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Abstract. We improve the lower bound for the a-size of trees with
maximum degree three.

1 Introduction

If T = (V, E) is a tree with n vertices, a (vertez-)labelling of T is a bijection
¢ :V — {1,...,n}. The induced edge-labelling ¢ : E — {1,2,...,n — 1}
is defined by ¢(e) = |¢p(u) — ¢(v)| for each edge e = uv € E. The size of
the labelling ¢ is |#(E)|, i.e. the number of distinct induced edge labels. A
labelling of T is graceful if its size is n—1. The famous Graceful Tree Conjec-
ture (GTC) states that every tree has a graceful labelling. The conjecture is
by now forty years old but remains wide open [Gallian, J., 2005]. In particu-
lar, GTC is still open even for trees of maximum degree three. The approxi-
mation approach outlined below was introduced in [Rosa, A., Sird, J., 1995,
and is pursued further in this article.

A labelling of T is bipartite if there exists a number k such that ¢(u) <
k < ¢(v) (or ¢(v) < k < ¢(u)) if and only if » and v are vertices of different
colour (in the 2-colouring of the vertices of T'). A labelling of T which is
both graceful and bipartite is an c-labelling.

The gracesize gs(T') of the tree T is the maximum size of a labelling of
T. The a-size o(T) of the tree T is the maximum of |¢(E)| where ¢ ranges
over all bipartite labellings of T. Obviously, a(T") < gs(T).

Let gs(n) and a(n) be the minimum of gs(T') and a(T’), respectively,
taken over all trees with n vertices. While the graceful tree conjecture is
equivalent to the statement that gs(n) = n~—1 for all n, the situation for a-
labellings is quite different. Indeed, it was shown in [Rosa, A., Siréi, J., 1995
that 5n/7 < a(n) < (5n + 4)/6 for all n > 4. Since the trees on n vertices
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that have been used in [Rosa, A., Sirs, J., 1995] to prove the upper bound
on a(n) contain vertices of large degree, it is of interest to ask about upper
and lower bounds on «(T') within the class of trees T on n vertices with a
small maximum degree. Let ax(n) be the smallest oT") over all trees on n
vertices with maximum degree k. For k = 3 the lower bound was improved
in [Bonnington, C.P., Sirda, J., 1999] to az(n) > 5n/6 for all n > 12. In
this note we improve the lower bound on a3 to as(n) > | %] — 1.

2 Preliminaries

We assume from now on that all trees that we consider have maximum
degree three. To prove our results below we will make use of those trees
with maximum degree three and with n < 16 vertices whose a-size equals
n — 2 as described in [Bonnington, C.P., Sir4ii, J., 1999] (see Fig.1). These
7 trees in Fig.1 will be called ezceptional trees. We note that the a-size of
all other trees with maximum degree three and n < 16 vertices equals n—1
[Bonnington, C.P., Sirda, J., 1999].
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Fig. 1. The 7 exceptional trees.

Let T be a tree, and let 7" be the (unique) homeomorphically irreducible
tree homeomorphic to T'. Thus in T” all vertices are either of degree three or
of degree one (the latter are the leaves). Represent the tree T” as a rooted
tree where the root is (for example, but not necessarily) a central vertex
of T'. We say that the leaves have level 0; all vertices in 7" having at least
one child, and whose all children have level 0 will have level 1, and so on.
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In general, all vertices in 7’ which have at least one child on level [ and
whose all children have level ! or less will have level ! + 1. More formally,
the level I(v) of a vertex v is given by l(v) = 1 + maz.cc,l(c) where C, is
the set of all children of the vertex v. We define the level of a vertex in T'
to be the same as the level of the corresponding vertex in T”; the levels of
vertices of degree two in T (if any) are undefined.

Example 1. Let the tree T be as given in Fig.2. Then T” is as given
in Fig.3a. For the sake of clarity, we labelled the vertices in T, and kept
the same labels in 77. The vertices in T and T’ with the same label are
corresponding vertices. The labels in Fig.3b) represent the vertex levels.

Fig. 2. A tree T with maximum degree three.

a) b)

Fig. 3. a) T' with the labelling corresponding to T in Figure 2. b) T' with ‘level’
labeling.

‘We say that a tree T is good if T' has at least k > 7 vertices, and deleting
at most | X7 | edges of T results in a forest whose each component has an
a-labelling.

Before proceeding further, let us outline the strategy of our proof that
a(n) > |82 — 1. We first show that each tree of maximum degree three
and diameter at least five can be split (by deleting a suitable edge) into two
trees, at least one of which is good. Then, using a direct argument we show
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that the a-size of a tree with maximum degree three, order n, and diameter
at most four is at least |%*| — 1. Finally, we prove that a(n) > |$2] -1
by taking an arbitrary tree of maximum degree three, iteratively deleting
edges until we are left with good trees and a tree of diameter at most four,
and applying a simple result that allows to combine a-labellings under some
special circumstances.

3 An edge-deletion lemma

In this section we prove an auxiliary result about producing good trees out
of arbitrary trees of maximum degree three and diameter at least five.

Lemma 1. Let T be a tree of maximum degree three such that the diameter
of T' is at least 5. Then it is always possible to delete an edge e in T such
that T — e =T, UT\p where T\ is a good tree.

Proof. If T' has diameter at least 5, we can root 7" at a peripheral vertex
which will then become a vertex of level d > 5. We define a subtree of a
vertex v of degree 3 in T to be a subtree that contains v and is obtained
by deleting the edge joining v to its parent. (Thus a subtree of a vertex v
cannot contain the root.) We refer to a subtree of a vertex on level i as a
level i subtree. We proceed as follows. First we consider all level 1 subtrees.
If one of them is a good tree, we are done, otherwise we consider all level
2 subtrees. In doing so, we make use of the fact that none of the level 1
subtrees is a good tree. Similarly, if no level 2 subtree is good, we consider
level 3 subtrees, and if neither of these is good, we show that all level 4
subtrees are good.

A level 1 subtree (see Fig.4) is good if it contains at least 7 vertices,
since it is a snake (a tree with exactly two leaves), and all snakes have an
a-labelling [Rosa, A., 1967].

Fig. 4. A subtree of a vertex on level 1. Dashed line is used to represent not a
single edge but a path with all intermediate vertices of degree 2.
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If none of the level 1 subtrees is good, we proceed to the level 2 subtrees.
There are two types of level 2 subtrees: Type 1 contains one level 1 subtree
(Fig.5a) while Type 2 contains two level 1 subtrees (Fig.5b).
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Fig. 5. a) Level 2 subtree of Type 1. b) Level 2 subtree of Type 2.

Type 1 level 2 subtree is a tree with exactly three endvertices (from now
on we will call such a tree a Y-tree). A Y-tree always has an a-labelling,
except when it is the tree H; in Fig.1 [Rosa, A., 1977]. Thus all type 1
level 2 subtrees are good trees, except for H;, and trees containing 5 or 6
vertices.

It is useful to note at this point that if in any of these exceptions we
delete the edge e), incident to a level 2 vertex that is on the path that
connects level 2 vertex to a level 1 vertex, we obtain either a Y-tree or a
snake, and another snake each of which has an a-labelling. That is, the
Y-tree is not H; as then the original level 2 subtree would contain at least
9 vertices, and thus would be a good tree.

A type 2 level 2 subtree is always a good tree. Indeed, it contains at least
7 vertices, and it has exactly 4 leaves. If it contains less than 16 vertices
then it has an a-labelling since it cannot be Hp, the only exceptional tree
with 4 leaves, as the two vertices of degree three are adjacent in H and
are nonadjacent in a type 2 level 2 subtree. On the other hand, if a type
2 level 2 subtree contains 16 or more vertices, we delete an edge incident
to one of the vertices of degree 3. In this way we obtain one Y-tree (but
not H; as each of the level 1 subtrees has at most 6 vertices, so the path
connecting them contains at least 4 vertices), and a snake both of which
have an a-labelling. Thus if no level 2 subtree is a good tree then all level
2 subtrees are H; or contain 5 or 6 vertices.

Next we consider level 3 subtrees. There are three types of these: Type
1 contains one level 2 and one level 0 subtree (Fig.6a), Type 2 contains one
level 2 and one level 1 subtree (Fig.6b), and Type 3 contains two level 2
subtrees (Fig.6c).
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Fig. 6. a) Type 1 level 3 subtree. b) Type 2 level 3 subtree. ¢) Type 3 level 3
subtree.

First we note that all level 3 subtrees contain at least 7 vertices. If a
Type 1 level 3 subtree contains less than 16 vertices then it is always good
unless it is Ha. If it has at least 16 vertices then we delete the edge e;2
incident to a level 2 vertex as shown in Fig.7. Thus we obtain a Y-tree
(that is not H; as then our level 2 subtree would be good) and a snake
both of which have an o-labelling, or two snakes.
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Fig. 7. The edge to be deleted in Type 1 level 3 subtree with 16 or more vertices.

If a Type 2 level 3 subtree has less than 16 vertices then it has an a-
labelling: indeed it has 5 leaves and it cannot be H3 or H; because there
is no vertex of degree 3 adjacent to both other vertices of degree 3 as in
Hj and Hy. It is not H, the only other exceptional tree with 5 leaves, as
then the level 2 subtree would have 9 vertices, and thus would be a good
tree. If a Type 2 level 3 subtree has at least 16 vertices then we delete
the edge ejqincident to a level 2 vertex, as shown in Fig.8. We thus obtain
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two Y-trees or one Y-tree and a snake. None of the Y-trees is H,, by an
argument as above. Therefore all Type 2 level 3 subtrees are good.
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Fig. 8. The edge to be deleted in Type 2 level 3 subtree with 16 or more vertices.

If a Type 3 level 3 subtree has less than 16 vertices then it has an o-
labelling: it is not Hg or Hg because there is no vertex of degree 3 adjacent
to all other vertices of degree 3 as in Hs and Hg. If a Type 3 level 3 subtree
has 16 or 17 vertices, we delete the edge e;5 incident to a level 2 vertex,
thus creating one Y-tree (but not H) or a snake and one tree with 4 leaves
which has an o-labelling as it has between 11 and 14 vertices and the
only exceptional tree with 4 leaves (H2) has 8 vertices. If a Type 3 level
3 subtree has at least 18 and at most 30 vertices, we delete an edge on
the path connecting the two level 2 vertices in such a way that both trees
with 4 leaves contain at least 9 and at most 15 vertices, and thus both have
an o-labelling. Finally, if a Type 3 level 3 subtree contains more than 30
vertices, we delete the edge that is incident to the level 2 vertex in both
level 2 subtrees. By doing so we create three trees where at least one is a
snake, and each of the other two is either a snake or a Y-tree but not H,.

Thus the only level 3 subtree which is not good is Ha.

If there are no good level 3 subtrees, we proceed to consider level 4
subtrees which can be one of the following four types. Type 1 level 4 subtree
contains a level 3 subtree (that is, Hz) and a level 0 subtree (Fig.9a)). Type
2 level 4 subtree contains Hs and a level 1 subtree (Fig.9b)), Type 3 level
4 subtree contains H, and a level 2 subtree (Fig.9c)) while Type 4 level 4
subtree contains two trees Hy (Fig.9d)).

If a Type 1 level 4 subtree has less than 16 vertices then it has an o-
labelling, as it is neither of Hs, Hy or Hy. Similarly, if a Type 2 level 4
subtree contains less than 16 vertices, it has an a-labelling as it is neither
of Hs or Hg. On the other hand, if a Type 1 or Type 2 level 4 subtree has
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Fig. 9. a) Type 1 level 4 subtree. b) Type 2 level 4 subtree. ¢) Type 3 level 4
subtree. d) Type 4 level 4 subtree. Note again that solid lines represent edges
and dashed lines represent paths where all intermediate vertices are of degree 2.

at least 16 vertices then we delete an edge connecting the level 2 and level
3 vertex in the level 3 subtree. We thus obtain a Y-tree and a snake for
Type 1 and two Y-trees for Type 2 subtree. All of these new trees have
an a-labelling and consequently all Type 1 and Type 2 level 4 subtrees are
good.

A Type 3 level 4 subtree has at least 14 vertices; if it has less than 21
vertices, we delete an edge connecting the level 2 vertex to the level 3 vertex
in the level 3 subtree. We thus obtain a Y-tree (not H;) and a tree with
4 leaves that has between 8 and 14 vertices and is not an exceptional tree.
If the tree has at least 21 vertices, we delete an edge connecting the level
2 and level 3 in the level 3 subtree and an edge e;2 incident to the level
2 vertex in the other level 2 subtree. We obtain a Y-tree, a snake, and a
Y-tree or a snake. All these trees have an a-labelling.

A Type 4 level 4 subtree has at least 17 vertices. If it has less than 21
vertices then we delete an edge connecting the level 2 to the level 3 vertex
in the level 3 subtree. We obtain a Y-tree and a tree with 5 leaves and with
the number of vertices between 11 and 14 which is thus not an exceptional
tree. If a Type 4 level 4 subtree contains at least 21 vertices, we delete an
edge connecting the level 2 and the level 3 vertex in both level 3 subtrees.
‘We obtain two Y-trees and a snake all of which have an a-labelling.

Therefore all level 4 trees are good trees; note that we are assuming
that none of the level 3, level 2 or level 1 trees are good. This completes
the proof of Lemma 1. O
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4 Proof of the main result

We start with a known result contained in [Rosa, A., Sira, J., 1995].

Lemma 2. Let e be an arbitrary edge of a tree T, and let T — e = T UTs.
Then oT) 2 o(Th) + aT2).

Proof. See [Rosa, A., Sirai, J., 1995). D
One more auxiliary result is needed for the proof of our main theorem.

Lemma 3. Let T be a tree with n vertices and with mazimum degree three
such that the diameter of the corresponding tree T' (as defined above) is at
most 4. Then a(T) > || - 1.

Proof. First we note that every tree T with the number of vertices n < 6
has a(T) = n — 1. Let the root of T’ be a central vertex of T'. If T is
such that the root of 7" has level 1 then a(T) = n — 1 unless T” is Hy (cf.
[Rosa, A., 1977] in which case a(Hy) =n—2=|%] -1 (as n = 7). If the
root of 7 has level 2, T is of diameter 3 or 4, and we have to consider three
cases (see Fig.10).

e o ® o0 O o 00 o0 ©
a) b) L]

Fig. 10. The three cases for T' where T” is of diameter 3 or 4.

If n < 16 then a(T) = n—1 unless T is one of the 7 exceptional trees in
which case a(T) = n — 2 [Bonnington, C.P., Siréii, J., 1999]. In any case,
a(T) > |8 ~ 1. Therefore from now on we assume n > 16. It suffices to
show that in all three cases we can delete at most three edges to obtain a
forest whose all components have an a-labelling.

Case a). If the two adjacent vertices of degree 3 in T”, say w and 2, are
joined by a path of length 3 in T', we delete the middle edge of this path. If w
and z are joined in T by a path of length # 3, we delete an edge of the path
incident with w or z. In either case, each of the resulting two components is
either a snake or a Y-tree different from H;. So the statement now follows
from Lemma 2.

Case b). Let z,y, z be the 3 vertices of degree 3, with z adjacent to y
and to z (but y and z nonadjacent) in T'. We delete an edge from the path
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zy and an edge from the path zz in the following way. If z and y (or z and
z, respectively) are joined in T by a path of length 3, we delete the middle
edge of that path. Otherwise, we delete that edge of the path zy (or zz,
respectively) which is incident with z. We get three components; each of
them is either a snake or a Y-tree different from H;. In all cases we get by
applying Lemma 2 that the statement holds.

Case c). Let z,y, z,w be the four vertices of degree 3, with = adjacent
to ¥,z and w in T” (y, z, w independent). If all three paths joining z to y
(to z, and to w, respectively) in T are of length 3 (Fig.11a)), we delete the
middle edge in each of these paths. The resulting four components are all
Y-trees but none is H;.

a) by

Fig. 11. a) Tree T in which all three paths (from z to y, z and w) are of length
three. b) Tree T in which at least one of the paths xy, 22z and zw is not of length
three (we assume wlog that it is zw).

Otherwise (Fig.11b)), i.e. when at least one of these paths, say the path
joining z to w in T is of length # 3, we delete the edge incident with =
on this path, and also one of the edges adjacent to either y or z not on
the path from z to y (or from z to z). Of the three resulting components,
two are Y-trees (none of which is H;), and one is a snake (possibly with no
edges), or two are snakes and one is a Y-tree, different from H;. As before,
Lemma. 2 is applied to complete the proof. a

We are now ready to proceed to our main result.

Theorem 1. Let T be a tree with n vertices and with mazimum degree
three. Then o(T) > |82] - 1.

Proof. If the tree T” that corresponds to the tree T has diameter at least 5,
we delete an edge e in T such that T'—e = T3 UT g where T} is a good tree;
this is always possible by Lemma 1. If the tree T}y corresponding to Tig
is still of diameter at least 5, we then delete an edge €; in Tiz such that
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Tir — e1 = To UT,p where T3 is a good tree. We continue this process m
times, until the remaining tree T, r is & tree whose corresponding tree T, 5
has diameter at most 4. Using Lemma 1 and Lemma 2 we first determine
a(T;),1 <i < m, to be

(242 )+1 bns
aT)> Y, (ni —1) ==
i=1

where n; is the number of vertices of T, and n;; is the number of vertices
of the component T;; of the forest F' obtained by deleting at most l_m.,:-'-’-J
edges of T; as described above.

From this inequality and Lemma 3 we get

o(T) > a(Ty)+: - +0(Tm)+(Trmr) > Z[@] +l6|T;nR| -1> [973 j-1

i=1

and the proof is complete. ]

5 Conclusion

The same technique as above could possibly be used to improve the lower
bound for (T’), the a-size of a tree with maximum degree three, to a(T) >
I_ZSEJ —1, however, the arguments would by necessity be much more compli-
cated. The possibility suggested in [Bonnington, C.P., Siraii, J., 1999] that
for trees T' with maximum degree three a(T") > n — ¢ may actually hold,
for some integer constant c > 1.
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