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Abstract. Fishburn, Tanenbaum and Trenk [4] define the linear discrep-
ancy ld(P) of a poset P = (V, <p) as the minimum integer k > 0 for which
there exists a bijection f : V — {1,2,...,|V]|} such that u <p v implies
f(u) < f(v) and u||pv implies | f(u) — f(v)| < k. In [5] they prove that the
linear discrepancy of a poset equals the bandwidth of its cocomparability
graph.

Here we provide partial solutions to some problems formulated in [4]
about the linear discrepancy and the bandwidth of cocomparability graphs.
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1 Introduction

In [4] Fishburn, Tanenbaum and Trenk introduce the notion of the linear
discrepancy of a poset as a measure of its nonlinearity. At the end of [4]
they formulate a number of problems about this parameter. In the present
paper we will provide partial solutions to some of these problems. We start
with notation and definitions.

Let G = (V,E) be a finite and simple graph. The degree and neighbor-
hood of a vertex u € V in the graph G are denoted by dg(u) and Ng(u),
respectively. The maximum degree of G is denoted by A(G).

Let P = (V,<p) be a finite poset, i.e. <p is an antisymmetric and
transitive relation on the finite set V. For two different elements z,y € V,
we write z 1 p y (z||py), if either z <p y or y <p z (neither z <p y nor
y <p z) and call z and y comparable (incomparable).

An extension of P = (V,<p) is a poset Q = (V, <g) such that u <p v
implies u <q v for u,v € V. If Q is an extension of P and no two different
elements of Q are incomparable, i.e. Q is a chain, then Q is called a linear
extension of P.
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The cocomparability graph G of a poset P = (V, <p) has vertex set V
and two different elements z,y € V are adjacent in G if z||py. (Note that
the mazimum degree A(G) of G equals the mazimum number of elements
that some element of V is incomparable to in P.)

We will now define the linear discrepancy of a poset and the closely related
bandwidth of a graph.

Let P = (V, <p) be a poset and let @ = (V, <g) be a linear extension
of P such that u; <q u2 <@ ... <@ un for n = |V|. The uncertainty
uncert(Q) of the linear extension Q of P is defined in [4] as 0, if P is a chain,
or as max{j — i | us|]|puy, 1 < i < j < n}, if P is not a chain. The linear
discrepancy 1d(P) of P [4] is the minimum uncertainty of a linear extension
of P. Alternatively, one can define the linear discrepancy of P = (V, <p)
as the minimum integer k£ > 0 for which there exists a bijective mapping
f:V = {1,2,...,|V|} such that u <p v implies f(u) < f(v) and u]|pv
implies |f(u) - f(v)| < k.

Let G = (V, E) be a graph. A bijective mapping f:V — {1,2,...,|V|}
such that uv € E implies |f(u) — f(v)| < k, is called a k-labeling of G. The
bandwidth bw(G) (cf. [3]) of G is the minimum k for which there exists a
k-labeling of G.

The main result of [5] relates the linear discrepancy to the bandwidth.

Theorem 1 (Fishburn, Tanenbaum and Trenk [5])
If P i3 a poset and G is the cocomparability graph of P, then 1d(P) = bw(G).
We will now reformulate three of the problems posed at the end of [4].

(i) What is the maximum value of “2¢erQ
of a poset P (cf. no. 5 in [4])?

over all linear extensions Q

(ii) If G is a cocomparability graph, is it true that bw(G) < |34(5)=1)
(cf. no. 6 in [4])?

(iii) Characterize the posets with linear discrepancy equal to 2 (cf. no. 1
in [4]).

In the following section we prove a best-possible upper bound on the ex-
" pression &E‘('%}Q) in Problem (i) and an upper bound on the bandwidth of
a cocomparability graph G which implies an affirmative answer for Problem
(ii) in the case A(G) < 3. Regarding the third problem, we first show how
to solve the algorithmical version of this problem combining known results.
Finally, we formulate a conjecture about a structural characterization of
the posets with linear discrepancy at most 2 and prove a related result.
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2 Results

Proposition 1 Let P = (V,<p) be a poset which is not a chain and let
Q = (V,<q) be a linear extension of P. Let G = (V, E) be the cocompara-
bility graph of P. Then

uncert(Q) < 2A(G) -1 (1)
uncert(@) _ 2A(C) -1 .
4(P) = max{L(Ne(®@UNe@)]=1) |weE}
uncert(Q) 2A(G) -1 2
P < TaEn <t EEy ®)

Proof: Let uy <q uz <q ... <@ un for n = |V| and let u;||pu; for some
1 €£i<j < n. Since Q is a linear extension of P, if u; Lp u and
w Lp u; for some ¢ < |l < j, then u; <p w <p u; which implies the
contradiction u; <p u;. Hence u;||pu; or u||pu; for all i <! < j, and thus
{'u.,-, Uitlyeoos 'uj} c Nc(u,') U NG(‘U,J') which implies that

2A(G) 2 do(us) +do(u;) 2 [No(us) U Na(u;)| 2 5 —i+1.

Thus j — ¢ < 2A(G) — 1 which implies (1).
The inequalities (2) and (3) follow immediately from two known lower
bounds on the bandwidth:

bw(G) > max {-;—(ING(u) UNg(v)|-1) |uv e E}

(cf. Lemma 2.3 in [8]) and bw(G) > I"AJQEH (cf. [2] or Lemma 18 in [4]).
Q.E.D.

We will illustrate that Proposition 1 is best-possible. For { > 0 let P =
(V, <p) be the poset such that V = {z,y} U {u1,us,...,ua+2}, u <p uj
for1 <i<j<242, z||py, z||pus <pyfor 1 i <l+1and z <p u;||py
for | +2 < ¢ < 20+ 2. See Figure 1 for a Hasse diagram of P.

If G = (V, E) is the cocomparability graph of P and [ = 0 mod (3), then
it is easy to check that A(G) = !+ 2 and bw(G) = 2l +1 = }(|Ng(z) U
Ng(y)|—1). If Q is the linear extension of P with ugi.2 <q y and z <q u4,
then uncert(Q) = 2! + 3 = 2A(G) — 1. Hence (1) and (2) are satisfied with
equality for P and Q. Furthermore, (3) is satisfied with equality for { = 0.
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Figure 1: The poset P

Now we proceed to Problem (ii).

Since Ka,a is the cocomparability graph of the disjoint union of two
chains of length A — 1 and satisfies bw(Ka,a) = A+ [4] -1 = |34 ]
(cf. Lemma 20 in [4]), the given bound would clearly be best-possible.

Let G be an arbitrary graph. It is easy to see that bw(G) = 1 =
|2332], if A(G) =1 and that bw(G) < 2 = |22=!], if A(G) = 2. Hence
the first non-trivial case of Problem (ii) is A(G) = 3. In fact, there are
planar graphs of maximum degree 3 that have arbitrarily large bandwidth
(consider e.g. the so-called walls that even have arbitrarily large treewidth
cf. [10]). Therefore, A(G) = 3 is also the first case where the assumption
that the graph is a cocomparability graph has to play some role.

In view of Theorem 1, Proposition 1 immediately implies bw(G) <
2A(G) — 1, if G is a cocomparability graph. We will now prove a small
improvement of this bound which is sufficient to yield an affirmative answer
to Problem (ii) for the case A(G) = 3.

Theorem 2 If G = (V, E) is a cocomparability graph of mazimum degree
A(G) > 2, then bw(G) < 2A(G) - 2.

Proof: For contradiction we assume that G is a counterexample of minimum
order n = |V|. Let G be the cocomparability graph of P = (V, <p) and let
A =A(G).

We choose a linear extension Q@ = (V,<gq) of P with u; <q uz <q
..<Qupsuchthati = |{uu; € E|1<i<j<n,j—i=2A~-1}is
minimum. Note that, by Proposition 1, u;u; € E implies that j—i < 2A—1
for all 1 < i < j < n. By the choice of G as a counterexample, we have
t>1
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Claim 1 If u;u; € E for some 1 < i < j < n with j —i =2A -1, then
{u;,ug,,.l, ves ,uj} = Na(u,—) ) Nc(‘Uj) and Nc(ui) N NG(Uj) =0.

Proof of Claim 1: The fact that {ui,uit1,...,u5} € Ne(u) U Ng(uy)
follows exactly as in the proof of Proposition 1. If (Ng(u;) U Ng(us)) \
{us, %it1y. .., 85} #0, then

2A > dg(u;) + dg(uj) 2 [Ne(ui) UNg(us)| 25 —i+1+1=2A+1

which is a contradiction. Hence {u;,uit1,...,u;} = Ng(ui) U No(u;).
If Ng(wi) N Ng(uj) # 0, then

2A — 1 > dg(w) + da(uj) = 1 > |[Ng(ui) U Ng(uy)| 25 —i+1=2A

which is a contradiction. Hence Ng(u;) N Ng(u;) = @ and the proof of the
claim is complete.

Claim 2 If uyuy, ujug, uju; € E and uuj, upuyy € E forsome 1 <i<j <
k <1< n (cf. Figure 2), then ujux € E.

Figure 2: u;, uj, ux and y

Proof of Claim 2: For contradiction we assume that ujux € E. Since Q is
a linear extension of P, we obtain u; <p uj <p ux <p w which implies
the contradiction u; <p u; and the proof of the claim is complete.

Now, let u;u;;2a—1 € E for some 1 <i<n— (24 -1).

Claim 3 If wui42a-1-, € E and uij2a-1uiq, € Eforalll1 < v <€ 3
and some 0 < 5 < A — 2 (cf. Figure 3), then u;ui12a-1-j-1 € E and
Ui+28-1Ui+j+1 € E.

L ]
u; Uit i+3 Uitj+1l Ui4-2A—-1~5 - - » Ui+2A4-2 Ui4+24-1
Figure 3: u;,..., %1281

Proof of Claim 3: For contradiction we may assume, by Claim 1 and sym-
metry, that UiUiyj41 € E and Uit 2A—1Uitj41 ¢ E.
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By Claim 2, we obtain that u,u, € Ffori < v < i+j and i+2A-1-j <
p<i+2A—1and uipuuipj41 € Efor0< u <.

If i + 2A €1 < n, then, by Claim 1, u;4+2a-1 <p u;. Since Uitj+1 <P
Uit24-1, We obtain 441 <p w. Hence ujpjywy € Efori+2A-1<
l<n. :

Ifuy,u,_; € E forsome i < v < i+7 and some !l > 2A—2, then we obtain
as in the proof of Proposition 1 that {u,_;, uy—i41,...,4,} € Ng(u,)U
Ng(uy—1). Since {uitjr1} U {uiroa—1-j,%i428-1-j41,. .., iv2a-1} €
Ng(uy) U Ng(uy—-t), we obtain the contradiction

2A > |Ng(u) UNG(up—t)| 2 1+ 1+1+54+122A-2+3+35 > 24 +1.

Hence uyu, g Efori<v<i+jand > 2A-2.
Since u;4;+1 is incomparable to u;, uis1,...,uitj, the poset Q' with

Uy <@’ w2 <@’ ... <Q’ Ui-1
<@ Yitj+1 <@ Ui <@ Uit+1 <@ -+ - <@’ Uitj
<@ Uitj+2 <Q’ Uit+j+3 <@’ ++» <@’ Un

is a linear extension of P. (Note that Q' arises from Q by ‘shifting’ uitj 41
in front of u;.) If we rename the elements of V' such that v; <g/ v2 <g-
... <qQ' Un, then {vv; € E|1<i<j<n,j—i=2A-1} <t-1 which
contradicts the choice of @ and the proof of the claim is complete.

By an inductive argument, Claim 3 and the fact that G has maximum
degree A imply that the elements in V' = {u;,uiy1,...,ui42a—1} induce a
complete bipartite graph Ka a and that no edge of G joins a vertex in V' to
a vertex in V\ V. Let G; = G[V’] and G2 = G[V'\ V’]. Since G, is Ka a,
bw(G;) < 2A — 2. Since G is a cocomparability graph with maximum
degree at most A that has less vertices than G, bw(G2) < 2A — 2. Since
bw(G) < max{bw(G,;),bw(G3)} < 2A — 2, we obtain a contradiction to
the choice of G and the proof is completed. Q.E.D.

Corollary 1 If G = (V, E) is a cocomparability graph of maximum degree
A(G) £ 3, then bw(G) < |31,

We will now turn our attention to Problem (iii).

It is well-known that graphs with bandwidth at most 2 can be recognized
in linear time and that a 2-labeling of such graphs can also be found in linear
time [6],[9],[1].

In view of Theorem 1, this implies that posets with linear discrepancy
at most 2 can be recognized in linear time. Furthermore, we will describe
now how the proof of Theorem 2 in [5] implies that a linear extension of
uncertainty at most 2 of such posets can be found in polynomial time.
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Given a 2-labeling of the cocomparability graph G of a poset P (which
can be found in linear time), Fishburn, Tanenbaum and Trenk [5] reduce
the problem of finding a linear extension of uncertainty at most 2 to a
bandwidth-2 problem for an interval graph G’. Given P and the 2-labeling
of G, the graph G’ can be efficiently constructed and a special 2-labeling of
G’ is found using the linear time algorithm from [7]. Using the original 2-
labeling of G and the special 2-labeling of G’, it is then possible to obtain in
polynomial time the desired linear extension of P using a so-called Switch-
ing Lemma (cf. Lemma 8 in [5]). This settles the algorithmical version of
Problem (iii).

In [4] Fishburn, Tanenbaum and Trenk characterize the posets with
linear discrepancy at most 1 in terms of three forbidden induced subposets
(see Corollary 25 in [4]). We believe that this kind of characterization
generalizes as follows to posets with linear discrepancy at most 2.

Conjecture 1 A poset P satisfies 1d(P) < 2 if and only if it does not
contain one of the following posets as an induced subposet:

(3) 1+1+1+1, ie an antichain with 4 elements.

(ii) The disjoint union of any poset on three elements and 1 + 1.
(iii) The disjoint union of any poset on three elements and 2.
(iv) The disjoint union of any poset on five elements and 1.

(v) One of the two posets whose Hasse diagrams are given in Figure 4.

Figure 4

(vi) The poset whose Hasse diagram is given in Figure 5.

el

Figure 5
It is easy to check that all posets enumerated in Conjecture 1 have linear

discrepancy 3. Furthermore, it is a simple task to determine all posets
among the listed posets that are minimal with respect to this property.
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By Theorem 2, posets whose cocomparability graphs have maximum
degree at most 3 have linear discrepancy at most 4. We will now prove that
forbidding induced subposets as in (iii) and (vi) of Conjecture 1 implies
that these posets have linear discrepancy at most 3.

Theorem 3 Let P = (V, <p) be a poset such that the cocomparability graph
G = (V, E) of P has mazimum degree A(G) < 3.

If P does not contain an induced subposet as in (iii) or (vi) of Conjecture
1, then 1d(P) < 3.

Proof: By Theorem 2, 1d(P) < 4. We choose a linear extension Q@ = (V, <q)
of P with u; <q u2 <q ... <qQ un for n = |V| such that

a) {uiuj € E|1<i<j<n, j—1i2>5} =0 and subject to Condition a)
b) t = [{uju; € E|1<i<j<n,j—i=4}| is minimum.

For contradiction, we assume that ¢ > 1.

Let ujui1q4 € F for some 1 < i < n —4. As in the proof of Proposition
1, we have {us, uiy1,. .., %i+4} C© No(ui) U No(uiq). Since A(G) < 3, we
can assume, by symmetry, that |Ng(u;) N {vit1, visa, uits, uiva}| = 3.

Case 1.1 Ui ¢Nc(ug).

This implies that u; <p u;41 and that ul|pv for all u € {u;,ui+1} andv €
{%it+2,Uis3, uira}. Hence the set {u;, w41, ..., uiq} induces a subposet of
P as in (jii) of Conjecture 1 which is a contradiction.

Case 1.2 Ui4+2 ¢ Nc(‘u.,').

This implies u; <p wit2, il Puit1, illpuits, uillpuise, visal|puisa and
wit2||pUiva.

If u'-+1||pu.-+4, then A(G) < 3 1mp11% Ui+3 <P Uitq and u,-.,,ll]pu,-.,.a.
Hence the set {u;,ui;1,...,ui+4} induces a subposet of P as in (iii) of
Conjecture 1 which is a contradiction. Therefore u;41 <p uisq.

First, we assume that ui;1 <p ui43. If n > i+ 5 and u;11|| pui+s, then
ui43||puirs and uip4)|puiss. Since u; <p uis, we obtain that the set
{4, %it1, is3, Uisa, uiys} induces a subposet of P as in (iii) of Conjecture
1 which is a contradiction. Therefore, either n < i 44 or ui.; <p u; for
alli4+5 < j < n. Since uj <p u; for all 1 < j < i -1, the poset Q' with

U <@ -0 Q' Ui—1 <@ Uil <@ Ui <@’ Uiy2 <@’ -+ <Q' Un
is a linear extension of P. If we rename the elements of V such that v; <¢

V2 <@/ ... <@ Un, then [{viv; € E|1<i<j<n,j—i>5} =0and
Hviv; € E|1<i<j<mn,j—i=4}| <t—1 which is a contradiction.
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Thus u;41||pus+a. Hence, A(G) < 3 implies u;43 <p uj for i +4 <
j€n. fn<i+4dorn >i4+5and 41 <p uiys then we obtain the
same contradiction as above (again switching u; and u;+1). Hencen > ¢4+5
and u;41||puits. This implies wii4l|lpuits, vis1 <p wit2, ir2||puiss and
u; <p ui4s5. Therefore, the set {ui, %i+1,...,ui4+5} induces a subposet of
P as in (vi) of Conjecture 1 which is a contradiction.

Case 1.8 u;13 & No(wi).

This implies u; <p %43, wi||PUiv1, willPuis2, uillpriva and uiys||puisa.

Since u; <p u; for 1 < j <i—1, we obtain uj <p uy3 foralll1 <j <
i-1.

If n > i+ 8 and uiy4||puits, then {u;,uiy3} U {viyq,...,ui48} C
Ng(ui4q) U Ng(uiqs) which is a contradiction to A(G) < 3. Hence ei-
ther n < i+ 7 or uj+4 <p ui4s.

Ifn<i+6orn>i+7and uirs <p uit+7, then the poset Q' with

U <@+ <QF Uit2 <@’ Uitd <Q' Ui+3 <Q' Uit <Q' +-- <Q' Un
is a linear extension of P. If we rename the elements of V' such that v; <g-
V2 <@’ .-+ <Q' Un, then I{'Ug'l)jEEIl Li<j 5n,j—i25}|=0and
Hvivje E|1<i<j<n,j—i=4}| <t-1 which is a contradiction.
Hence n > i + 7 and u;i4||puit7. This implies that ui+; <p uita,

Uit2 <P Uitd, Uits <P Ui45, Yitrd <P Uit6, Ui+s||PUi+7, vite||puirr and
uip7 <p u; for i +8 < j < n. The poset Q" with

ul <Qn e <Qn Ui4+2
<Q"  Uitd <Q" Ui4+3 <Q Uit+5 <Q” Uit+T <Q” Uit+6
<Qu Uit8 <Qu v <Q" Uy,

is a linear extension of P. If we rename the elements of V such that »; <gn
v <Q@v ... <Qn Un, then [{viv; € E|1<i<j<n,j—125} =0and
[{viv; € E|1<i<j<n,j—i=4}| <t-—1 which is a contradiction.

Since all three cases led to a contradiction, the proof is completed. Q.E.D.
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