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Abstract

To date investigations on critical sets for a set of mutually orthogonal
latin squares (MOLS) have been carried out only for small orders <
9. In this paper we deal with a pair of cyclic orthogonal latin squares
of order n, n > 11, n odd. Through construction of a uniquely
completable set we give an upper bound on the size of the minimal
critical set. In particular for n = 15 a critical set achieving this
bound is obtained.
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1 Introduction

In the last few years, a number of authors have worked on problems con-

cerning critical and / or uniquely completable (UC) sets for latin squares
(cf. Nelder [10], Smetanuik [12], Curran and Van Rees [3], Cooper, Donovan
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and Seberry (1}, Cooper, McDonough and Mavron [2], Donovan, Cooper,
Nott and Seberry [4], Donovan and Cooper [5], Fu, Fu and Rodger [7], and
Donovan and Howse [6]). There is not a lot known about the critical sets
for latin squares in general. However, a class of critical sets is known for
a back circulant latin square which is a particular latin square having the
initial row in the standard form and subsequent rows formed by translating
the previous row one element to the left. A generalisation of the problem
of finding critical sets of minimum size in a single latin square is that of
finding the minimum number of cell entries needed to be prescribed in the
members of a set of two or more mutually orthogonal latin squares (MOLS)
so that the cell entries in the entire set of squares can thereby be uniquely
determined. To date very few results in this direction are known. Keedwell
[8] was the first to attempt this problem. He made a preliminary investi-
gation on the size of the minimal critical set for a set consisting of a back
circulant latin square of order upto 7 and its k cyclic orthogonal mates.
Subsequently SahaRay, Adhikari and Seberry [11] carried out further in-
vestigation for order 7 and characterised a critical set, thereby providing
an improved upper bound on the size of the minimal critical set. They also
studied the case of order 9. They observed that the critical set obtained
in the case of order 9, when generalised for order n, n odd, n > 11 can
be easily shown to be UC in general, and provide an upper bound on the
size of the minimal critical set. However the construction does not pro-
vide a critical set for any n. With a view to obtain a finer upper bound
we further consider the same problem in this paper. In Section 3 through
characterisation of a UC set we attain this goal. This UC set is also shown
to be a critical set for order 15. Moreover, using computer programming,
we obtain UC sets of further smaller size for orders 11 and 13 which is given
in section 4, but we omit the details of the completion steps because of very
complicated branching arising out of the weakly completable nature of the
UC set.
Before discussing the main results some background information is needed

which is given in the next section.

2 Preliminary Definitions and Notations

In this section, we draw the readers’ attention to the definitions and known
results on critical sets for latin squares of order n which will be used here-
after to derive the main results. A latin square L of order nisann x n
array with entries chosen from a set N of size n such that each element of
N occurs precisely once in each row and in each column. In what follows
N is assumed to be {1,2,---,n}. For convenience a latin square L of order
n is sometimes represented by a set of orderd triplets {(3, j, k)| element k
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occurs in the position (i, ), i,7,k € N}.

A partial latin square P of order n is an n X n array with entries chosen
from N such that each element of N occurs atmost once in each row and
in each column of P. Then |P]| is said to be the size of the partial latin
square and the set of positions Sp = {(¢, )| (¢,5,k) € P, 3 k € N} is said
to determine the shape of P. Let P and P’ be two partial latin squares
of the same order, with the same size and shape. Then P and P’ are said
to be mutually balanced if the entries in each row (and column) of P are
the same as those in the corresponding row (and column) of P’. They
are said to be disjoint if no position in P’ contains the same entry as the
corresponding position in P. A latin interchange (also referred to as latin
trade, cf. Keedwell [9] ) I is a partial latin square for which there exists
another partial latin square I’ of the same order, size and shape with the
property that I and I’ are disjoint and mutually balanced.

A Uniquely completable set (UC set) U of triplets is such that it yields
only one latin square L of order n which has element & in position (%, 5),
for each (i,7,k) € U. A set C is said to be a critical set if

1. Cis a UC set, and

2. no proper subset of C satisfies 1.

A minimal critical set is a critical set of the smallest possible size.

If C is a UC or critical set, a triple (3,7,k) € L \ C will be said to be
forced, if either Vh # 1, 3 z such that (h, j;2) or (h, z;k) € C, or V h # 3,
3 z such that (2, h;k) or (i,h;2) € C, or ¥V h # k,3 z such that (¢, z; k) or
(2,5;h) €C.

A UC set of cell entries for a set of MOLS is called strong if the cell
entries in the entire set of squares can be successively filled by a sequence
of adjunctions of cell entries to individual squares of the set each of which
is forced.

A UC set which is not strong is called weak.

In this paper, we start with a back circulant latin square L; and deal
with its cyclic orthogonal mate L, having its initial row {p1,p2,...,Pn}
where {p),p2,...,Pn} is any permutation of the symbols {1,2,...,n} and
try to identify a minimal critical set for the set S = {L;, L2}. However,
to simplify notations, without loss of generality, we refer to p; as j in our
subsequent discussion. It is to be noted that all mathematical operations
discussed in this paper are performed modulo n, however, we use symbol n
instead of 0.

Definition 2.1 We say a latin square L, of order n is a cyclic latin square
if its (¢,7)th cell contains the entry 1+ (i —-1)t+(j—1),t=1,2,...,n—1,
i,7 € N.

We now quote below the best known lower bound on the size of the
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critical sets for latin squares of order n, n odd, due to Cooper, Donovan
and Seberry [1].

Lemma 2.2 Let n=2m + 1, for some positive integer m and

C = {@ji+i-1)]i=1,...,n-1)2andj=1,...,(n-1)/2~i+1}
U {Gii+i-1)li=(+1)/2+1,...,n, andj=(n+3)/2—4,...,n}

Then C i3 a critical set for a back circulant latin square of order n.

Now we define the special transversal pertinent to our discussion and in-
troduce notations for any row or column of a n x n array.

Definition 2.8 In an n x n array, a transversal is a collection of n cells
{(il’jl)a teey (imjn)} where (ilv ey ‘l.n) and (jla oo )jn) represent permuta-
tions of the numbers {1,2,...n}.

Definition 2.4 In an n x n array, for i € N, the transversal {(1,1), (2,4 -

1)) teey
(n,3—n+ 1)} is termed as the ith reverse transversal denoted by T;.

We denote the ith row and the jth column of any n x n array by R; and
Cj respectively.

Remark 1 : It is evident that in the back circulant latin square L,, the ith
symbol occurs in the ith reverse transversal. Also note that Ly, has its first
row in the standard form and subsequent rows are formed by translating
- the previous row 2 elements to the left.

3 Critical sets for a pair of Mutually Orthog-
onal Latin squares of odd order

In this section we deal with the set S = {L;, La} (vide Definition 2.1) of
two cyclic MOLS of order n, n odd, n > 11 and identify a UC set, which
is used to obtain an upper bound on the size of the minimal critical set for
S. The following partial latin square of order 15, which will be shown to
be a critical set for L, as a member of S can be generalised to construct
the required UC set for any odd n, n > 11.
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1 3 5 7 9 11
3 5 7 9 11 13
5 7 9 11 13
7 9 11 13
9 11 13
13
15
15 2
15 2 4
15 2 4 6
15 2 4 6 8
2 4 6 8 10
4 6 8 10 12
Fig.1

Theorem 3.1 Let Ly be the back circulant latin square of order n, n odd,

n > 11 and Lo be its cyclic orthogonal mate translating two elements to the
left. Then

C = {G,42+j-2): i=222 2227 _3 1, j=1,3,5,..,n—6)
U {(i!j: 27-+.7_2) i=_;—'r_-2-'—1) ji=3, 5:°")n_4}
U (G4, 2i+i-2): i=n,n—l,...,n—%+1; j=6,8,...,n—1}

is a UC set of size 2271‘5-1-—6 Jor Ly as a member of a set S = {L;, Lo}

of two pairwise orthogonal cyclic latin squares.

Proof : We start with a back circulant latin square L; and assume that
it has been completed from a partial latin square of size "—“ given in
Lemma 2.2. Not to obscure the essential steps for unique completlon of

L3 as a member of S = {Ly, Lz} we breakup C into two disjoint subsets
consisting of odd and even columns. We define

Cur ={(i, j, 2i+j=2): i="—;’--2,%-3,...,1; j=1,3,5,...,n—6)

n n
UG, 4 2i+5-2): 2’,7—1,3_3 5...,n—4}
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and

J

Crr= {(, j, 2i+5-2): i=n,n-1,...,n-—2

+1; j=6,8,...,n-1}
Obviously C = Cyr {J Crr.

The steps for completion of L, differ at some places depending on n =
1(mod 4) or n = 3(mod 4). So we discuss below the steps for unique
completion for n = 1(mod 4) and whenever any deviation arrises for n =
3(mod 4) we mention that within bracket. We first make the following
observations:

Fact 1 : In Cyr,
z is present along the back transversals T;F, T_=+s, ceny Tz
forz=1,3, ..., n—-6,
n —4 is present along Twa-1, Ths1,...,Tn—4, and
n — 2 is present along Tq-_x, Tq_a, voiyTp-gs.

Fact 2 : In Crr,
z is present along Tz 11, Tz42, ..., ng-_;_:_l_
forz = 4,6,...,n-1,
2 is present along Ty, T%, ..., Tq_x_,
n is present along T3, Ty,... ,Tgi_l_.
Fact 3 : In L,,

i occurs along the back transversal T;, ¢ = 1,2,...,n, and hence orthog-
onality of Ls to L, demands that in L, all the elements along the back
transversal T; should be different. Moreover, being a latin square means
that all the elements along row R; and column Cj of Lj should be different,
i,7 €{1,2,...,n}.
Noting these three points we argue as follows towards completion of a partial
latin square L} to L , L}, having entries prescribed by C. We assume below
that n=4t+1,t >4 (4t +3, t > 3). The cases of n = 11 and 13 are
dealt with differently, as the general rule does not go through in these two
cases.
Step 1 : Using Fact 1 and Fact 3 noted above, z is placed in Lj uniquely
in Cn-l»cn—Sv veey Cz:
CniCn-2,...,Czyo inorder, forc=n—-6, n -8, ..., 2t =1 (2t +1).
Step 2 : Using Fact 2 and Fact 3 noted above, z is placed uniquely in
Cl: 039 [EEE} Cﬂl
Cs, C4y ..., Czinorder,forz= 4, 6, ...,2t —-2.
Step 3 : Now n —2 can be assigned in C,,; in one of the three available
cells viz.

(a) (11 717' - 1)’

(b) (25, n—-1)
and (c) @, n—1).
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We will argue below that the cases (a) and (b) are infeasible. To this end,
we start with the case (a), i.e we assume that n — 2 is placed in (1, n—1),
then n — 2 can be placed in C,,_3 in one of the two available cells viz.

(3.1) (“'2_-'11 n- 3)
and (a2) (22, n-3),
both of which will turn out to be infeasible in the course of our reasoning.
Now to establish this, we start with (a) along with (al) i.e assignment of
n—2in Cp_y at (1, n—1) and in Cp_3 at (2L, n—3). Thenn—2is
placed uniquely in Cy,—5, Cpn—7, ..., Cat+2 (Catt4) in order, proceeding
downwards in the process of filling, C2; (Ca.+2) is the first column to arise,
where two places for n —2 are available. Now using Fact 1 for n—2 and the
T:’s along which n — 2 has been placed so far in alternate columns starting
Cr_1, it can be easily seen that there is no place left for n — 2 in Cp_s.
Hence (a) with (al) cannot happen. Now to settle that (a) with (a2) also
cannot happen we argue along the same lines. If (a) and (a2) occur together
then n—2 can be placed uniquely in Cp—5, Cp_7,..., Catt2 (C244) leaving
no place for n — 2 in C,, 2.

Now we eliminate the possibility (b) i.e placement of n—2in (252, n—1).
Suppose that (b) holds, i.e. n—2is placed in (25, n—1). Then using Fact 1
as before, n—2 can be placed uniquely in Cp_3, Cpn_s, ..., Car2 (Catys) in
order, and then in C,,_3 at (1,2—2). Now clearly n—4 and 2t-3 (2¢t—1) can
be placed sequentially in order, in C,—; and thenin Cp,_3, ..., C2t+4 (C2t16)
in turn. Considering Fact 1 and T;’s along which 2t — 3 (2t — 1) has been
placed sequentially in alternate columns starting with C,—;, we see that
2t —3 (2t —1) can be placed uniquely in the rest of the columns in the order
Ca:42 (Cat14), Cot (Caty2), ...y C2, Cn, Cng, ..., Cot—1 (Cat41). Now
going back to the placement of n — 2 again, using Fact 1 and the T;’s along
which n — 2 has been placed so far, it follows that n — 2 can be placed
uniquely in Cy; (Cott2), Cat—2 (Cat) ..., Ca, Cy in order. As a result, a
contradiction arises since no place is left for n—2 in C;. Hence possibilities
(a) and (b) are eliminated and n — 2 is fixed in Cp—; at (2§, n—1).
Step 4: Now n—2is placed uniquely in C,_3, Cpn—s, ...,C2¢+2 (C2tt4)
and then in C,,_2 at (1,n —2).

Step 5: Nown-—4 and 2t —3 (2t — 1) are fixed sequentially in order
in Cp,—; and then in C,_3,...,Ca+4 (Cat46) in turn.

Step 6 : Now using the T;’s along which 2t — 3 (2t — 1) is present in Cyr
and also in the alternate columns starting with Cy,_;, place 2t — 3 (2t — 1)
uniquely in Cae12 (Catta), Cat (Cary2),

LR} CZ; Cn) C'n—2’ (ERN) CZt—l (02t+1)'

Step 7: Now fix n—2 uniquely in Cy; (Co:42), Cor—2 (Ca), ..., Ca, Cy, Ci.
Step 8: Now n —4 is fixed in Cot4+2 (Coyt4).

Step 9: Nowfix 2t -5 (2t—3)in Cr_y, Cp-3, ...,C2, Cy, Cp_2, ...,
Cat-3 (Cot-1).
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Step 10: Now n—4 is placed uniquely in Cy; (Cat2), Cat—2 (Ca:), ..., Co
Cr, Cp—o and finally in C,.

Step 11: Now zis placed uniquelyin C,—1, Cp—3, ..., C3,Cp,Chn—2, ...,
Czy2 wherezisodd, z#1,z=2t -7 (2t -5), 26 -5 (2t -3), ..., 3
Step 12: Now Cy,_j, Cpr.3, ..., Cs can be completed uniquely in order

starting from R; and moving downwards.

Step 13 : Now we try to pla.ce 1 in Cy. Clearly, there are three places
in Cy available for 1, viz. (23!, 4), (n —1,4) and (n,4). If 1 is placed
in (n — 1,4) then no place is left for 1 in R,. Similarly if 1 is placed at
(n,4), 1 can not be placed in R,—;. Hence 1 is placed in Cy at (252, 4)
and henceforth in Cp,C,,,Cr—o,...,Cs.

Step 14 : Now using the fact that 2t is present in Crr along T LTS PR
Tn+ae-1, 2t is uniquely placed in Cy, Cs, ... ,Cyn, C2, Cs.

Step 15 : We now try to position 2. In Cz only two places are available
for 2 viz. (1,2) and (n,2) as the other empty cells in C; fall along the
transversals 12, Tit3, ..., Tgai, t > 3 and 2 is already present in Crr
along Ty, T5, . Tq_x If 2is in (n,2) then in C; the only place available
for 2 is (242 1) as 2 is already along Tq_x and in the other rows of C;.
Now clearly no place for 2 is available in C4 and hence 2 is fixed in (1,2)
and consequently 7 is fixed in (1,n). Hence in R, n is placed uniquely in
(2, n— 2) and consequently 2 is placed in (2,n). Thus in R,, n is placed
uniquely in (n, 2) because of presence of n along T;, and T3

Step 16 : Now n is fixed in R,—; at (n —1, 4).

Step 17 : Now considering the possibilities of 2 in R, we find that 2
can be at (n, 1) or (n, 4). To eliminate the placement of 2 in (n,1) we
argue as follows. Suppose that 2 is placed in (n, 1). Now we attempt to
assign 2 in R¥. It is seen at this stage that in R-"P the empty cells are

(242, 1), (243, 2t+1), (282, 2t+3), ..., (242, n—2) which are along
Cy, Ty, Ts, Ts,..., Ty respectively, whenever n = 4t + 1. Thus we see
that for n = 4¢+1, 2 can be placed uniquely in Rg;-_a at ("2—*3, 2t +3) along
T5. Now because of the presence of 2 along Ty, 2 is placed in R3 uniquely
in (3,n — 4) and henceforth in Ry, Rs, ..., R:;—; uniquely, leading to a
contradiction in placement of 2 in R,_;. (Whenever n = 4t + 3 the empty
cells in R»n nt3 are along Cy, T,, Tp, Ty,..., T2 and thus it readily leads
to a contradiction in the placement of 2 in Rn s as 2 is already in C) and
along these transversals.) Hence in R,, 2 should be placed at (n,4).

L), with the entries fixed so far can now be permuted to Lj which has
the standard form of Cooper, Donovan and Seberry [1] and Smetanuik [12]
where we now have a critical set in the back circulant latin square as given
in Lemma 2.2. This allows us to uniquely complete L’ and reversing the
permutations it gives back Ls completed from Lj.
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Now we deal with the case n = 13.

Place x uniquely in Cy3,Cho,...,C2,C13,Ci1,...,Czy2 in order, for
z =7, 5. Then position 4 in Cy, Cs, , Cis, Ca, C4 sequentlally In Cy2,
11 can now occur in three places viz. (1,12), (6,12), (7,12). Now 11in (1,12)
leads to two possibilities for 11 in Cyo viz. (7,10) and (8,10). Placement of
11 in (7,10) is followed by unique placement of 11 in Cg, C11, Cg leading
to a contradiction of placement of 11 in Ci;3. Again placement of 11 in
(8,10) is followed by placement of 11 in Cg leading to a contradiction in
placement of 11 in Cj;. Thus choice of 11 in Cj2 at (1,12) is eliminated.
Similarly choice of 11 in Ci2 at (6,12) is infeasible because it leads to the
unique placement of 9 in C}2 and Cjq, then 3 in C}2 and Cjg, 11 in Cyg, 3
and 11 simulteneously in order in Cg, Cg, Cy4, C> sequentially, then 11 in
C3 leaving no place for 11 in Cy;. Thus 11 in C), is fixed at (7,12). Now,
in turn, 11 is fixed in Cip and Cg, 9 in C}2 and Cjo, 3 in Cy2, Cio, Cs, 9
in 08: 3in C6$ 11in Clla CG: C4’ CZ) 013; Cl, lin Cl2, CIO, Cs: CG, 9in
Cg, C4, Cs, Ci3, C1; and finally in C;. Then we follow step 11 onwards
as discussed above for n = 4t + 1 to complete Lo uniquely.

In the Appendix, we present the details through a tree structure for
n = 11 to allow easy comprehension for completion as the weakly com-
pletable nature of the UC set causes considerable minor details. [ |

Now Lemma 2.2 and Theorem 3.1 provide an upper bound for the size
of the minimal critical set for S = {L,, L2}.

Theorem 3.2 Let L be the back circulant latin square of order n, n odd,
n 2> 11 and Ly be its cyclic orthogonal mate translated two elements to the
left. Then the size of the minimal critical set for S = {L,, L2} is atmost

2
n°=1
3 - 6.

Proof: From Lemma 2.2 1t follows that the back circulant latin square L;
has a critical set of size 2 ‘1 . It follows from Theorem 3.1 that the size of

the critical set for L as a member of S is atmost % 4‘1 — 6 as a critical set
is embedded in a UC set. Hence for joint completion of L; and L, the size
of the minimal critical set is atmost # —-6. [

Now we show that the UC set C given in Theorem 3.1 is indeed a critical

set for Ly for n= 15.

Theorem 3.3 Forn = 15 the set C given in Theorem 3.1 is a critical set
for Ly as a member of S = {L1, L2}.

Proof: Now to prove that the UC set C in Fig. 1 is a critical set for Lo,
we show that for each (i, 7, k) € C, there exist two latin interchanges La,
t =1,2 in Lo satisfying

o ﬂ Ly = {(i:ja k)}, t=12.

179



It is easy to verify that for any (%, j,k) € C, La contains a partial latin
square Ly, of the form

L21 = {(i)j)k)! (i|j+a1k+a)i(i+a)j +a,k),(i+a,j+2a,k+a),
(i+ 20,5 + 20, k), (i + 20, 5, k + o)},

which can be replaced by another partial latin square Lys of the form

Ly = {(i,j,k+a),(i,j+a,k),(i+a,j+a,k+a),(i+a,j+2a,k),
(i+2a,j + 20,k + a), (i + 20, 5, k)},

yielding a different latin square Ly orthogonal to L, where,

a = § for (i,5,k) € Cyr \{(l, 11, 11), (2, 11, 13), (6, 3, 13)}
U {(9, 14, 18), (10, 12, 15), (10, 14, 2)}
d
= a = 10 for (i,5,k) €Crr. \{(9, 14, 15), (10, 12, 15), (10, 14, 2)}
U {1, 11, 1), (2, 11, 13), (6, 3, 13)}.

Orthogonality follows from the fact that (, , k) and (i+«, j+2¢, k+ )

fall along Tiyj;—1, similarly (i,5+ a, k+ ) and (i+ 20, j + 2¢, k) fall along
Titjta-1 and (i+ a,j + o, k) and (i + 2, 4, k + a) fall along Tiyji2a—1
where k and k 4+ a can be interchanged.
Thus if we remove any element from C then we can complete the subset
to at least two latin squares orthogonal to L; each of which has one of
the partial latin squares given above. So C with size 50 turns out to be a
critical set for L,. [ |
Remark 2: Note that using orthogonality with L; the size of the critical
set for Lo can be reduced by 6 from 56, the size of the critical set of
smallest size known so far, as given in Lemma 2.2 due to Cooper, Donovan
and Seberry [1]. It is to be noted that there does not exist any cyclic latin
square orthogonal to both L; and Ls.

4 UC set of further smaller size for n = 11
and 13

It is interesting to note that for » = 11 and 13 we obtain through computer
verification UC sets of further smaller size, reduced three more elements in
each case. As these sets are weakly completable, due to various branching
at different stages we omit the deatils of the steps for completion, however
we present below the computer output. Whether these sets are critical are
yet to be verified.
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w
[$4}

11
11 2
11 2 4
2 4 6
4 6 8
UC set for n= 11, Fig.2
1 3 5 7 9
3 5 7 9 11
5 7 9
7 9
13
13 2
13 2 4
13 2 4 6
2 4 6 8
4 6 8 10

UC set for n= 13, Fig.3

5 Concluding Remarks

We strongly believe that as n grows , n prime, n > 15 there is a UC
set of smaller size but to write down the steps for unique completion in
general, becomes very much more complicated. Investigation is going on as

to whether we can arrive at a reduction in the required size of the UC set
depending on n.
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Appendix:

We now present the steps for completion of Ly for n = 11. We use the
notation i (j, k) Q where Q= RjorCyor Ty, 4, 4, k, l € {1,2,..., 11}
to denote that i is placed in R; or Ci or along T in (j, k) respectively. Let
i(CD)Q denote that a contradiction arises in the placement of i in Q.
Step 1: 5 is placed in L) uniquely in Cyo, Cs,..., C2, C11, Cy, C7 in
order.

Step 2: Now 2 can be assigned in R;, in one of the four places viz. (11,1),
(11,2), (11,3) and (11,4). We argue below through a tree structure of com-
pletion steps that the only feasible place for 2 in Ry is (11,4).

2R,

2011, 1R, A11,2R,, 2011, 3R, 11, 4R,
[+| | 2(7: ln|

%. :;, A1,90R,

' . 27,1¢
A4, 9T, 26 S)C;
2(CD)T, ’

s, 5)C, 2(s, 4)C, 6, 4)C,
27,2R, 20, 7R, * y 24, 5Cs
2(4’ 7)C-, 2(6- S)C,
24,4)C, 22, 1T, 23,9)C, 23,76, z(évo e,
2ACDXC, 2CD)R, ACDXC), 29, CD)C,,
zu.lu)c“
I 1
4(8, 1)C
4(4, lle 4(7' 3x:;
42,11, 43,11)C,, 4CDXCs
43,91, 41,90R
4(1,2)R; 4CDRR,
4(5, SR
46,3
4(CDR,
Hence 2 is fixed at (11,4) in R;; and subsequently in Cy, Cs, ..., C1; and
C, in order.

Step 3: Now we try to place 9 in Cyo. Clearly there are three places in
Cio available for 9, viz. (1,10), (5, 10), and (6,10). The following tree of
completion steps eliminate the possibility of placement of 9 in (1,10) and
(5,10).
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[ [ |
9(!.| 10)C;o 9(:: ;)o()::l ° %6, 10)C,,
| P { .
%6, 8, ALEC, o, 6C
%7, 6)C, %8, 6)C¢ %6, 10,
8, 9)C, ACDC; 333,100,
ACD)C, ;((.;. :ﬁ:
%6, 4,
37,2)C,
3(8, 11)G;,
3(9,9]
suo.&
11, 5)C
1(2, 10;
101, n))():'c:,,
77, 8)C,
1(3,8)C,
1002, )G
s(l.la)ce
1
' 98, 4)C
51, 41C, s
65 %10, 11)G;,
J %1, 1y, ACDICy
%10,2)Ty, oLt
911, 1R, o
I e ) 1,110,
%S, 6C I !
s 710,113, 76,6 70,66,
s, 11,9 S, 4Rg 4, 9) X A &1
NCDXCy (10,1 4,9 %5, 4)C, A1 .
704y 9,2, 10,2)C, 10,46,
HCDRy 901,16, %9, 1C, 6,1,
14,6)C; 1(4,6)C, 166X
1(10,4)C, 1(10,4)C, 1(11. 0
1CDXC CD)C 1 »33*:;:
Continued
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[ |
(6, 11)C;,
109, 16, 11)G;,
1(5.?):: HCDIR,
14418,
44,1,
4(8,3)C,
42,2)C,
45,41,
47,5
43, 11G,
4( l- mg
«6,7C,
69, 3)C,
&1, 6)Cg
&5, 1)C,
63,2)C,
&4, 11)C;,
&2, 9)C,

&1, 7C;

SCoIC;

Hence 9 is fixed at (6,10) in Cjp and subsequently in Cs at (7,8).
Step 4: Now 3 is fixed uniquely in Cyo, Cs, ..., C2, C11, Cy, ...,Cs in
order.
Step 6: Now 9 is placed uniquely in Cg, Cy, C4 ,Ca, C11, C; in order.
Step 6: Now 7 is uniquely placed in Cyo and Cg in order.
Step 7: Position 1 uniquely in C}g, Cs and Cjg in order.
Step 8: Now 7 is placed uniquely in Cg, Cy, Ca, C11, Cy, C} in order.
Step 9: Complete Cy9, Cs and Cs sequentially.
Step 10: Now 4 is positioned uniquely in Cy, C3, ..., Ci1, C2, C4 in
order. So R is fixed containing 11 at (1,11).
Step 11: 11 is placed uniquely in R, at (2,9).
Step 12: 1 is placed uniquely in R;; at (11,3).
Step 13: 11 is fixed at (11,2) in Ry; and hence is placed at (10,4) in Ryo.
Now as before, following the arguments given after step 17 in the proof
of Theorem 3.1, Lj can be uniquely completed to Lg.
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