VERTEX MAGIC TOTAL LABELLINGS OF COMPLETE
MULTIPARTITE GRAPHS

ROHAN CATTELL

ABSTRACT. A Vertex Magic Total Labelling of a graph G is a one to
one map A from E(G)U V(G) onto the set of integers {1,2,...,e+v}
such that for all £ € V we have A(z)+3_ A(zy) = h for some constant
h, where the sum is taken over all vertices y adjacent to z In this
paper we present several theorems on the existence of such labellings
for multipartite graphs and give constructions for labellings for two
infinite families of complete tripartite graphs, namely K1 nn for odd
n and K2.nn for n =3 (mod 4).

1. INTRODUCTION

Throughout we will denote the vertex set of a graph G by V(G) and
the edge set of G by E(G). A Vertex Magic Total Labelling (VMTL) of a
graph G is a one to one map A from V(G) U E(G) onto the set of integers
{1,2,...,e + v} such that for all z € V we have A(z) + }_ A(zy) = h, for
some constant h, where the sum is taken over all vertices y adjacent to z
and is called the weight of the vertex z, denoted wt(z). The constant h is
called the 'magic constant’ of the graph and a graph which has a VMTL
will be referred to as 'vertex magic’. These labellings were introduced in
[1] where their basic properties were described and constructions provided
for labellings of several families of graphs. For an overview of results on
VMTL’s we refer the reader to [2]. The problem of finding vertex magic la-
bellings for the complete bipartite graphs was studied by Gray, MacDougall,
Simpson and Wallis in [3]. A complete solution was given there in terms of
the following theorem.

Theorem 1. The complete bipartite graph Ky, n, (where m < n) has a
VMTL if and only if m > n —1 (i.e. only for K, » and Kn_1,n)-

For the proof we direct the reader to [2] or [3].
In what follows, we look for a natural generalisation of this theorem,

namely in the context of complete multipartite graphs. We derive some
conditions under which VMTL’s cannot exist. On the other hand, we show
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how to construct VMTL's for the complete tripartite graphs K, and
K2,n,n~

2. MULTIPARTITE GRAPHS THAT CANNOT BE LABELLED

Theorem 1 above provides both necessary and sufficient conditions for
labelling K, .. We are able to prove a generalisation of the ‘only if’ part
of the theorem, which applies to a large family of graphs. This is given in
Theorem 2 below. A further result applying to multipartite graphs is given
in Corollary 3.

Before giving Theorem 2 we remind the reader that the graph G formed
from the product G = H; V H, is the graph with V(G) = V(H;) UV (Hy)
and E(G) = E(H,) U E(Hz2) U S where S is the set of edges connecting
every vertex of H; to every vertex of Hs.

Theorem 2. If H is any graph such that G = HV K, then G can only be
vertex magic if |V(H)| 2 n - 1.

Proof. Let |V(H)| = m, |E(H)| = s, V(H) = {21,..,2m} and V(K,) =
{¥1).¥n} We have m + n vertices and s + nm edges in G for a total of
m+n+8+nm labels. The largest possible sum on the {y1,.....,yn } vertices
is obtained by using the largest n + nm labels on those vertices and their
incident edges. So
n+mn4m-ts
nh < Z k.
k=m<+s+1

The smallest possible sum on the {zy, .....,Zm } vertices is obtained by using
the smallest m + s + mn labels on those vertices and their incident edges,
however we must note that the s edges are counted twice in » and so we
should assign the smallest possible labels to these. Consequently we have
that

s m+mn-+s
mh2Y k+ Y k.
k=1 k=1
This gives us the following two inequalities:
(n+nm+m+s)(n+nm+m+s+1)

nh < —(m+s)(m+s+1) ’
2
mh > s(s+1)+(m+mn+s)(m+mn+s+1)‘

2
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Combining these we get

s(s+1)+(m+mn+s)(m+mn+s+1)
m

<
(n+nm+m+s)(n+nm+m+s+1)
—(m+s8)(m+s+1)
n

Solving for n we get
< m? — 238+ /m?* + 8m3 + 4m2(s + 2) — 4s(s + 2)
= 2m )

Since the discriminant < (m?+-4m+2s)? we can substitute (m2+4m+2s)?
into the above expression to get the strict inequality

m? — 2s + /(m2 + 4m + 2s)?

n
2m
_ mP-2s+m?+4m+2s
- 2m
= m+2,
ie.
m>n—1
or
V(H)| 2n-1.

O

We note that since this theorem does not use the structure of H in
any way, stronger results may hold for particular choices of H. We also
note that, as a consequence of Theorem 2, H V K,, is not vertex magic for
n—-1<|V(H).

Corollary 3. The complete multipartite graph K, ms,....m,.,n can be vertez-

magic only if
r
Z m;>n—1.
i=1
Proof. Since a complete multipartite graph has the property of G in the
preceding theorem the result follows immediately. 0O

In particular, for the tripartite graph Ky ,, » to be vertex-magic we need
m+k > n— 1. No stronger result can be obtained by these kinds of
arguments since there are known labellings for cases where m+ k=n—1.
By way of example a labelling for K ; 3 is shown in Figure 1. Computer
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searches for labellings of several other graphs close to the cut off point have
also been successful. For example, K 3 4 as shown in Figure 2.

FIGURE 1. A vertex magic labelling for K 1,3 with magic
constant h = 24,

13

FIGURE 2. A vertex magic labelling for K 2 4 with magic
constant h = 54.

Open Question: Do all graphs satisfying Theorem 2 have VMTL’s?
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3. CONSTRUCTIONS OF LABELLINGS FOR TRIPARTITE GRAPHS

The ‘if’ part of Theorem 1 was proved by constructing labellings for the
permissable cases. An analogous result for multipartite graphs will neces-
sarily be far more difficult, however there are certain families of tripartite
graphs for which we have found labellings. It seems likely that no univer-
sal construction exists for those Kim which are vertex magic. Here we
present some constructions for two families of complete tripartite graphs.

Theorem 4. The tripartite graph G = K, 5, n, has a vertex magic labelling
with magic constant h = }(n3 + 6n? + 9n + 2) when n is odd.
Proof. Let us denote the vertices and edges of G by:
V(G) = {mi’yj?zll < i < n, 1 < .7 < n}a
E(G)
Throughout the proof 7 and j run from 1...n.
We construct a labelling for G, in which the labels 1,..,n% + 4n + 1 have
been used exactly once each. Let A be an n x n magic square using the

integers {2n + 1, .....,n% + 2n}. The magic constant for this square is given
by

{ziyj, ziz,y;2z]l <i<n,1<j<n}

a= -;-('n3 + 4n? +n).
We use a; ; to denote the i, jth entry of A and construct the labelling as
follows:
AMz) = n?+4dn+1,
Mzi) = ni+4n+1-4,

NP n?+3n+1-j ifjisodd
¥i) = Mm+1—-j if j is even,
/\(:v,-yj) = G4,
Mziz) = 1,
N n+j if j is odd
Ay;z) = { n?+2n+j if jis even.

The weights on the z; vertices are given by

wi(z;) = Az)+ i AMz:y5) + Mziz)

i=1
= n’+4n+l—-ita+i

1
= n2+4n+1+§(n3+4n2+n)
= %(n3+6n2+9n+2)
= h.
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The weights on the y; vertices are given by

wi(y;) = AMys)+ ) Amiy;) + My;z2)

i=1
n®+3n+1-j+a+n+j ifjisodd
n+1-j+a+n?+2n+j ifjiseven
n? +4n+ 1+ 3(n® + 4n% +n)

= %(n3+6n2+9n+2)
= h.

Finally the weight on the single vertex z is given by

wi(z) = Az)+ i Mzs2) + i My;z)
i=1

i=1
n }(n+1) 3(n-1)
= n’Hdn+1+Y i+ Y (R—1+2)+ Y (n®+2n+2))
i=1 =1 i=1
1 3 1 1 3 1
= p2 2 Sn2 N+ (EnP 4+ St~ =
= n +4n+1+2n(n+1)(4n +n+4)+(2n +am —n 4)

= %(n3+6n2+9n+2)
= h.

O

Unfortunately the same construction doesn’t work for even n but perhaps
something similar could work. It would be nice to find labellings for all
graphs of the form K., , », however these constructions apparently become
ever more complex as m increases. By example we present the following
theorem.

Theorem 5. The tripartite graph G = K, n has a vertex magic labelling
with magic constant h = M‘%@‘ﬁ whenever n = 3(mod 4).

Proof. Let us denote the vertices and edges of G by:

V(G) = {xhyjyzkllsisn1 15JSnand1$k$2},
E(G) {ziy;, iz, y;2|1 <i<n,1 <j<nand 1 < k < 2}.

Again ¢ and j run from 1,...,n throughout.
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We construct a labelling for G,
labels 1, ...

for all cases where n > 15, in which the

,n2 4+ 6n + 2 have been used exactly once each, as follows:

(3n+3-2i fori=1,...,25U
2n+3-2i forz—"T9 .22
n+3 for i = 221
Alz:) = 9 n+2 forz—i
n®+2n+4i fori=233,. . n-1
| n?+6n—-2 fori=n,
((4n+3-2j forj=1,...,25%
5 for j = 253
2
AMyi) =4 2 for j = 221
n?+2n+1+4j forj=22,... ,n-1
L n?+6n-1 forj--n,
1 fork=1
’\("”‘)‘{ 3n+2 fork=2

Let A be the n x n magic square formed from the numbers from 4n + 3
2
up to n? + 4n + 2 which has magic number a = 22482745 Tet g, ; be the

1,jth entry of A, then

Alziy;) = @ij,

n+dn+4i fori=1,...,253
n? + 6n for i = L
n246n+2 fori= 2l

Meiz) =9 3,439 fori=233 . . n-2
2n+5 fori=n-1

2n+4 for i =n.

(( 2n+4+3—-2i fori=1,. ..,"211
3n+3-2i forz—lz,—g, ,—2,—3
2n+3 for i = 2z

Mzizz)=<¢ 2n+2 for'i—ﬁ‘—1
dn+3—2i fori_$,...,n—2
n+5 fori=n-1

| n+4 fori=n,
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(n+2-2j forj
3n+6 for j
oy_ ) 3m+3 for j
AWi2) =\ 5n43-2j forj
2n+2-2j forj
. 3 for j
[ D24+ 4n+1+4j
n?+6n-5
n?+6n+1
A(yj22)=4 2n+2—2j
on+3—2j
3n+4

\
‘We now need to check that the weight on

=1,...,25
— n=3 2
=n-2-1
_nil 3n-5
=B, L
_ 3n-1
=2=,...,n~-1
=n,
forj=1,...,25°

> __ n—3
forg.——21
for j = 23>
forj=i"zl,...,"*"—;§

3n-1

forj=2=,...,n—1
for j =n.

each of the vertices is equal to A.

Then the weights on the vertices are given as follows:

wh(zs) = Ma:)+ A@iz) + A(@iz2) + z"; Azis),
p=
wi(y;) = My;) + Myz21) + My;z2) + g Mziy;),
wiz) = A=)+ f‘T Mziz) + il Aws21),
< pm
wi(zm) = AG)+ Z",:A(x,-zz) +3 M)
< <

It is easily checked that A(z;) + A(ziz1) + M(ziz2) = n? + 9n + 6 for &
from 1 to n. The A(z;y;) are the entries of the magic square A and so

Tt Mziyy) = o = Bot8nson,
Hence

wi(z;) =n® +9n + 6+

nd +8n%+5n
2

_ n34+10n% +23n+ 12

2
= h.

A similar argument yields

wi(y;) =h

It remains to be shown that wi(z;) = wt(z2) = h. From above it can

n
t=1

be checked that A(z;) = 1, 3
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Z?:l /\(yjzl) = %nz + 1—21n + % So

1 15 15 5 11 5
wit(z)) = 1+§n3+z—n2+6n+z-+zn2+—2—n+z
_ n®+10n? +23n + 12
- 2

= h.
Likewise A(22) = 3n + 2, 37, AM(®iz2) = 2n® 4+ 5n and Y5, My;22) =
in® +3n% + In+4. So

1
wt(z2) = 3n+2+2n*+5n+ §'n3+3n2+gn+4

n® 4+ 10n2 4+ 230+ 12
2

= h.

Thus for n > 15, n = 3(4), K2,n,n has a VMTL. The pattern does not
extend down to n = 3,7 and 11 but similar constructions have also been
found for these cases. In the interests of brevity we will omit the labellings
for K377 and K>3 11,11, however we illustrate in Figure 4 with a labelling
for K2,3’3. ’ 0O

In constructing these labellings we have found it convenient to make use
of a magic triangle. In such a triangle the entries in the boxes represent the
labels of the graph as indicated and the diagonal and horizontal columns all
sum to the magic number for the graph. Note the use of the magic square
at the top of the triangle. The magic triangle for Ky 3 3 is shown in Figure
3 along with it’s corresponding graph labelling in Figure 4.

Again it would have been nice to find labellings for n = 0,1 and 2
(mod 4) however finding constructions of this type is very time consuming
and encourages finding a different approach.

Further progress on an analogue of Theorem 1 for all multipartite graphs
is more likely to come from a proof that does not rely as heavily on con-
structions as did the proof of Theorem 1.
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FIGURE 3. A magic triangle for the graph K333

FIGURE 4. A vertex magic labelling for K5 3 3 with magic
constant k = 99.
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