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Abstract

A V(m,t) leads to m idempotent pairwise orthogonal Latin squares
of order (m + 1)t + 1 with one common hole of order t. V(m,t)’s can
also be used to construct perfect Mendelsohn designs and optimal
optical orthogonal codes. For 3 < m < 8 the spectrum for V(m,1)
has been determined. In this article, we investigate the existence of
V(m,t) with m = 9 and show that a V(9,t) always exists in GF(q)
for any prime power ¢ = 9t + 1 with one exception of ¢ = 73 and one
possible exception of g = 5°.
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1 Introduction

Let ¢ = mt + 1 be a prime power and let Cp be a multiplicative subgroup
of GF(g) \ {0} of order t. Let the cosets of this group be C;,Cy,:++,Cm_1.
These are called the cyclotomic classes of GF(q) of index m.

For ¢ = mt + 1 a prime power, Mullin et al. in [21] defined a V(m,t)
to be a vector (by,b2,:*,bm41) with elements from GF(q) satisfying the
property that for k=1,2,-.-, m + 1, the set

D= {b;—bj| i€ {1,2,---,m+1}\{k},i—j=k (modm+2)and
1<j<m+1}

is a system of distinct representatives of the cyclotomic classes (denoted
by SDRC). For each k, we call Dy the k’th difference family. These are
the differences that are k apart in the vector. A V(m,t) can be used to
construct other combinatorial designs. [21] proved the following lemma
about V(m,t)’s.

Lemma 1.1 Let g = mt+1 be a prime power. If there i3 a vector V(m,t)
in GF(q), then there exists a set of m idempotent pairwise orthogonal Latin
squares of order (m + 1)t + 1 with one common hole of size t.

Miao and Zhu in [20] used V'(m,t)’s to construct perfect Mendelsohn
designs. A (v, k, \)-perfect Mendelsohn design is a v-set, X, together with
a collection of cyclically ordered k-tuples of distinct elements from X such
that for every i = 1,2,---,k—1 each ordered pair (z, y) is i-apart in exactly
A k-tuples. The following is shown in [20, Theorem 2.3).

Lemma 1.2 Let ¢ = mt + 1 be a prime power. If there is a V(m,t) in
GF(q), then there ezists a (g + t,m + 2, 1)-perfect Mendelsohn design with
a hole of size t.

V(m, t)’s can also be used to construct optimal optical orthogonal codes.
For details we refer the reader to Fuji-Hara and Miao [12].

As far as necessary conditions are concerned, Miao and Yang in [19]
indicated that a V(m,t) exists in GF(mt + 1) only if m and ¢ are not both
even. For m = 3,4,5,6 and 7, the spectrum for V(m,t) has been deter-
mined (see [22], [13], [17] and [4]). Recently, Chen and Zhu [9] determined
the spectrum for V(8, ). They showed the following.
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Theorem 1.3 Let g = 8t+1 be a prime power with t > 7 odd. Then there
ezists a V(8,t) in GF(q) with possible ezceptions of g = 3,310,

There are systematic tables of V(m,t)’s in Brouwer and van Rees [2].
These were extended by Colbourn in [10] to produce systematic tables for
m =9, 10, which can be summarized as follows:

Lemma 1.4 A V(m,t) exists whenever m = 9,10,t > m—1 end mt +1
is a prime less than 5000, ezcept when m = 9 and t = 8, or when both m
and t are even.

For m = 9, the following bound can be found in [9].

Lemma 1.5 Let g = 9t + 1 be a prime power. Then there ezxists a V(9,t)
in GF(q) whenever q > 3.5457197 x 10'2

In this article, we shall investigate the existence of V(m,t) with m = 9.
‘We shall prove the following theorem.

Theorem 1.6 Let ¢ = 9t + 1 be a prime power with t > 8. Then there
exists a V(9,t) in GF(q) with one ezception of ¢ = 73 and one possible
exception of q¢ = 5.

To obtain this result Weil’s theorem on character sums will be useful,
which can be found in Lidl and Niederreiter ([16], Theorem 5.41).

Theorem 1.7 ([16]) Let 9 be a multiplicative character of GF(q) of order
m > 1 and let f € GF(q)[z] be a monic polynomial of positive degree that
is not an mith power of a polynomial. Let d be the number of distinct roots
of f in its splitting field over GF(q), then for every a € GF(q), we have

> wlafe)

cEGF(q)

<(d-1)vg ¢Y)

This theorem has been used in dealing with existence of various combi-
natorial designs such as Steiner triple systems (see [14]), triplewhist tour-
naments (see [1], [18]), V(m,t) vector (see [17], [4], [9]), APAV (see [5] ,
[3]), difference family (see [6], [8]), Q(k,)) (see [7]), cyclically resolvable
cyclic Steiner 2-designs (see [15]) etc. It also has some other applications
in combinatorics (see [23]).
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2 An Improved Bound

To prove our main result, we use two different methods. First we shall use
Weil’s theorem to get a better bound than that in Lemma 1.5. Then we
shall construct other vectors by the help of a computer.

In this section, we shall improve the bound 9¢ + 1 > 3.5457197 x 102
in Lemma 1.5. We shall prove that the bound can be lowered to 9t +1 >
1.7632045 x 101,

Let ¢ = 9¢ + 1 be a prime power. We shall take
V=(Q1,z,2%---,5%) for some z € GF(q).

By the definition, the vector is a V'(9,t) if Dy, for 1 < k < 10, is a system
of distinct representatives of the cyclotomic classes Cp,C;,---,Cs. Since
Dy = —Dyj—, the vector is a V(9,t) if Dy is an SDRC for 1 < k < 5.
Therefore, we have the following,.

Lemma 2.1 The vector (1,z,22,---,2°) in GF(9t + 1) is a V(9,t) if Dy
is an SDRC for 1 < k < 5.

For convenience, define h;(z) = ’:_1'1'1 =gi4.-+2+1,1<i<8 We

use the notation a ~ b to denote that a and b are in the same cyclotomic
class of index 9. Now, we examine Di of V for 1 < k < 5.

D = {:c— 1,z(x — 1),:1:2(:1: -1),---,2%(z - 1)}
= (z-1){1,z,2% --,5%},
which will be an SDRC if z ¢ Cy.
Dy, = {z®-1,z(z%-1),z%(z% - 1), -, (2% — 1),1 — 2°}
= (2% -1){1,z,2% --,27, —hg(z)/h1(2)},
which is an SDRC if D, is an SDRC and —hg(z)/hi(z) ~ 28, ie. z & Cp
and —hg(z)/h1(z) ~ 8.
Dy = {2®-1,z(2®-1),2%(z®* - 1),---,2%(z® - 1),1 - 2®,2(1 - 2°)}
= (28 -1){1,z,2% - ,2°% —he(z)/ha(x), —zhe(z) /ha(z)},
which is an SDRC if z ¢ C3UCs, D, is an SDRC and —h7(z)/ha(z) ~ 27,
ie. ¢ CoUC3UCs and —hy(z)/ha(z) ~ z7.

Dy = {z*-1,z(z*-1),2%(@z* -1),.-,2z%(@* - 1),1 - 27, 2(1 - =),
2*(1-z")}
= (z* - 1){1,z,2°,-,2° —he(z)/h3(x), —zhs(z) /h3(z),
—zhe(z)/ha(z)},
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which is an SDRC if D, is an SDRC and —hg(z)/h3(z) ~ 25, i.e. z & Cp
and —hg(z)/hs(z) ~ z5.

Ds = {z°-1,z(z®-1), - -,2%® - 1),1 - 25 2(1 - 2%),.--,
2°(1 - 2%}
= (® -1){1,zx, --,2%, —hs(z)/ha(z), —zhs(2)/ha(Z)," -,
—z°hs(z)/ha(2)},

which is an SDRC if D, is an SDRC and —hs(z)/h4(z) ~ 2°, i.e. z & Co
and —hs(z)/ha(z) ~ 5.

By Lemma 2.1 and the above discussion, we have the following.

Lemma 2.2 There exists a V(9,t) in GF(9t+1) if there exists an element
z € GF(9t + 1) satisfying the following conditions:

(i) f(:l?) =€ CLUCUCLUC;UC;UCs;

(ii) gi(z) = —z*h8(z)ho-i(z) € Co for 1 <i < 4.

We shall show that such an element always exists in GF(g), consequently
there exists a V(9,t) in GF(q), whenever ¢ = 9t + 1 > 1.763287 x 10'!.

Let x be a non-principal multiplicative character of order 9 of GF(q).
That is, x(z) = 6! if £ € C;, where 0 is a primitive ninth root of unity. Let

A= x(f(z))

and
B; = x(gi(2)), i=1,2,---,4.

These functions have the following values.

3, if flx) e CLUC,UCLUC5UCyUCs,
2—-A3— A% = 0, iff(z)ECoU03UCc.,
2, if f(z)=0.

For any i, 1 <1<4,

9, if gi(z) € Co,
14+ B;+B}+---+B}={ 0, if gi(z) ¢ Cou {0},
11 if g‘i(z) =0.

Now we define a sum

4
S= Y (@-A4-A)[[+B:+Bi+--+Bf) (2)
z€GF(q) i=1
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This sum is equal to 3 - 9%n + d where n is the number of elements z in
GPF(q) satisfying the conditions (i) and (ii), and d is the contribution when
either f(z), 91(z), g2(z), g3(z) or ga(z) is 0.

Now If f(z) =0 then £ =0, gi;(x) =0 (1 < i < 4) and the contribution
to Sis2. If z # 0 and g;(z) = 0 for some i (1 < i < 4), then the contribution
to S is at most 9-3-9% = 39 since deg(hi(z)) + deg(ho—i(z)) = 9. Hence
the total contribution to S from these cases is at most

4
F=2+Z3-9‘=12-9‘+2=78734.

i=1

If we are able to show that S > F, then there exists an z € GF(q) satisfying
the conditions (i) and (ii) in Lemma 2.2. Expanding the inner product in
(2) we obtain

4
s=2Y 142 Y Y ¥ BB

z€GF(q) r=1 1<i1<--<ir <4 1551,+Jr <8 2€GF(q)
2 2 4
- 3s
YO AR+ X )
s=1z€GF(q) s=1r=1 1<i1<-<ir<4 1<j1,jr<8
S a%B...Bf (3)
z€GF(q)

To estimate the inner sum, we use Weil’s theorem on character sums.

Note the order of x is 9. If f(z)®g1(z)? - -- ga(x)?* = p(z)°® for some
p(z) € GF(q)[z], we can show that s=j; =--- =34 =0 (mod 9), a con-
tradiction. In fact, by definition we have f(z) = z, gi(z) = —z'h8(z)ho—i(z)
fori (1 <i<4), where hy(z) =zf+---+2+1,1<£<8. Clearly,s=0
(mod 9) since f(z) is coprime to any g;(z), 1 < i < 4. Let 7 be a primitive
9th root of unity in some extension field of GF(q). Then hs(z) must have
an irreducible polynomial d(z) in GF(g)[z] as its factor such that d(z) has
7 as its root. Since any hy(z), 1 < £ < 8, cannot have 7 as its root, he(z)
must be coprime to d(z). This forces j; =0 (mod 9). In a similar way,
we can prove that jo =ja=j1 =0 (mod 9).

Therefore, Theorem 1.7 can be used. For any s (1 < s < 2) and for any
r (1 <7 < 4) we have

S BB
z€GF(q)

<9rvg (4)
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and

S wBj-BY
z€GF(q)

<9vq (5)

where 1 <4 <---<i.<4and1 <L j1, - +,5 < 8. Note that

Y, 1=g¢ (6)

z€GF(q)

and
2

> ) A= (7)

s=12€GF(q)

From (2)-(7), we have

4 2 4
s > 2q—22( f )8'.9r\/«}—22(f )8"-91'\/6
r=1 s=1 r=1
= 2(q - 419904,/3). (8)

Obviously, S > F if ¢ > 1.7632045 x 10!, So there exists an element
in GF(q) satisfying the conditions (i) and (ii) whenever g > 17632020925.
Consequently, we have the following lemma.

Lemma 2.3 There exists a V(9,t) in GF(q) for any prime power q =
9t + 1> 1.7632045 x 101,

3 Proof of Theorem 1.6

To prove Theorem 1.6, by Lemma 2.3 we need to discuss the prime powers
g = 9t + 1 < 1.7632045 x 10''. We need the following lemma, which can
be found in [13].

Lemma 3.1 Let ¢ = mt + 1 be a prime power. Suppose there exists a
V(m,t) in GF(q). Ifged(n, m) = 1, then there ezists a V(m,t') in GF(q").

Combining Lemma 3.1 with Lemma 1.4, we need only to consider the
following prime powers g and prime numbers p:
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(a) g=p=9t+1 and 5000 < g < 1.7632045 x 10'1;

) g=p",p=1 (mod9), p <73 ie p=19,37,73, and p = 8
(mod 9), p < 419906;

(¢)g=p%p=1,4,7 (mod9) and p < 5608;
(d) g=p% p=2,58 (mod9)andp<75,ie pe {5 11,17, 23, 29,
41, 47, 53, 59, 71}

Lemma 3.2 There ezists a V(9,t) in GF(q) for any prime g =9t+1 and
5000 < g < 1.7632045 x 10!,

Proof. With the aid of a computer we have found a vector V = (by, b, b3, - -

b1o) so that V forms a V/(9,t) in GF(q) for each prime ¢ = 9¢+1 and 5000 <
g < 1.7632045 x 10'!. Here we only list pairs (g, V) for ¢ € [5000,7000] in

?

Table 3.1 0
q (bl' ba. bS' vblo) q = (bl,bﬁ b3o b ’blo)
5023 (0,1 3,7,14, 5,145, 4934, 1460, 1188) | 5059 (1 b, 6%, 6%, +,8°), b= 127
5077 (0,1, 3. 6, 10 2, 657, 8530,25657,390) | 5118 (0,1,3, 7 20, 57, 666, 1992, 2054, 4233)
5167 (1, b.b b <, 09), b=1342 5347 (0,1, 4,183,283, 36, 1424, 4103, 4499, 2057)
5419 (1,5,5%,88,...,0°), b = 3998 5437 (0,1,8,6,2, 8,447, 809, 2126, 3250)
5527 (0,1,3,6 2 13 421 4087,2377,1785) | 5563 (0,1, 3,86, 10,5, 213, 3235, 2658, 1965)
5581 (0, 1.4 .23 369230, 2092, 5003, 576) | 5653 (0,1,3,7,4, 16, 120, 3944, 1364, 5073)
5689 (1,b,b2, ,b%), b= 4704 5743 (0,1, 3,6, 2, 14, 370, 3524, 1362, 1514)
5779 (0,1,3, .2 8 635, 2675, 2219, 2686) | 5851 (0,1,3,6,2,8, 440, 3277, 2389, 370)
5869 (1, b,b ,b ) ,b ), b =854 5923 (0,1, 3,6, 2, 14,107, 3255, 3697, 1036)
6067 (l,b,b ,b , oo+, %), b= 2500 6121 (0,1,3,6,2, 10,955, 4254, 1895, 1927)
6211 (1,b,5% ,b y ooy b%), b= 3396 6229 (0,1,3,6,2, 8,244, 4918, 4735, 5421)
6247 (0,1,3,7,1 20 976, 5859, 1047,813) | 6301 (0,1,3,86, 11,18, 39, 3894, 3826, 1107)
6337 (0 .1,3 , 2, s 161, 145, 3614, 255) 6373 (1,b.b’,b"..--,b°), b= 1487
6427 (1,b,6%,b 3 <+, b%), b= 2511 6481 (1,5,5%,5%,---,0%), b =861
6553 (0, 1,3.6,2, ,324, 4208, 2505,1164) | 6571 (0, 1, 8, 6, 10, 18, 684, 604, 4977, 3804)
6607 (0,1,3,7,2, 5 138, 3080, 1716, 2400) | 6661 (0, 1,3,7, 4, 19, 280, 4026, 2878, 4233)
6679 (0,1 3,6, 2, 1, 134 23, 2009, 649) 6733 (0,1,3,6,10,5,101, 636, 6436, 2797)
6823 (1,b,5%,03,...,0°), b =816 6841 (0,1,3,6.2 10, 22, 5582, 4412, 1175)
6949 (0,1, 3,6, 11, 4,276, 4355, 1445, 4999) | 6867 (1,b,b%,53,---,b%), b =294

Table 3.1 pairs (g,z) for 5000 < ¢ < 7000

To construct a V(9,t) in GF(q) with ¢ = 9t + 1 a prime power, we
apply Lemma 2.1 to find an element z in GF(g) so that Dy is an SDRC
for 1 < k < 5. Note that two elements u and v are in the same class of
index 9 if and only if u* = v»*. This makes the computation easier to do.
What we did is to compute the tth powers of the elements in Dy and see
if they are all distinct. Since the value of t may be quite large, we express
t in its binary form so that the computation can be reduced to square and
multiplication in GF(qg).
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Lemma 3.3 There exists a V(9,t) in GF(p?) for any primep =8 (mod 9),
p < 423473. There also ezists a V(9,t) in GF(p?) for p = 19,37, 73.

Proof. We take a nonsquare element m in GF(p) and take f(a) = o> —m
as the irreducible polynomial to construct a GF(p?). With the aid of a
computer an element x of GF(p?) satisfying the property mentioned above
has been found for any prime p =8 (mod 9), p < 423473. Here, we only
list triples (p, m,z) in Table 3.2 for p < 1500.

For p = 19, 37,73, we take f(a) = a® — 2 to construct GF(p?) and take
vectors as follows:

p=19,V =(0,1,3,6,7a + 3,14a + 4,16 + 8, 7Ta + 17,18a + 5, 16a + 4).
p=37,V=(0,1,3,6,11,7a+ 10,27a + 17,21a + 18,27a + 1,22a + 17).
p=713,V =(0,1,3,6,2,8,26,63,a+ 1,0+ 10).

It is readily checked that each V forms a V(9,t) in GF(p?).

0
P m T P m P m z
17 3 a+2 53 2 2a+3 71 7 a+24
89 3 a+2 107 2 a+18 179 2 2a+3
197 2 2a+3 233 3 a+2 251 2 a+176
269 2 b6a+68 |39 7 a+38 431 7 2a+93
449 3 9a + 143 | 467 2 o+ 166 503 5 3a+103
521 3 2a + 137 | 557 2 2a+3 593 3 a+2
647 5 S5a+171 | 683 2 a+37 701 2 2a+3
719 11 o+ 89 773 2 8a+174 |89 3 a+2
827 2 3a+345 (863 5 a+72 881 3 6a+60
9%3 3 a+2 971 2 2a+3 1061 2 2a+3
1097 3 6a+199 | 1151 13 a+265 | 1187 2 a-+412
1223 5 a+391 [1259 2 «+480 | 1277 2 6a+ 156
1367 5 o+ 428 1439 7 2a 4896 | 1493 2 a + 1486

Table 3.2 triples (p,m,z) for p=8 (mod 9) and p < 1500

Lemma 3.4 There ezists a V(9,t) in GF(p®) for any prime p = 1,4,7
(mod 9), p < 5640.

Proof. We take f(a) = a3 —m as the irreducible polynomial to construct
a GF(p®). With the aid of a computer an element z of GF(p®) satisfying
the property mentioned above has been found for any prime p = 1,4,7
(mod 9), p < 5640. Here, we only list triples (p, m,z) in Tables 3.3 - 3.5
for p < 1500.
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For the missing cases p = 7,13, 19, 37, we take m as the same in Tables
3.2-3.4 and take vectors as follows:

p=TV =(0,1,3,6,0% + 5a + 6,602 + 6a + 3,20* + 20, 5a + 2,50° +
4a,60® + 4a +4).

p=13,V =(0,1,3,7,0+1,6,60% + 11a + 11,1202 + 4a + 7,602 + Ta +
12,702 + 4o + 12).

p=19,V =(0,1,3,7,a,6,4c, 182 + 3a + 15,180 + 13a + 14,13a% + 9a +
10).

p=37,V=(0,13,7,0+4,32,3a + 5,17a + 1,32a® + 8a + 31,30a> +
26a + 28).

It is readily checked that each V forms & V/(9,t) in GF(p%). 0
P m P m }L m
19 17 no 37 2 no 73 2 ba’ +69a+46
109 3 o?+5a+69|127 3 202 +31a+119/163 2 7a+8
181 2 4a+565 199 2 8a+82 271 2 76a+ 108
307 5 ba+225 379 2 l4a+23 397 2 8a+173
433 3 a+408 487 2 23a+346 523 2 113a+241
541 2 2a+ 327 B77 2 64a+76 613 2 18a+585
631 2 18a+314 |739 3 27a+ 664 757 2 a+545
811 3 10a+ 265 829 2 19a+ 563 883 2 b5a+ 680
919 5 6o+ 582 937 2 a+216 991 2 2a+ 951
1009 2 7o+ 754 1063 2 5a+ 581 1117 2  9a+ 558
1153 2 8o+ 919 1171 2 6a+513 1279 2 12a+421
1207 2 3a+ 1151 1423 3 6o+ 380 1459 3 5c + 1068
Table 3.3 triples (p,m,z) forp=1 (mod 9) and p < 15060
P m P m z P m T
13 2 no 31 3 2a’+18a+10[67 2 5a+30a+54
103 2 20%2+33a+18|139 2 26a+64 157 3 16a+50
193 2 a?+78x+55 [220 3 10a+76 283 3 15a+61
337 2 a+127 373 2 27a+348 463 2 25a+53
499 5 5a+231 571 2 92a+171 607 2 T7a+39
643 7 a+53 661 2 73a+ 451 733 3 3a+420
751 2 Ba+701 769 2 26a-+ 168 787 2 63a+ 757
823 2 1la+529 859 2 15a+53 877 2 4a+3
967 2 32a+625 1021 5 4oa+232 1039 2 4o+ 922
1093 5 2o+ 389 1129 2 a+ 870 1201 2 12+ 804
1237 2 7o+ 1174 1201 2 17a+ 1043 1327 3 44+ 1172
1381 2 a+ 284 1399 5 27a+183 1453 2 2o+ 824
1471 3  12a+ 660 1489 2 o+ 464

Table 3.4 triples (p,m,z) for p=4 (mod 9) and p < 1500
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14 m T P m » m

7 2 mno 43 3 190°+20a+35|61 2 8a2+ 5da+40
79 2 202+53a+12|97 2 o?+52a+54 [151 2 30a+ 140

223 3 o?+20a+179]|241 2 24x+29 277 3 o2 +32a+183
313 2 56a+57 331 2 5a+309 349 2 19a+ 286

367 2 12a+54 421 2 34a+217 439 5 15a+40

457 3 1lla+377 547 2 A4la+202 601 3 18a+525

619 2 43a+219 673 2 Ta+ 261 691 3 25a+ 141

709 2 58a+ 260 727 5 19a+ 199 853 2 20a+ 314

807 2 Ta+577 997 7 9a+ 459 1033 2 19a+ 712

1051 3 14a+631 1669 3 10a+ 301 1087 2 25a+ 165

1123 2 16+ 830 1213 2 13a+972 1231 2 10« + 252

1249 2 3a+923 1303 2 2o+ 151 1321 2 23« + 209

1429 2 5o+ 882 1447 2 a+947 1483 2 19a+ 528

Table 3.5 triples (p,m,z) for p=7 (mod 9) and p < 1500

Lemma 3.5 There ezists a V(9,t) in GF(q) for any q € {118, 175, 235,
296, 416, 47°, 536, 596, 716}.

Proof. Let f(a) be the irreducible polynomial to construct a GF(q). For
each ¢, with the aid of a computer we have found an element z in GF(q)
satisfying the property mentioned above. We list the triples (g, f(a),z) in

Table 3.6. 0
q f(a) z
11° a®+a+2 3a° + 30 +4a+9
17 flx)=aof+a+7 3a? + 15
236 af+a+15 10a? + 15 + 18
298 af + 308 + 20t + o3 + 20a? + 24a + 22 402 + 16a + 5

41% oS +240° + 1404 + 270 + 3102 +27a+5 202 +23a+ 38
475  of +240° + 4508 + 4103 + 372 4+ 4da+1  6a® + 200 + 42
536 af +9a® + 3104 + 380 + 5202 + 5a+11  7a®+ 16a+ 34
595  of 44008 + 602 + 603 + 1702 +57a+27 9a+3

715 b + 305 + 6002 + 240> 4 510? + 21 a? + 69a + 66

Table 3.6 triples (g, f(a), )

We are now in a position to prove Theorem 1.6
Proof of Theorem 1.6 Just put Lemma 1.4 and Lemmas 3.1-3.5 together.
a
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