the vertices on the cycle C, for odd n. Suppose
that we label the vertices as follows.

1+(332)d foroddi, i<d-1
2+ (558)d+i foroddi, i>d+1
vp —(3)d foreveni, i<d

vn— (52)d—i foreveni, i>d+2

L

where d = 2[2].
Now we sum each pair of adjacent vertices.

(i) For odd %, we consider three cases.

l.fori<d-1,

Ui+ Vi =Un—d+1
2. fori>d+1,

Y+ V41 =Vp—d+1
3. for i =n,

vn"‘vl:—'vn'i'l

(ii) For even i, we consider the following three cases.

1. fori<d-2,

Ui+ V41 =vn+1
2. fori=d,

Vi + V41 =Vn+1
3. fori>d-2,

Vi + Vig1 =vp+3

We see that there are three distinct edge labels of the cycle C, for odd
n, that is, v, —d + 1,v, + 1 and v, + 3. Thus, in view of Lemma 2, the
construction of an optimal exclusive labeling for odd cycles requires exactly
three working vertices.

Since all labels on the cycle are odd and at most v, then cycle vertex labels
cannot be the sum of two vertex labels on the cycle, or the sum of two
working vertices. The cycle labels cannot be the sum of the working ver-
tices (v, + 1, resp., v, + 3, and a vertex on the cycle). The remaining case
concerns v, —d + 1. Suppose u,v € C, and v, —d+1+u = v < v,. Then
© <d-—1,s0ucanonly be 1 or 3. If u =1 then v = v,, — d+ 2 which is not
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a label of any vertex on the cycle. Similarly, if u =3 thenv = v, —d 4 4
which is not a label. So none of the labels on the cycle can be a working
vertex.

All 3 working vertices are even and so cannot be the sum of vertex labels
from the cycle and working vertex, that is, there are no edges between the
cycle and the 3 working vertices. Furthermore, there are no edges between
the working vertices since we cannot have, when n > 3,
v‘n+1+v’n+3=vﬂ_d+1
Vp+ltv,—-d+1l=v,+3
'Un+3+vn—d+1=vn+1

Finally, we need to show that the labels together with isolates induce edges
of the cycle and no extra edges. Suppose that there is an extra edge. Then
there are two cases.

(i) Let v, +1 =u+ v then

i—1

u=1vp —( )d=’vi—1®v=1+(};—1)d=v,-, i<d-1

2
or

i—~3 . 1—3 . .
u=v,.—(T)d—z—1=v,-_1¢v=2+(T)d+z=v,-, i>d+1
(ii) Let v, +3=u+v then

i—3 . i—3 , .
u=vn—(T)d—z+l=v,-_1@v=2+(—-2—-)d+z='v.-, i=d+1

or
i—1

2
where, for the second case, v; cannot be a cycle vertex when n > 3.
(iii) Let v, —d+1=u+v then

uw=v, —( )d=v,-_1¢>v=3+(z—;—1—)d=v,-

i—2 i—2

2 )d='vi~1¢>v=vﬂ—( 2

i—3
2

Thus, our labelling for odd cycles is an exclusive sum labeling which utilizes
3 isolates.

u=1+( )d =, i—-1<d-1

u=uv, — ( )d—i—1=v¢_1@v=2+(3—;§)d+i, i>d
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Even cycles. Let v; € V(C,), 1 < i < n, n even. Suppose that we label
the vertices as follows.

_J4-3 if iisodd
“=14n—-4i+5 if iiseven
Then the sum of each pair of adjacent vertices is: for 1 <i<n—1,

i = 4n—-2 if iisodd
ViTU41= Y4046 if iiseven

and
Un + v = 6.

Similarly to the odd case, and in view of Lemma 2, an optimum exclusive
sum labeling of even cycles requires three isolates.

Thus, we have proved the following result.
Theorem 4 ¢(C,) =3, for n > 3.

In Table 1 we summarize our knowledge of A-optimum exclusive sum la-
beling of particular classes of graphs and their exclusive sum numbers.
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,/(1+(am+n-1)(n-1))]

where k = [ 7

(14]

|Graph G a(G) &(G)
Stars Sp,n > 2 1 2 n [16]
Double stars Smn,m,n > 2 1 2 max {m,n} [17]
Caterpilar S 1 2 A(S [17]
Trees Th,n > 3 1 2 ?
Paths P, 1 2 2
Cycles Cy 3 5 3
Cnyn>4 2 [5] 3
Wheels
Wha,n 2 5,n odd n [11] n [16]
n > 4,n even 242 [11] n [16]
Fans f,,
n=3 3 [18] n (16}
n > 4,n even 3 [18] n [16]
n > 5,n odd 4 (18] n [16]
Friendship graphs F, 2 [3] 2n [16]
Complete graphs Kn,n > 3 2n—3 {1] 2n-3 [1]
Cocktail party graphs
Han dn—5  [12] dn—5 [12]
Hmm ? ?
Complete bipartite graphs,
Ko [¢a=21 7 2n—1
Knn [k(n—1)/2+m/(k - 1)] m+n-—1
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Table 1. Sum numbers and exclusive sum numbers of various classes of graphs.
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