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Abstract. A graph G is called (a,d)-edge antimagic total ((a, d)-
EAT) if there exist integers a > 0, d > 0 and a bijection A : VUE —
{1,2,...,|V| + |E|} such that W = {w(zy) : 2y € E} = {e,a +
d,...,a+ (| E| —1)d}, where w(zy) = Mz) + A(¥) + A(zy). An (a,d)-
EAT labeling A of graph G is superif A(V) = {1,2,.-+,|V]}. In this
paper we describe how to construct a super (a,d)-EAT labeling on
some classes of disconnected graphs, namely P, U Pny1, nP2 U Py
and nPs U P,42, for positive integer n.
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1 Introduction

In this paper we consider undirected graphs without loops and multiple
edges. V(G) and E(G) (in short, V and E) stand for the vertex-set and
edge-set of graph G, respectively. Let e = {u, v} (in short, e = uv) denote an
edge connecting vertices u and v in G. Let P, denote a path on n vertices.
Other terminologies and notations for graph-theoretic ideas we follow the
book of [4].

A graph G is called (a, d)-edge antimagic total ((a, d)- EAT) if there exist
integers a > 0, d > 0 and a bijection A : VU E — {1,2,...,|V| + | E|} such
that the set of edge-weights is W = {w(zy) : zy € E} = {a,a + 4,...,a +
(|E| — 1)d}, where w(zy) = A(z) + A(y) + A(zy). We shall follow [7] to call
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w(zy) = Mz) + My) + M(zy) the edge-weight of zy, and W the set of edge-
weights of the graph G. In particular, an (a,d)-EAT labeling A of graph G
is superif A\(V) = {1,2,---,|V|}.

For any super (a, d)-EAT labeling, the maximum edge-weight is no more
than |V| + (V| - 1) + (JV] + | E|). Thus

a+ (|E|-1)d<3|V|+|E|-1. (1)

Similarly, the minimum possible edge-weight is at least 1 + 2 + |[V| + 1.
Consequently

a2 |V|+4. (2)
So, from (1) and (2), we have
2V + IEI
d< —=—. 3
B[— @)

In general, for any (a,d)-EAT labehng, the maximum edge-weight is no
more than (|V|+ |E| - 2) + (V| + |E| — 1) + (V| + | E|). Thus

a+(|E| - 1)d < 3|V| +3|E| - 3. (4)

Similarly, the minimum possible edge-weight is at least 1 + 2 + 3. Conse-
quently

a>6. (5)
So, from (4) and (5), we have
3IVI+3|E| -9
< —-—.
4= TE ©

A number of classification studies on super (a, d)-EAT (resp. (a, d)-EAT)
for connected graphs has been extensively investigated. For instances, in [2],
Baca et al. showed that a wheel W,, has a super (a,d)-EAT labeling if and
only if d = 1 and n = 1(mod 4). A.A.G. Ngurah and E.T. Baskoro [5]
proved that for every Petersen graph P(n,m),n > 3,1 < m < %, has a
super (4n + 2,1)-EAT labeling.

Given any edge-magic total labehng Aona graph G with p vertices and
q edges. Then, its dual labeling A’ can be defined ([7]) by

X(z) = p+ q+1— A(z), for any vertex z, and
XN (zy) = p+g+1— Azy), for any edge zy.
By using the above duality property, we have the following theorem.

Theorem 1. Let G be a graph with p vertices and q edges. If G has an
(a,d)-EAT labeling then G has an (3p+ 3¢+ 3 — a — (¢ — 1)d,d)-EAT
labeling as its dual.

More results concerning antimagic total labeling, see for instances [6, 1]
and a nice survey paper by Gallian (3].
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2 Main Results

The main goal of this paper is how to construct a super (a,d)-EAT (resp.
(a,d)-EAT) labeling on disconnected graphs, especially P,,UP, 41, nPUP,
and nP; U P, 2, for positive integer 7.

Theorem 2. Let G be a super (a,d)-EAT graph with p vertices andq edges.
Let A1 be a super (a,d)-EAT labeling of G. Then, the labeling Al defined:

Al(z) p+1—X(z),Vz eV, and
MEy)=20+q+1-\(zy), Voy € E

is a super (4p+q+ 3 —a — (g — 1)d,d)-EAT labeling of G.

Pz‘oof. Let, zy € E. :I‘hen,
M)+ A(zy) + M @) =(@+1- () +(2p+ g+ 1 - Mi(zy))
+(@+1- ().
=4p+q+3— (M(z) + M(zy) + M ()

Thus, W’ = {w(zy) : zy € E} under )] constitutes an arithmatic
progression starting from 4p + ¢ + 3 — a — (¢ — 1)d with differenced. O

The labeling )\’1 is called a dual super (a,d)-EAT labeling of A1 on G.

21 P,UP,y

In this section, we shall construct a super (a,d)-EAT (resp. (a,d)-EAT) la-
beling of graph P, U P,+1, namely a disjoint union of graphs P, and Pp41,
for n > 2. We denote that

V(PoUPpt1) ={u,ill i <n}U{ug ;|1 <j<n+1}, and
E(Pn UPn+1) = {el,gll <i<n- 1} U {eg,jll <3< n}

where e;; = uj U141, for 1 < ¢ < n—1, and ez; = ugjugj41, for
1<j<n.

By (3) and (6), we have: for every n > 2, there is no super (a,d)-EAT
labeling of P, U P,y; with d > 4; and there is no (a,d)-EAT labeling of
PnUPn+1 WithdZS.

Theorem 3. For everyn > 2, the graph P, UP, 1 has a super (4n+4,1)-
EAT labeling. This type of labeling is selfdual.
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Proof. Label the vertices and edges of P, U P4, in the following way

Muwry) =2i,for1 <i<n.

Muz;) =2n+3-2j,for1<j<n+1l

Mer:) =Mu i) =4n+1-2,for1<i<n-1.
)\(ez,j) = A(uz,ju2,j+1) =2n+2j,for1<i<n.

Clearly, the set of edge-weights is

W ={w(e1;):1<i<n—-1}U{w(e;):1<j<n}
={4n+3+2i:1<i<n-1}U{n+4-2j:1<j<n}
={4n+5,4n+7,...,6n+ 1} U {6n + 2,6n,...,4n + 4}
={4n+4,4n+5,...,6n + 1,6n + 2}.

By Theorem 2 it can be easily seen that this labeling is selfdual. m]

Theorem 4. For everyn > 2, the graph P,UP,4, has a super (2n+6, 3)-
EAT labeling. This type of labeling is selfdual.

Proof. Label the vertices and edges of P, U P, in the following way

Muwr;) =2i,for1 <i<n.

Mugj) =2j—1,forl<j<n+1l.

Meys) =Muruyip1)=2n+2i+1,forl<i<n-1.
/\(62']’) = /\(ug,jug,j_,.l) = 2n + 2j, forl1<i<n.

Clearly, the set of edge-weights is

W ={w(e;:):1<i<n—1}U{wle,;):1<j<n}
={2n+3+6i:1<i<n-1}U{2n+6j:1<j<n}
={2n+9,2n+15,..,8n — 3} U{2n + 6,2n + 12, ..., 8n}
={2n+6,2n+9,...,8n — 3,8n}.

By Theorem 2 this type of labeling is selfdual. This concludes the proof.
a

Theorem 5. For every odd n eand n > 3, the graph P, U Py, has super
(4n + 5,1)-EAT labeling and super (3n + 6,2)-EAT labeling.

Proof. Define the vertex labeling Ay of P, U P,y in the following way:

il for i=1,3,..,n

r

N—Jd 2 ,
M) {n+2+%, for i=2,4,.,n-1
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n+2, for j=n+1

4 41, for j=1,3,..,n
M (uz,5) = )
i(l'tzl)ﬂ, for 7=2,4,..,n—-1

Define the edge labeling A, in as follows:
/\2(61,5) = Ag(ul,iul,ﬂ.l) =4dn+2- 2‘1:, for 1 < 1 <n-1

dn+1-2j,for1<j<n-1
Aa(ez,5) = Aa(uz,juz,j41) = { M +2, 7 for j in

Combining the vertex labeling A\; and the edge labeling A\ gives a super
EAT labeling. Clearly, the set of edge-weights is {4n + 5,4n + 6,...,6n +
2,6n+3}. This implies that the graph P,UP, 11 has a super (4n+5,1)-EAT
labeling.

Now, construct the edge labeling A3 in the following way.

/\3(e1,,-) = /\3(‘!1.1’,"&1,,'.*_1) =2n+1+414, for1<i<n-1.

In+1+j,for 1<j<n-—-1
Aa(eZ,j) = )\3(u21ju2vj+1) = { 3n + 1’ 7 for j =Jn

Label the vertices and edges of P, U P,4; by A; and A2. We can see
that the resulting label is total and the set of edge-weights consists of the
consecutive integers {3n +6,3n +8,...,Tn 4+ 2}. o

By applying the Duality property to Theorems 5 we have the following
corollary.

Corollary 1. For every odd n and n > 3, the graph P, U P, has super
(4n + 3,1)-EAT labeling and super (3n + 4,2)-EAT labeling.

Theorem 6. For every n > 2, the graph P, U P,y1 has (6n + 1,1)-EAT
labeling and (4n + 3,3)-EAT labeling.

Proof. Define the vertex labeling and two edge labelings of P, U P4, in
the following way:

/\1(1.&1,,‘) =2n—-1+2i,forl<i<n.
Ai(ug,;) =2n—2+2j,for1<j<n+1.

/\2(61,,;) = /\2(1.&1,,;111,5.*.1) =2n— 2’i, for 1 <i<n-1.
)«2(62,_1') = Az(uZ,juz'j.l.ﬂ =2n— 2J + 1, for 1 S z S n.
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)\3(61,5) = Aa(ul,,-ul,;H) = 2‘i, for 1 < 1 <n-— 1.
As(ez,;) = Ma(uzjug 1) =2j—1,for 1 <i<n.

Combining the vertex labeling A, and the edge labeling A, gives a total
labeling with {6n + 1,6n + 2,...,8n — 2,8n — 1}. Combining the vertex
labeling A; and the edge labeling A3 gives a (4n + 3,3)-EAT labeling of
P,UP, ;. [u]

Theorem 7. For every odd n and n > 3, the graph P, U P, has (6n,1)-
EAT labeling and (5n + 1,2)-EAT labeling.

Proof. Label the vertices of P, U P,y by A; as follows:

_ 4n+1—%i,for 1=1.3,..,n
)‘1(“‘-')‘{31;—1—;, for i=2,4,.,n—-1

Inci, for j=1,3,..,n
A(ugj) =< 3n— 1, for j=n+1
54‘.;—'-’-, for j=2,4,..,n-1.
If we label the edges of P, U P,4; by:
A2(e1,4) = Aa(vyt1,441) =28, for1 <i<n-1,

2j+1,for 1<j<n-1
Az(ez5) = Az(uajuzj+1) = { 1{ for j =?n,

then the resulting labeling is total and we have {6n,6n+1,--- ,8n—3,8n—

2} as the set of edge-weights. This implies that the graph P, U P,; has an

(6n,1)-EAT labeling. If we label the edges of P, U P,41 by A3 as follows:
As(e1s) = As(wmvr,i41) =2n—4, forl<i<n—1,

n—j,for 1<j<n-1

Aa(ez,3) = Aa(uz,ju2,4+1) = { n,  for j=n,

then, the resulting labeling is total and the set of edge-weights is {5n +
1,5n.+3,...,9n — 3}. o

In this section, we shall construct a super (a,d)-EAT labeling of graph
nP,UP,, for n > 2. The graph nP, is a disjoint union of n copies of graph
P,. The graph nP2UP, is a disjoint union of graphs nP, and P,. We denote
that
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V(an U] P”) = {ul,,-,uz,,-|1 <i< n} U {u3,j|1 <j< n}, and
E(an UP,-,) = {el,gll <i< n} U {eg_,-|1 <j<n- 1},

where e;; = u,iu2,4, for l<i<nand ez ; =ugjuzji1,forl<j<n-—1.

By (3) and (6), we have: for every n > 2, there is no super (a,d)-EAT
labeling of nP, U P, with d > 4, and there is no (e,d)-EAT labeling of
nP, UP, withd > 8.

Theorem 8. For every n > 2, the graph nPy U P, has super (6n+2,1)-
EAT labeling and super (5n+8,2)-EAT labeling. These types of labelings
are selfdual.

Proof. Label the vertices of nP, U P, by A, as follows:
M(u) =4, for1<i<n
M(ugz) =2n+i,for1<i<n
Muszj) =n+j,forl<j<n
/\1(81,,‘) = z\(ul,,-uz,,-) =4n+1—4,forl1 <i<n,

and the edges by Aa:
/\2(62‘1') = /\2(u3,jU3,j+1) =bn—j,for1<j<n-1.

Clearly, the resulting labeling is super EAT and the set of edge-weights is

W ={w(e1;):1<i<n}U{w(e;):1<j<n-1}
={bn+i+1:1<i<n}U{Tn+1+j:1<j<n—-1}
={6n+2,6n+3,..,Tn+1}U{m+2,70+3,..,8n}
={6n+2,6n+3,...,8n —1,8n}.

This implies that the graph nPyUP, has a super (6n+2,1)-EAT labeling.

Next, if the vertices of nP, U P, are labelled by A, and the edges are
labelled by )3 as follows:

A3(61,i) = Aa(ul,,-ug,,-) =3n+2i—1,forl1<i<n
)&3(62,]') = /\3(1.43,]'1.&3’_7'.{.1) =3n+2j,forl<j<n-1,

then the resulting labeling is still super EAT and the set of edge-weights is
{5n + 3,57 + 5,...,9n — 3,9n — 1}. This implies that the graph nP, U P,
has a super (5n + 3,2)-EAT labeling.

By Theorem 2, it is easy to show that these labelings are selfdual. This
concludes the proof. ]

Theorem 9. For every n > 2, the graph nP, U P, has an (Tn,1)-EAT
labeling and (6n+1,2)-EAT labeling.
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Proof. Define the vertex labeling \; and two edge labelings A3, A3 of nP,U
P, in the following way.

)\1(‘1&1’;) =bn—t,forl<i<n
M(ug) =3n—id,for1<i<n
/\1(1&3,_1') =4n—j,forl1<j<n,

/\2(61,5) = /\2(1!.1,,'11.2,5) =n+i-—1, fori1<i<n
Az(ez,j) = da(us,juzji1) =J,for I<j<n-1,

As(ers) = Aa(upiuzs) =2n—2i+1,forl<i<n
As(ez5) = As(us,jus,jt1) =2n—2j,for1<j<n-1

Combining the vertex labeling \; and the edge labeling A2 gives a total
labeling with the set of edge-weights {7n,7n +1,...,9n — 3,9n — 2}. Mean-
while, combining A\, and A3 gives a (6n+1,2)-EAT labeling of nP,UP,. O

23 nPU Pn+2

In this section, we shall construct a super (a,d)-EAT labeling of graph
nPy U P42, for n > 1. The graph nPs U P, ..o is a disjoint union of graph
nP; and P,;,. We denote that

V(nPaU Prys) = {u5,u24l i <n}U{us;|l <j<n+2}, and
E(nPaU P, 0) = {el,,-ll <:i< n} U {ez,jll <j<n+1}

where e; ; = u1 ;up;, for1 <i <mnandey; = uzjuzjt1,forl <j<n+l.

By (3) and (6), we have the following facts: for every n > 1, there is no
super (a, d)-EAT labeling of nP,UP, with d > 5, and there is no (a, d)-EAT
labeling of nP> U P, with d > 8.

Theorem 10. For every n > 1, the graph nP,U Py o has super (6n+6,1)-
EAT labeling and super (5n+6,2)-EAT labeling. These labelings are selfdual.

Proof. Define the vertex label A; and the two edge labelings A, and A3 of
nPp U P, in the following way.

M(wy) =i, forl1<i<n
Mug;) =2n+i+2,for1<i<n
M(uzg) =n+j,for1<j<n+2
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A2(e1i) = Aa(ugug;) =4n—i+3,for1<i<n
A2(ez,;) = Aa(ugjusjp1) =5n—j+4,for1<j<n+1,

As(e1,i) = Aa(ugugs) =3n+2i+2,forl<i<n
As(ez,5) = Aa(usjusjy1) =3n+2j+1,for1<j<n+1.

To obtain a super (6n+6,1)-EAT labeling combine the labelings A\; and
A2. Whereas, combining the labelings A; and A3 gives a super (5n + 6,2)-
EAT labeling. By Theorem 2 these labelings are selfdual. 0

Theorem 11. For every n > 1, the graph nP, U P42 has (7n+6,1)-EAT
labeling and (6n+6,2)-EAT labeling.

Proof. Define the vertex labeling Ay and the two edge labelings A; and A3
of nPy U Pp42 in the following way. '

)q(ul,,-) =bn+4d4—-i,forl<i<n
M(ugi) =3n+2—i,forl<i<n
)\1('&3'_7') =4n+4—j,for1<ji<n+2

/\2(61,.') = Ag(ul,iuz,i) =n+l14+iforl1<i<n
Az(ez,3) = Ao(ugjuzjp1) =j,for 1<j<n+1,

/\3(61',’) = ,\3(u1,,-'u,2,,-) =2+2-2i,forl1<i<n
/\3(62,.1') = /\3(u3,ju3,j+1) =2n+3-2j,forl1 < isn+1.

To obtain a (7n + 6,1)-EAT labeling combine the labelings A; and A,.
Whereas, combining the labelings A; and A3 gives a (6n+6, 2)-EAT labeling.
By Theorem 2 these labelings are selfdual. O

To conclude this paper let us present the following open problems to
work on.

Problem 1. Construct, if there exists,

— A super (a,2)-EAT labeling for P, U P,4,, n even.
— An (a,2)-EAT labeling for P, U Pp41, 1 even.
— An (a,d)-EAT labeling for P, U P41, d = {3,4}, and n > 2.

Problem 2. Construct, if there exists,

— A super (a,3)-EAT labeling for nP, U P,, n > 2.
— An (a,d)-EAT labeling for nP, U P,, d = {3,4,5,6,7}, and n > 2.
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Problem 8. Construct, if there exists,

— A super (a,d)-EAT labeling for nPa U P,42, d = {3,4}, and n > 1.
~ An (a,d)-EAT labeling for nP, U Ppy2, d = {3,4,5,6,7}, and n > 1.
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