Existence of V(9,t) vectors*

Kejun Chen and Zhenfu Cao Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200030, China

E-mail: kejunchen@cs.sjtu.edu.cn, zfcao@cs.sjtu.edu.cn

Ruizhong Wei

Department of Computer Science

Lakehead University

Thunder Bay, ON, P7B 5E1 Canada

E-mail:wei@ccc.cs.lakeheadu.ca

Abstract

A V(m,t) leads to m idempotent pairwise orthogonal Latin squares of order (m+1)t+1 with one common hole of order t. V(m,t)'s can also be used to construct perfect Mendelsohn designs and optimal optical orthogonal codes. For $3 \le m \le 8$ the spectrum for V(m,t) has been determined. In this article, we investigate the existence of V(m,t) with m=9 and show that a V(9,t) always exists in GF(q) for any prime power q=9t+1 with one exception of q=73 and one possible exception of $q=5^6$.

MSC: 05B15; 11L40

Keywords: V(m,t) vector; Orthogonal Latin square; Perfect Mendelsohn designs, Cyclotomic class

^{*}Research supported by the Fund for Postdoctors grant 2003033312 (K. Chen), NSF for distinguished Young Scholars grant 60225007 (Z. Cao), and NSERC grant 239135-01 (R. Wei)

1 Introduction

Let q = mt + 1 be a prime power and let C_0 be a multiplicative subgroup of $GF(q) \setminus \{0\}$ of order t. Let the cosets of this group be C_0, C_1, \dots, C_{m-1} . These are called the cyclotomic classes of GF(q) of index m.

For q = mt + 1 a prime power, Mullin et al. in [21] defined a V(m,t) to be a vector $(b_1, b_2, \dots, b_{m+1})$ with elements from GF(q) satisfying the property that for $k = 1, 2, \dots, m+1$, the set

$$D_k = \{b_i - b_j | i \in \{1, 2, \cdots, m+1\} \setminus \{k\}, i-j \equiv k \pmod{m+2} \text{ and } 1 \leq j \leq m+1\}$$

is a system of distinct representatives of the cyclotomic classes (denoted by SDRC). For each k, we call D_k the k'th difference family. These are the differences that are k apart in the vector. A V(m,t) can be used to construct other combinatorial designs. [21] proved the following lemma about V(m,t)'s.

Lemma 1.1 Let q = mt + 1 be a prime power. If there is a vector V(m, t) in GF(q), then there exists a set of m idempotent pairwise orthogonal Latin squares of order (m + 1)t + 1 with one common hole of size t.

Miao and Zhu in [20] used V(m,t)'s to construct perfect Mendelsohn designs. A (v,k,λ) -perfect Mendelsohn design is a v-set, X, together with a collection of cyclically ordered k-tuples of distinct elements from X such that for every $i=1,2,\cdots,k-1$ each ordered pair (x,y) is i-apart in exactly k-tuples. The following is shown in [20, Theorem 2.3].

Lemma 1.2 Let q = mt + 1 be a prime power. If there is a V(m,t) in GF(q), then there exists a (q + t, m + 2, 1)-perfect Mendelsohn design with a hole of size t.

V(m,t)'s can also be used to construct optimal optical orthogonal codes. For details we refer the reader to Fuji-Hara and Miao [12].

As far as necessary conditions are concerned, Miao and Yang in [19] indicated that a V(m,t) exists in GF(mt+1) only if m and t are not both even. For m=3,4,5,6 and 7, the spectrum for V(m,t) has been determined (see [22], [13], [17] and [4]). Recently, Chen and Zhu [9] determined the spectrum for V(8,t). They showed the following.

Theorem 1.3 Let q = 8t + 1 be a prime power with t > 7 odd. Then there exists a V(8,t) in GF(q) with possible exceptions of $q = 3^6, 3^{10}$.

There are systematic tables of V(m,t)'s in Brouwer and van Rees [2]. These were extended by Colbourn in [10] to produce systematic tables for m = 9, 10, which can be summarized as follows:

Lemma 1.4 A V(m,t) exists whenever m=9,10, $t \ge m-1$ and mt+1 is a prime less than 5000, except when m=9 and t=8, or when both m and t are even.

For m = 9, the following bound can be found in [9].

Lemma 1.5 Let q = 9t + 1 be a prime power. Then there exists a V(9,t) in GF(q) whenever $q \ge 3.5457197 \times 10^{12}$

In this article, we shall investigate the existence of V(m,t) with m=9. We shall prove the following theorem.

Theorem 1.6 Let q = 9t + 1 be a prime power with $t \ge 8$. Then there exists a V(9,t) in GF(q) with one exception of q = 73 and one possible exception of $q = 5^6$.

To obtain this result Weil's theorem on character sums will be useful, which can be found in Lidl and Niederreiter ([16], Theorem 5.41).

Theorem 1.7 ([16]) Let ψ be a multiplicative character of GF(q) of order m > 1 and let $f \in GF(q)[x]$ be a monic polynomial of positive degree that is not an m-th power of a polynomial. Let d be the number of distinct roots of f in its splitting field over GF(q), then for every $a \in GF(q)$, we have

$$\left| \sum_{c \in GF(q)} \psi(af(c)) \right| \le (d-1)\sqrt{q} \tag{1}$$

This theorem has been used in dealing with existence of various combinatorial designs such as Steiner triple systems (see [14]), triplewhist tournaments (see [1], [18]), V(m,t) vector (see [17], [4], [9]), APAV (see [5], [3]), difference family (see [6], [8]), $Q(k,\lambda)$ (see [7]), cyclically resolvable cyclic Steiner 2-designs (see [15]) etc. It also has some other applications in combinatorics (see [23]).

2 An Improved Bound

To prove our main result, we use two different methods. First we shall use Weil's theorem to get a better bound than that in Lemma 1.5. Then we shall construct other vectors by the help of a computer.

In this section, we shall improve the bound $9t + 1 > 3.5457197 \times 10^{12}$ in Lemma 1.5. We shall prove that the bound can be lowered to $9t + 1 > 1.7632045 \times 10^{11}$.

Let q = 9t + 1 be a prime power. We shall take

$$V = (1, x, x^2, \dots, x^9)$$
 for some $x \in GF(q)$.

By the definition, the vector is a V(9,t) if D_k , for $1 \le k \le 10$, is a system of distinct representatives of the cyclotomic classes C_0, C_1, \dots, C_8 . Since $D_k = -D_{11-k}$, the vector is a V(9,t) if D_k is an SDRC for $1 \le k \le 5$. Therefore, we have the following.

Lemma 2.1 The vector $(1, x, x^2, \dots, x^9)$ in GF(9t+1) is a V(9,t) if D_k is an SDRC for $1 \le k \le 5$.

For convenience, define $h_i(x) = \frac{x^{i+1}-1}{x-1} = x^i + \dots + x+1$, $1 \le i \le 8$. We use the notation $a \sim b$ to denote that a and b are in the same cyclotomic class of index 9. Now, we examine D_k of V for $1 \le k \le 5$.

$$D_1 = \{x-1, x(x-1), x^2(x-1), \cdots, x^8(x-1)\}$$

= $(x-1)\{1, x, x^2, \cdots, x^8\},$

which will be an SDRC if $x \notin C_0$.

$$D_2 = \{x^2 - 1, x(x^2 - 1), x^2(x^2 - 1), \dots, x^7(x^2 - 1), 1 - x^9\}$$

= $(x^2 - 1)\{1, x, x^2, \dots, x^7, -h_8(x)/h_1(x)\},$

which is an SDRC if D_1 is an SDRC and $-h_8(x)/h_1(x) \sim x^8$, i.e. $x \notin C_0$ and $-h_8(x)/h_1(x) \sim x^8$.

$$D_3 = \{x^3 - 1, x(x^3 - 1), x^2(x^3 - 1), \dots, x^6(x^3 - 1), 1 - x^8, x(1 - x^9)\}\$$

= $(x^3 - 1)\{1, x, x^2, \dots, x^6, -h_7(x)/h_2(x), -xh_7(x)/h_2(x)\},$

which is an SDRC if $x \notin C_3 \cup C_6$, D_1 is an SDRC and $-h_7(x)/h_2(x) \sim x^7$, i.e. $x \notin C_0 \cup C_3 \cup C_6$ and $-h_7(x)/h_2(x) \sim x^7$.

$$D_4 = \{x^4 - 1, x(x^4 - 1), x^2(x^4 - 1), \dots, x^5(x^4 - 1), 1 - x^7, x(1 - x^7), x^2(1 - x^7)\}$$

$$= (x^4 - 1)\{1, x, x^2, \dots, x^5, -h_6(x)/h_3(x), -xh_6(x)/h_3(x), -x^2h_6(x)/h_3(x)\},$$

which is an SDRC if D_1 is an SDRC and $-h_6(x)/h_3(x) \sim x^6$, i.e. $x \notin C_0$ and $-h_6(x)/h_3(x) \sim x^6$.

$$D_5 = \{x^5 - 1, x(x^5 - 1), \dots, x^4(x^5 - 1), 1 - x^6, x(1 - x^6), \dots, x^3(1 - x^6)\}$$

$$= (x^5 - 1)\{1, x, \dots, x^4, -h_5(x)/h_4(x), -xh_5(x)/h_4(x), \dots, -x^3h_5(x)/h_4(x)\},$$

which is an SDRC if D_1 is an SDRC and $-h_5(x)/h_4(x) \sim x^5$, i.e. $x \notin C_0$ and $-h_5(x)/h_4(x) \sim x^5$.

By Lemma 2.1 and the above discussion, we have the following.

Lemma 2.2 There exists a V(9,t) in GF(9t+1) if there exists an element $x \in GF(9t+1)$ satisfying the following conditions:

(i)
$$f(x) = x \in C_1 \cup C_2 \cup C_4 \cup C_5 \cup C_7 \cup C_8$$
;

(ii)
$$g_i(x) = -x^i h_i^8(x) h_{9-i}(x) \in C_0 \text{ for } 1 \le i \le 4.$$

We shall show that such an element always exists in GF(q), consequently there exists a V(9,t) in GF(q), whenever $q=9t+1>1.763287\times 10^{11}$.

Let χ be a non-principal multiplicative character of order 9 of GF(q). That is, $\chi(x) = \theta^t$ if $x \in C_t$, where θ is a primitive ninth root of unity. Let

$$A = \chi(f(x))$$

and

$$B_i = \chi(g_i(x)), i = 1, 2, \dots, 4.$$

These functions have the following values.

$$2-A^3-A^6=\begin{cases} 3, & \text{if } f(x)\in C_1\cup C_2\cup C_4\cup C_5\cup C_7\cup C_8,\\ 0, & \text{if } f(x)\in C_0\cup C_3\cup C_6,\\ 2, & \text{if } f(x)=0. \end{cases}$$

For any $i, 1 \le i \le 4$,

$$1 + B_i + B_i^2 + \dots + B_i^8 = \begin{cases} 9, & \text{if } g_i(x) \in C_0, \\ 0, & \text{if } g_i(x) \notin C_0 \cup \{0\}, \\ 1, & \text{if } g_i(x) = 0. \end{cases}$$

Now we define a sum

$$S = \sum_{x \in GF(q)} (2 - A^3 - A^6) \prod_{i=1}^{4} (1 + B_i + B_i^2 + \dots + B_i^8)$$
 (2)

This sum is equal to $3 \cdot 9^4 n + d$ where n is the number of elements x in GF(q) satisfying the conditions (i) and (ii), and d is the contribution when either f(x), $g_1(x)$, $g_2(x)$, $g_3(x)$ or $g_4(x)$ is 0.

Now If f(x) = 0 then x = 0, $g_i(x) = 0$ $(1 \le i \le 4)$ and the contribution to S is 2. If $x \ne 0$ and $g_i(x) = 0$ for some i $(1 \le i \le 4)$, then the contribution to S is at most $9 \cdot 3 \cdot 9^3 = 3 \cdot 9^4$ since $deg(h_i(x)) + deg(h_{9-i}(x)) = 9$. Hence the total contribution to S from these cases is at most

$$F = 2 + \sum_{i=1}^{4} 3 \cdot 9^4 = 12 \cdot 9^4 + 2 = 78734.$$

If we are able to show that S > F, then there exists an $x \in GF(q)$ satisfying the conditions (i) and (ii) in Lemma 2.2. Expanding the inner product in (2) we obtain

$$S = 2 \sum_{x \in GF(q)} 1 + 2 \sum_{r=1}^{4} \sum_{1 \le i_1 < \dots < i_r \le 4} \sum_{1 \le j_1, \dots, j_r \le 8} \sum_{x \in GF(q)} B_{i_1}^{j_1} \cdots B_{i_r}^{j_r}$$

$$- \sum_{s=1}^{2} \sum_{x \in GF(q)} A^{3s} + \sum_{s=1}^{2} \sum_{r=1}^{4} \sum_{1 \le i_1 < \dots < i_r \le 4} \sum_{1 \le j_1, \dots, j_r \le 8} \sum_{x \in GF(q)} A^{3s} B_{i_1}^{j_1} \cdots B_{i_r}^{j_r}$$

$$(3)$$

To estimate the inner sum, we use Weil's theorem on character sums.

Note the order of χ is 9. If $f(x)^s g_1(x)^{j_1} \cdots g_4(x)^{j_4} = p(x)^9$ for some $p(x) \in GF(q)[x]$, we can show that $s \equiv j_1 \equiv \cdots \equiv j_4 \equiv 0 \pmod 9$, a contradiction. In fact, by definition we have f(x) = x, $g_i(x) = -x^i h_i^8(x) h_{9-i}(x)$ for $i \ (1 \leq i \leq 4)$, where $h_\ell(x) = x^\ell + \cdots + x + 1$, $1 \leq \ell \leq 8$. Clearly, $s \equiv 0 \pmod 9$ since f(x) is coprime to any $g_i(x)$, $1 \leq i \leq 4$. Let η be a primitive 9th root of unity in some extension field of GF(q). Then $h_8(x)$ must have an irreducible polynomial d(x) in GF(q)[x] as its factor such that d(x) has η as its root. Since any $h_\ell(x)$, $1 \leq \ell < 8$, cannot have η as its root, $h_\ell(x)$ must be coprime to d(x). This forces $j_1 \equiv 0 \pmod 9$. In a similar way, we can prove that $j_2 \equiv j_3 \equiv j_4 \equiv 0 \pmod 9$.

Therefore, Theorem 1.7 can be used. For any s $(1 \le s \le 2)$ and for any r $(1 \le r \le 4)$ we have

$$\left| \sum_{x \in GF(q)} B_{i_1}^{j_1} \cdots B_{i_r}^{j_r} \right| \le 9r\sqrt{q} \tag{4}$$

and

$$\left| \sum_{x \in GF(q)} A^s B_{i_1}^{j_1} \cdots B_{i_r}^{j_r} \right| \le 9r \sqrt{q}$$
 (5)

where $1 \le i_1 < \cdots < i_r \le 4$ and $1 \le j_1, \cdots, j_r \le 8$. Note that

$$\sum_{x \in GF(q)} 1 = q \tag{6}$$

and

$$\sum_{s=1}^{2} \sum_{x \in GF(a)} A^{3s} = 0. (7)$$

From (2)-(7), we have

$$S \geq 2q - 2\sum_{r=1}^{4} {4 \choose r} 8^r \cdot 9r\sqrt{q} - \sum_{s=1}^{2} \sum_{r=1}^{4} {4 \choose r} 8^r \cdot 9r\sqrt{q}$$
$$= 2(q - 419904\sqrt{q}). \tag{8}$$

Obviously, S > F if $q > 1.7632045 \times 10^{11}$. So there exists an element x in GF(q) satisfying the conditions (i) and (ii) whenever q > 17632020925. Consequently, we have the following lemma.

Lemma 2.3 There exists a V(9,t) in GF(q) for any prime power $q = 9t + 1 > 1.7632045 \times 10^{11}$.

3 Proof of Theorem 1.6

To prove Theorem 1.6, by Lemma 2.3 we need to discuss the prime powers $q = 9t + 1 \le 1.7632045 \times 10^{11}$. We need the following lemma, which can be found in [13].

Lemma 3.1 Let q = mt + 1 be a prime power. Suppose there exists a V(m,t) in GF(q). If gcd(n,m) = 1, then there exists a V(m,t') in $GF(q^n)$.

Combining Lemma 3.1 with Lemma 1.4, we need only to consider the following prime powers q and prime numbers p:

- (a) q = p = 9t + 1 and $5000 \le q \le 1.7632045 \times 10^{11}$;
- (b) $q = p^2$, $p \equiv 1 \pmod{9}$, $p \le 73$, i.e. p = 19, 37, 73, and $p \equiv 8 \pmod{9}$, $p \le 419906$;
 - (c) $q = p^3$, $p \equiv 1, 4, 7 \pmod{9}$ and $p \le 5608$;
- (d) $q = p^6$, $p \equiv 2, 5, 8 \pmod{9}$ and $p \le 75$, i.e. $p \in \{5, 11, 17, 23, 29, 41, 47, 53, 59, 71\}$.

Lemma 3.2 There exists a V(9,t) in GF(q) for any prime q = 9t + 1 and $5000 \le q \le 1.7632045 \times 10^{11}$.

Proof. With the aid of a computer we have found a vector $V = (b_1, b_2, b_3, \cdots, b_{10})$ so that V forms a V(9,t) in GF(q) for each prime q = 9t+1 and $5000 \le q \le 1.7632045 \times 10^{11}$. Here we only list pairs (q, V) for $q \in [5000, 7000]$ in Table 3.1

	- , , , , , , , , , , , , , , , , , , ,		
q	$V=(b_1,b_2,b_3,\cdots,b_{10})$	q	$V=(b_1,b_2,b_3,\cdots,b_{10})$
5023	(0, 1, 3, 7, 14, 5, 145, 4934, 1460, 1188)	5059	$(1, b, b^2, b^3, \cdots, b^9), b = 127$
5077	(0, 1, 3, 6, 10, 2, 657, 3530, 2557, 390)	5113	(0, 1, 3, 7, 20, 57, 666, 1992, 2054, 4233)
5167	$(1, b, b^2, b^3, \cdots, b^9), b = 1342$	5347	(0, 1, 4, 13, 23, 36, 1424, 4103, 4499, 2057)
5419	$(1, b, b^2, b^3, \cdots, b^9), b = 3998$	5437	(0, 1, 3, 6, 2, 8, 447, 809, 2126, 3250)
5527	(0, 1, 3, 6, 2, 13, 421, 4087, 2377, 1785)	5563	(0, 1, 3, 6, 10, 5, 213, 3235, 2658, 1965)
5581	(0, 1, 4, 13, 23, 36, 230, 2092, 5003, 576)	5653	(0, 1, 3, 7, 4, 16, 120, 3944, 1364, 5073)
5689	$(1, b, b^2, b^3, \cdots, b^9), b = 4704$	5743	(0, 1, 3, 6, 2, 14, 370, 3524, 1362, 1514)
5779	(0, 1, 3, 6, 2, 8, 635, 2675, 2219, 2686)	5851	(0, 1, 3, 6, 2, 8, 440, 3277, 2389, 370)
5869	$(1, b, b^2, b^3, \cdots, b^9), b = 854$	5923	(0, 1, 3, 6, 2, 14, 107, 3255, 3697, 1036)
6067	$(1, b, b^2, b^3, \cdots, b^9), b = 2500$	6121	(0, 1, 3, 6, 2, 10, 955, 4254, 1895, 1927)
6211	$(1, b, b^2, b^3, \cdots, b^9), b = 3396$	6229	(0, 1, 3, 6, 2, 8, 244, 4918, 4735, 5421)
6247	(0, 1, 3, 7, 15, 20, 976, 5859, 1047, 813)	6301	(0, 1, 3, 6, 11, 18, 39, 3894, 3826, 1107)
6337	(0, 1, 3, 6, 2, 8, 161, 145, 3614, 255)	6373	$(1, b, b^2, b^3, \cdots, b^9), b = 1487$
6427	$(1, b, b^2, b^3, \cdots, b^9), b = 2511$	6481	$(1, b, b^2, b^3, \cdots, b^9), b = 861$
6553	(0, 1, 3, 6, 2, 8, 324, 4208, 2505, 1164)	6571	(0, 1, 3, 6, 10, 18, 684, 604, 4977, 3904)
6607	(0, 1, 3, 7, 2, 15, 138, 3090, 1716, 2400)	6661	(0, 1, 3, 7, 4, 19, 290, 4026, 2878, 4233)
6679	(0, 1, 3, 6, 2, 21, 134, 23, 2009, 649)	6733	(0, 1, 3, 6, 10, 5, 101, 696, 6436, 2797)
6823	$(1, b, b^2, b^3, \cdots, b^9), b = 816$	6841	(0, 1, 3, 6, 2, 10, 22, 5582, 4412, 1175)
6949	(0, 1, 3, 6, 11, 4, 276, 4355, 1445, 4999)	6967	$(1, b, b^2, b^3, \cdots, b^9), b = 294$

Table 3.1 pairs (q, x) for $5000 \le q \le 7000$

To construct a V(9,t) in GF(q) with q=9t+1 a prime power, we apply Lemma 2.1 to find an element x in GF(q) so that D_k is an SDRC for $1 \le k \le 5$. Note that two elements u and v are in the same class of index 9 if and only if $u^t = v^t$. This makes the computation easier to do. What we did is to compute the tth powers of the elements in D_k and see if they are all distinct. Since the value of t may be quite large, we express t in its binary form so that the computation can be reduced to square and multiplication in GF(q).

Lemma 3.3 There exists a V(9,t) in $GF(p^2)$ for any prime $p \equiv 8 \pmod{9}$, $p \leq 423473$. There also exists a V(9,t) in $GF(p^2)$ for p = 19,37,73.

Proof. We take a nonsquare element m in GF(p) and take $f(\alpha) = \alpha^2 - m$ as the irreducible polynomial to construct a $GF(p^2)$. With the aid of a computer an element x of $GF(p^2)$ satisfying the property mentioned above has been found for any prime $p \equiv 8 \pmod{9}$, $p \leq 423473$. Here, we only list triples (p, m, x) in Table 3.2 for $p \leq 1500$.

For p=19,37,73, we take $f(\alpha)=\alpha^2-2$ to construct $GF(p^2)$ and take vectors as follows:

$$p = 19$$
, $V = (0, 1, 3, 6, 7\alpha + 3, 14\alpha + 4, 16\alpha + 8, 7\alpha + 17, 18\alpha + 5, 16\alpha + 4).$

$$p = 37$$
, $V = (0, 1, 3, 6, 11, 7\alpha + 10, 27\alpha + 17, 21\alpha + 18, 27\alpha + 1, 22\alpha + 17)$.

$$p = 73, V = (0, 1, 3, 6, 2, 8, 26, 63, \alpha + 1, \alpha + 10).$$

It is readily checked that each V forms a V(9,t) in $GF(p^2)$.

p	m	x	p	m	x	p	m	\boldsymbol{x}
17	3	$\alpha + 2$	53	2	$2\alpha + 3$	71	7	$\alpha + 24$
89	3	$\alpha + 2$	107	2	$\alpha + 18$	179	2	$2\alpha + 3$
197	2	$2\alpha + 3$	233	3	$\alpha + 2$	251	2	$\alpha + 76$
269	2	$5\alpha + 68$	359	7	$\alpha + 38$	431	7	$2\alpha + 93$
449	3	$9\alpha + 143$	467	2	$\alpha + 166$	503	5	$3\alpha + 103$
521	3	$2\alpha + 137$	557	2	$2\alpha + 3$	593	3	$\alpha + 2$
647	5	$5\alpha + 171$	683	2	$\alpha + 37$	701	2	$2\alpha + 3$
719	11	$\alpha + 89$	773	2	$8\alpha + 174$	809	3	$\alpha + 2$
827	2	$3\alpha + 345$	863	5	$\alpha + 72$	881	3	$6\alpha + 60$
953	3	$\alpha + 2$	971	2	$2\alpha + 3$	1061	2	$2\alpha + 3$
1097	3	$6\alpha + 199$	1151	13	$\alpha + 265$	1187	2	$\alpha + 412$
1223	5	$\alpha + 391$	1259	2	$\alpha + 480$	1277	2	$6\alpha + 156$
1367	5	$\alpha + 428$	1439	7	$2\alpha + 896$	1493	2	$\alpha + 1486$

Table 3.2 triples (p, m, x) for $p \equiv 8 \pmod{9}$ and $p \leq 1500$

Lemma 3.4 There exists a V(9,t) in $GF(p^3)$ for any prime $p \equiv 1,4,7 \pmod{9}$, $p \leq 5640$.

Proof. We take $f(\alpha) = \alpha^3 - m$ as the irreducible polynomial to construct a $GF(p^3)$. With the aid of a computer an element x of $GF(p^3)$ satisfying the property mentioned above has been found for any prime $p \equiv 1, 4, 7 \pmod{9}$, $p \leq 5640$. Here, we only list triples (p, m, x) in Tables 3.3 - 3.5 for $p \leq 1500$.

For the missing cases p = 7, 13, 19, 37, we take m as the same in Tables 3.2-3.4 and take vectors as follows:

$$p = 7$$
, $V = (0,1,3,6,\alpha^2 + 5\alpha + 6,6\alpha^2 + 6\alpha + 3,2\alpha^2 + 2\alpha,5\alpha + 2,5\alpha^2 + 4\alpha,6\alpha^2 + 4\alpha + 4)$.

$$p = 13, V = (0, 1, 3, 7, \alpha + 1, 6, 6\alpha^2 + 11\alpha + 11, 12\alpha^2 + 4\alpha + 7, 6\alpha^2 + 7\alpha + 12, 7\alpha^2 + 4\alpha + 12).$$

$$p = 19, V = (0, 1, 3, 7, \alpha, 6, 4\alpha, 18\alpha^2 + 3\alpha + 15, 18\alpha^2 + 13\alpha + 14, 13\alpha^2 + 9\alpha + 10).$$

$$p = 37$$
, $V = (0,1,3,7,\alpha+4,32,3\alpha+5,17\alpha+1,32\alpha^2+8\alpha+31,30\alpha^2+26\alpha+28)$.

It is readily checked that each V forms a V(9,t) in $GF(p^3)$.

p	m	x	p	m	x	p	m	x
19	17	no	37	2	no	73	2	$5\alpha^2 + 69\alpha + 46$
109	3	$\alpha^2 + 5\alpha + 69$	127	3	$2\alpha^2 + 31\alpha + 119$	163	2	$7\alpha + 8$
181	2	$4\alpha + 55$	199	2	$8\alpha + 82$	271	2	$76\alpha + 108$
307	5	$5\alpha + 225$	379	2	$14\alpha + 23$	397	2	$8\alpha + 173$
433	3	$\alpha + 408$	487	2	$23\alpha + 346$	523	2	$113\alpha + 241$
541	2	$2\alpha + 327$	577	2	$64\alpha + 76$	613	2	$18\alpha + 585$
631	2	$18\alpha + 314$	739	3	$27\alpha + 664$	757	2	$\alpha + 545$
811	3	$10\alpha + 265$	829	2	$19\alpha + 563$	883	2	$5\alpha + 680$
919	5	$6\alpha + 582$	937	2	$\alpha + 216$	991	2	$2\alpha + 951$
1009	2	$7\alpha + 754$	1063	2	$5\alpha + 581$	1117	2	$9\alpha + 558$
1153	2	$8\alpha + 919$	1171	2	$6\alpha + 513$	1279	2	$12\alpha + 421$
1297	2	$3\alpha + 1151$	1423	3	$6\alpha + 380$	1459	3	$5\alpha + 1068$

Table 3.3 triples (p, m, x) for $p \equiv 1 \pmod{9}$ and $p \leq 1500$

p	m	x	p	m	x	p	m	x
13	2	no	31	3	$2\alpha^2 + 18\alpha + 10$	67	2	$5\alpha^2 + 30\alpha + 54$
103	2	$2\alpha^2 + 33\alpha + 18$	139	2	$26\alpha + 64$	157	3	$16\alpha + 50$
193	2	$\alpha^2 + 78\alpha + 55$	229	3	$10\alpha + 76$	283	3	$15\alpha + 61$
337	2	$\alpha + 127$	373	2	$27\alpha + 348$	463	2	$25\alpha + 53$
499	5	$5\alpha + 231$	571	2	$92\alpha + 171$	607	2	$7\alpha + 39$
643	7	$\alpha + 53$	661	2	$73\alpha + 451$	733	3	$3\alpha + 420$
751	2	$5\alpha + 701$	769	2	$26\alpha + 168$	787	2	$63\alpha + 757$
823	2	$11\alpha + 529$	859	2	$15\alpha + 53$	877	2	$4\alpha + 3$
967	2	$32\alpha + 625$	1021	5	$4\alpha + 232$	1039	2	$4\alpha + 922$
1093	5	$2\alpha + 389$	1129	2	$\alpha + 870$	1201	2	$12\alpha + 804$
1237	2	$7\alpha + 1174$	1291	2	$17\alpha + 1043$	1327	3	$44\alpha + 1172$
1381	2	$\alpha + 284$	1399	5	$27\alpha + 183$	1453	2	$2\alpha + 824$
1471	3	$12\alpha + 660$	1489	2	$\alpha + 464$	1		

Table 3.4 triples (p, m, x) for $p \equiv 4 \pmod{9}$ and $p \leq 1500$

p	m	x	p	m	x	p	m	x
7	2	no	43	3	$19\alpha^2 + 20\alpha + 35$	61	2	$8\alpha^2 + 54\alpha + 40$
79	2	$2\alpha^2 + 53\alpha + 12$	97	2	$\alpha^2 + 52\alpha + 54$	151	2	$30\alpha + 140$
223	3	$\alpha^2 + 20\alpha + 179$	241	2	$24\alpha + 29$	277	3	$\alpha^2 + 32\alpha + 183$
313	2	$56\alpha + 57$	331	2	$5\alpha + 309$	349	2	$19\alpha + 286$
367	2	$12\alpha + 54$	421	2	$34\alpha + 217$	439	5	$15\alpha + 40$
457	3	$11\alpha + 377$	547	2	$41\alpha + 202$	601	3	$18\alpha + 525$
619	2	$43\alpha + 219$	673	2	$7\alpha + 261$	691	3	$25\alpha + 141$
709	2	$58\alpha + 260$	727	5	$19\alpha + 199$	853	2	$20\alpha + 314$
907	2	$7\alpha + 577$	997	7	$9\alpha + 459$	1033	2	$19\alpha + 712$
1051	3	$14\alpha + 631$	1069	3	$10\alpha + 301$	1087	2	$25\alpha + 165$
1123	2	$16\alpha + 830$	1213	2	$13\alpha + 972$	1231	2	$10\alpha + 252$
1249	2	$3\alpha + 923$	1303	2	$2\alpha + 151$	1321	2	$23\alpha + 209$
1429	2	$5\alpha + 882$	1447	2	$\alpha + 947$	1483	2	$19\alpha + 528$

Table 3.5 triples (p, m, x) for $p \equiv 7 \pmod{9}$ and $p \leq 1500$

Lemma 3.5 There exists a V(9,t) in GF(q) for any $q \in \{11^6, 17^6, 23^6, 29^6, 41^6, 47^6, 53^6, 59^6, 71^6\}.$

Proof. Let $f(\alpha)$ be the irreducible polynomial to construct a GF(q). For each q, with the aid of a computer we have found an element x in GF(q) satisfying the property mentioned above. We list the triples $(q, f(\alpha), x)$ in Table 3.6.

	· · · ·	
q	$f(\alpha)$	x
11 ⁶	$\alpha^6 + \alpha + 2$	$3\alpha^3 + 3\alpha^2 + 4\alpha + 9$
17 ⁶	$f(x) = \alpha^6 + \alpha + 7$	$3\alpha^2 + 15\alpha$
23 ⁶	$\alpha^6 + \alpha + 15$	$10\alpha^2 + 15\alpha + 18$
29 ⁶	$\alpha^6 + 3\alpha^5 + 2\alpha^4 + \alpha^3 + 20\alpha^2 + 24\alpha + 22$	$4\alpha^2 + 16\alpha + 5$
41 ⁶	$\alpha^6 + 24\alpha^5 + 14\alpha^4 + 27\alpha^3 + 31\alpha^2 + 27\alpha + 5$	$2\alpha^2 + 23\alpha + 38$
476	$\alpha^6 + 24\alpha^5 + 45\alpha^4 + 41\alpha^3 + 37\alpha^2 + 44\alpha + 1$	$6\alpha^2 + 20\alpha + 42$
53 ⁶	$\alpha^6 + 9\alpha^5 + 31\alpha^4 + 38\alpha^3 + 52\alpha^2 + 5\alpha + 11$	$7\alpha^2 + 16\alpha + 34$
59 ⁶	$\alpha^6 + 40\alpha^5 + 6\alpha^4 + 6\alpha^3 + 17\alpha^2 + 57\alpha + 27$	$9\alpha + 3$
716	$\alpha^6 + 3\alpha^5 + 60\alpha^4 + 24\alpha^3 + 51\alpha^2 + 21$	$\alpha^2 + 69\alpha + 66$

Table 3.6 triples $(q, f(\alpha), x)$

We are now in a position to prove Theorem 1.6 Proof of Theorem 1.6 Just put Lemma 1.4 and Lemmas 3.1-3.5 together. \Box

References

[1] I. Anderson, S. D. Cohen and N. J. Finizio, An existence theorem for cyclic triplewhist tournaments, *Discrete Math.* 138 (1995), 31-41.

- [2] A. E. Brouwer and G. H. J. van Rees, More mutually orthogonal latin squares, *Discrete Math.* 39 (1982), 263-281.
- [3] K. Chen, Z. Cao and D. Wu, Existence of APAV(q, k) with q a prime power $\equiv 5 \pmod{8}$, Discrete Math., 279 (2004), 153-161.
- [4] K. Chen, G. H. J. van Rees and L. Zhu, V(m,t) and its variants, J. Statist. Plann. Inference 95 (2001), 143-160.
- [5] K. Chen and L. Zhu, Existence of APAV(q, k) with q a prime power $\equiv 3 \pmod{4}$ and $k \pmod > 1$, J. Combin. Designs 7 (1999), 57-68.
- [6] K. Chen and L. Zhu, Existence of (q, 6, 1) difference families with q a prime power, *Designs, Codes, and Cryptography* 15 (1998), 167-173.
- [7] K. Chen and L. Zhu, The spectrum $Q(k,\lambda)$ of coset difference arrays with $k=2\lambda+1$, J. Combin. Math. Combin. Comput. 38 (2001), 129-138.
- [8] K. Chen and L. Zhu, Improving Wilson's bound on difference families, Utilitas Math. 55 (1999), 189-200.
- [9] K. Chen and L. Zhu, Existence of V(m,t) vectors, J. Statist. Plann. Inference 106 (2002), 461-471.
- [10] C. J. Colbourn, Some direct constructions for incomplete transversal designs, J. Statist. Plann. Inference 51 (1996), 223-227.
- [11] J. Denes and A. D. Keedwell, Latin Squares, Ann. Discrete Math. 46 (1991), 1-166.
- [12] R. Fuji-Hara, Y. Miao, Optical othogonal codes: their bounds and new optical constructions, *IEEE Trans. Inform. Theory* 46 (2000), 2396-2406.
- [13] G. Ge, All V(3,t)'s exist for 3t+1 a prime power, J. Combin. Math. Combin. Comput. 34 (2000), 197-202.
- [14] K. B. Gross, On the maximal number of pairwise orthogonal Steiner triple systems, J. Combin. Theory Ser. A 19 (1975), 256-263.
- [15] C. Lam and Y. Miao, On cyclically resolvable cyclic Steiner 2-designs, J. Combin. Theory Ser. A 85 (1999), 194-207.
- [16] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, vol.20, Cambridge University Press, 1983.
- [17] C. H. A. Ling, Y. Lu, G. H. J. van Rees and L. Zhu, V(m,t)'s for m=4,5,6,J. Statist. Plann. Inference 86 (2000), 515-525.

- [18] G. McNay, Cohen's sieve with quadratic conditions, *Utilitas Math.* 49 (1996), 191-201.
- [19] Y. Miao and S. Yang, Concerning the vector V(m,t), J. Statist. Plann. Inference 51 (1996), 223-227.
- [20] Y. Miao and L. Zhu, Perfect Mendelsohn designs with block size six, Discrete Math. 143 (1995), 189-207.
- [21] R. C. Mullin, P. J. Schellenberg, D. R. Stinson and S. A. Vanstone, Some results on the existence of squares, Ann. Discrete Math. 6 (1980), 257-274.
- [22] G. H. J. van Rees, All V(3,t)'s exist for 3t+1 a prime, J. Combin. Designs 3 (1995), 399-403.
- [23] T. Szönyi, Some applications of algebraic curves in finite geometry and combinatorics, London Mathematical Society Lecture Notes, series 241, Cambridge University Press, (1997) 197-236.