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Abstract. A (p,q) graph G is called edge-magic if there exists a
bijective function f : V(G) U E(G) — {1,2,...,p+ q} such that
f(u) + f(v) + f(uv) is a constant for each edge uv € E(G). Also,
G is said to be super edge-magic if f(V(G)) = {1,2,...,p}.
Furthermore, the super edge-magic deficiency, u,(G), of a graph G
is defined to be either the smallest nonnegative integer n with the
property that the graph G U nK) is super edge-magic or +oo if
there exists no such integer n.

In this paper, the super edge-magic deficiency of certain forests
and 2-regular graphs is computed which in turn leads to some con-
jectures on the super edge-magic deficiencies of graphs in these
classes. Additionally, some edge-magic deficiency analogues to the
super edge-magic deficiency results on forests are presented.

1 Introduction

All graphs that we consider in this paper are finite and simple, that is, with-
out loops or multiple edges. Now, for most of the graph theory terminology
utilized here, the authors refer the reader to Chartrand and Lesniak [1];
however, to make this paper reasonably self-contained, we mention that for
a graph G, we denote the vertex set and edge set of G by V(G) and E(G),
respectively. Moreover, for the sake of brevity, we will denote [a, N Z by
simply writing [a, b].
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The seminal paper in edge-magic labelings was published in 1970 by
Kotzig and Rosa [12], who called these labelings: magic valuations; these
were later rediscovered by Ringel and Lladé [13], who coined one of the now
popular terms for them: edge-magic labelings. More recently, they have also
been referred to as edge-magic total labelings by Wallis [14]. For a (p,q)
graph G, a bijective function f : V(G)UE(G) — {1,2,...,p+ ¢} is an edge-
magic labeling of G if f(u)+ f(v)+ f(uv) is a constant k (called the valence
of f) for any edge uv € E(G). If such a labeling exists, then G is said to
be an edge-magic graph. In (2], Enomoto, Llad6, Nakamigawa and Ringel
defined an edge-magic labeling f of a graph G to be a super edge-magic
labeling of G if f has the additional property that f(V(G)) = {1,2,...,p}.
Thus, a super edge-magic graph is a graph that admits a super edge-magic
labeling. Lately, super edge-magic labelings and super edge-magic graphs
are called by Wallis [14] strong edge-magic total labelings and strongly
edge-magic graphs, respectively.

For every graph G, Kotzig and Rosa [12] proved that there exists an
edge-magic graph H such that H & GUnK; for some nonnegative integer
n. This motivated them to define the edge-magic deficiency of a graph.
The edge-magic deficiency, u(G), of a graph G is the smallest nonnegative
integer n for which the graph G U nKj is edge-magic. In [5], the authors
analogously defined the concept of super edge-magic deficiency, ps(G), of a
graph G to be either the smallest nonnegative integer n with the property
that the graph G UnK; is super edge-magic or +oo if there exists no such
integer n. It follows immediately that u(G) < us(G) for any graph G.

The authors refer the reader to the survey paper by Gallian [8] for some
of the latest developments in these and other types of graph labelings.

To present the new results contained in this paper, the following lemma
taken from [3] will prove to be useful.

Lemma 1. A (p,q) graph G i3 super edge-magic if and only if there ezists
a bijective function f : V(G) — {1,2,...,p} such that the set

§={f(u) + f(v) lw € E(G) }

consists of q consecutive integers. In such a case, f extends to a super
edge-magic labeling of G with valence k = p+ q + s, where s = min(S) and

§ = {f(u) + f(v) lwv € E(G) }
= {k —(p+1),k- (p+2),...,k— (p+Q)}'
Due to Lemma 1, it is sufficient to exhibit the vertex labeling of a super
edge-magic graph; however, we will provide the valences to increase the

clarity of our results.
We will also utilize the following lemma from (3].
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Lemma 2. If a (p,q) graph G is super edge-magic with a super edge-magic

labeling f, then
Z f(v)degv=gqs+ (g),
veV(G)

where 3 is defined as in the previous lemma.

A graph G is said to be an even graph if all of its vertices have even
degree. Thus, with this definition in hand, we are able to state one more
technical lemma found in [5].

Lemma 3. If G is an even graph of size q, where q/2 is odd, then u,(G) =
+o00.

The above lemma shows that adding a finite number of isolated vertices
to a graph that is not super edge-magic need not produce a super edge-
magic graph. This was unexpected in light of the fact that Kotzig and
Rosa [12] proved that every graph has finite edge-magic deficiency. Indeed,
it is easy to construct a graph G such that p,(G) — u(G) = +oo (see [5] for
examples).

Actually, more is true as given a nonnegative integer n, it is always
possible to construct a graph G such that u,(G) — u(G) = n. For example,
Kotzig and Rosa [12] proved that all complete bipartite graphs are edge-
magic, which implies that (K3 ,41) = 0. On the other hand, the authors
showed in (5] that ps(Kant1) = n. _

To conclude this introduction, we state a result by the authors (see [6]),
and state and prove a corollary to it, which will later serve as the bases for
some remarks and conjectures.

Theorem 1. If G is a (super) edge-magic bipartite or tripartite graph and
m is odd, then mG 1is (super) edge-magic.

Corollary 1. If G is a bipartite or tripartite graph and m is odd, then
#(mG) < mp(G) and ps(mG) < muy(G).

Proof. Let G be a bipartite or tripartite graph and m be odd. First, notice
that if us(G) = +o0, then the inequality for p, is trivial. Hence, without
loss of generality, we may assume that p,(G) < +o0o0. Moreover, as we
commented above, it is an established fact that 4(G) < +oo for any graph
G. The remainder of the proof is identical for either u or y,, and if G is
bipartite or tripartite. Thus, without loss of generality, we proceed only with
s and assume that G is bipartite. Now, there exists a nonnegative integer
n such that GUnK| is super edge-magic. Furthermore, GUnKj is certainly
bipartite. Therefore, m(G U nkK;) 2 mG UmnkKj is super edge-magic by
the previous theorem, which implies that u;(mG) < mu,(G).
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2 Results on Forests

In [5], the authors give a constructive proof that the super edge-magic
deficiency of forests is finite. That proof is too involved to easily glean
from it an upper bound for y,(F) when F is a forest, but such a bound
would certainly be a large quantity relative to the order of F. However,
the authors believe that u,(F) is always a small number. The evidence for
such a belief comes from the authors previous explorations on the super
edge-magic properties of forests (see [4-7]) and are bolstered by the results
included in this section.

Now, with the aid of the super edge-magic characterization of the forest
K1, UK, , found in [6], we are able to provide the following theorem.

Theorem 2. For every positive integer n,

0, if n is even;
#a(PZ UKl,n) = { 1: i;n is odd.

Proof. First, notice that the forest P, U K, 5, & K ) U K , is shown to be
super edge-magic in [6] if and only if n is even. Consequently, it is sufficient
to verify that pus(P; U K1) <1 when n is odd.

Now, assume that n is odd, and let F & P, U K; , U K; be the forest
with

V(F) = {u,w,z,y} U{w|l <i<n}
and
E(F) = {uy|l <i<n}u{zy}.

Then the vertex labeling f : V(F) — {1,2,...,n+ 4} such that f(z) = 1;
f@)=n+4; f(u) = (n+5)/2

_fi+1,ifie(l,(n+1)/2);
f(‘vi)—{;+2,;f:€%(n?-1)/2+1,n]3

and f(w) = n+ 3 extends to a super edge-magic labeling of F' with valence
(5n +19)/2.
Therefore, p,(P2 UK ») < 1 when n is odd, which completes the proof.

The super edge-magic characterization of the forest Ky 2 U K » found
in [6] is extended in the following theorem.

Theorem 3. For every positive integer n,

0, ifn=0 (mod 3);

Hs(P3 U Kl,n) = { 1, otherwise.
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Case 1:

N
~J

ase 2:

Proof. First, notice that the forest P3 U K, = Ky U K, , is known to
be super edge-magic if and only if n = 0 (mod 3); see [6]. Hence, in the
remainder of the proof, assume that n» #Z 0 (mod 3), and thus our goal is
to show that in such a case, p;(P3UK),) < 1.

To do this, let F = P; U K; , U K; be the forest with

V(F) ={v,w,z,9,2} U{y%|l <i < n}

and
E(F)={un]l1<i<n}U {a:y, zz},

and consider two cases.

Let n be odd, and define f : V(F) — {1,2,...,n+5} to be the vertex
labeling such that f(z) = 1; f(y) =n+4; f(2) =n+5; f(u) = (n+5)/2;

i+1, if i €[1,(n+1)/2];
flv) = {:.;.3, ;f:e [(nZl)/;+1,n];

and f(w)=(n+7)/2.

Then, by Lemma 1, f extends to a super edge-magic labeling of F with
valence (5n + 23)/2.

Let n be even, and define f : V(F) — {1,2,...,n+5} to be the vertex
labeling such that f(z) =1; f(y) =n+4; f(2) =n+5; f(u) = (n+6)/2;

_[i+1,ifie[1,n/2);
flui)= {i+3, ifi € [n/2+1,n);

and f(w) = (n +4)/2.
Then, by Lemma 1, f extends to a super edge-magic labeling of F with
valence (5n + 24)/2.

Therefore, the proof is completed.

By labeling the vertices of degree 1 of the forest F & P, U K1 ,, with
the first n positive integers, the isolated vertex of F with n + 1 and the
remaining vertex with n + 2, we obtain a super edge-magic labeling of F
with valence 3n + 5. Therefore, by the previous two results together with
the fact presented in [6] that the forest P, U K} , is super edge-magic for
every two integers m > 4 and n > 1, we immediately obtain the following
theorem.

Theorem 4. For every two positive integers m and n,

1, if m=2 and n is odd
ps(Pmn UK, ,) = orm=3andn#0 (mod 3);
0, otherwise.
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Now, we study the super edge-magic properties of the forest K UK} 5.
For this purpose, let F = K ;, U K 5, U K1 be the forest with

V(F)={wll<i<m+n+3}
and
E(F)={voul3<i<m+2}U{nmvjm+4<i<m+n+3}.

Then the vertex labeling f : V(F) — {1,2,...,m+n+ 3} such that
f(y) =1 (1 £i < m+n+3) induces a super edge-magic labeling of
F with valence 2(m + n + 4). Thus, ps(K1,m U K1,») < 1 for every positive
integer n.

On other hand, Ivanéo and Lugkanitové proved in [10] that the forest
Ki1,mUKj n is super edge-magic if and only if either m is a multiple of n+1

or n is a multiple of m + 1. Combining this with the above fact, we have
the following theorem.

Theorem 5. For every two positive integers m and n,

0, either m is a multiple of n +1
ts(K1m UKy n) = or n is a multiple of m+ 1;
1, otherwise.

We now inquire into the super edge-magic deficiency of the forest Pp, U
P,. By Theorem 5, observe that u,(2P,) =1 for n = 2 or 3. On the other
hand, the authors proved in (7] that the forest P, UP, is super edge-magic if
and only if (m,n) ¢ {(2,2),(3,3)}. Thus, we obtain the following theorem.

Theorem 6. For every two positive integers m and n,

pio(Pm U Py) = { (1)’ Zf u(,Z;,’,Zf {(2,2),(3,3)};

Now, we endeavor to find parallel edge-magic deficiency results to the
ones on super edge-magic deficiency presented earlier in this section. This
is interesting as Kotzig [11] proved that there are infinitely many forests
that are not edge-magic. To do so, we start with the following corollary.

Corollary 2. For every two positive integers m and n,

_ {0, if mn is even;
#(E1m U Kyn) = { 1, if mn is odd.
Proof. First, by Theorem 5, we have that
M(Kl,m UKl,n) < I-lvs(Kl,m U Kl,n) <1l

Second, notice that the authors proved in [6] that the forest Ky m U K1 4 is
edge-magic if and only if mn is even.
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If we let » = 1 and 2 in the above corollary, then we can compute
the edge-magic deficiencies of the forests K3 U K1, & P2 U K1, and
K1 2UK) , & P3U K], respectively. By adding these facts to Theorem 4,
we have the following corollary.

Corollary 3. For every two positive integers m and n,

1, if m=2 and n is odd;

H(Pm U K1) = { 0, otherwise.

Now, by the above corollary, 2P; is edge-magic and 2P, is not. Therefore,
by Theorem 6, we have the following corollary.

Corollary 4. For every two positive integers m and n,

1, if (mv n) = (2v 2);

(P U Py) = { 0, otherwise.

The following two conjectures are born out of the results in this section
and those found in [4-7]. First, we state the weaker of the two.

Conjecture 1. If F is a forest with two components, then u(F) < 1.
In fact, we believe that more is true.

Congecture 2. If F is a forest with two components, then p,(F) < 1.

3 Results on 2-Regular Graphs

A recurrent object of interest for the authors are the super edge-magic
properties of 2-regular graphs; for example, see [4, 6, 7]. Indeed, a long term
goal has become the evincing of the super edge-magic deficiencies of all of
these graphs. Therefore, the results in this section are intended to narrow
the gap between what is known and our objective.

Now, consider the following result found in [4].

Theorem 7. The 2-regular graph mC, is super edge-magic if and only if
m and n are odd.

The above theorem allows us to compute the super edge-magic defi-
ciency of the 2-regular graph 2C,,.

Theorem 8. For every integer n > 3,

1, if n is even;
#s(2Cn) = { +00, ifn is odd.
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Case 1:

Case 2:

-

Proof. First, assume that n is odd. Then, by Lemma 3, we obtain that
#4(2Cn) = +o00.

Next, assume that n is even. Then, by Theorem 7, the 2-regular graph
2C,, is not super edge-magic. Hence, p5(2Cy) > 1.

To show that us(2C,) < 1, let G = 2C,, U K, be the graph with

V(G)={zil <i<n}U{mll <i<n}u{z}

and

E(G) = {ziy|l £i<n}
U{zigis|l i <n/2-1}U {0}
U{zigis1 In/2+1<i<n=1}U{Znnj2+1}»
and consider two cases.

For n = 4k, where k is a positive integer, define the vertex labeling f :
V(G) — {1,2,...,8k + 1} such that

((4k+i+1, ifie[1,k);
S = k=it ificlk+1 2K,
)=V i-k+1, ifie[2k+1,3k—1];

L i+1,  ifie 3k 4K);

( 4, ifie[l,k+1);

) ak—i+2, ifie k+2,2K];
Fw) = 8k—i+2, ifie[2k+1,3k);

| 4k+i+1, if i€ [3k+1,4k];

and f(z) =2k +1.
For n = 4k + 2, where k is a positive integer, define the vertex labeling
f:V(G) - {1,2,...,8k+ 5} such that

6k—i+5, ifi€[l,k—1);
fla) = 4 SkTi+4 iEic k2 +1]
i)=Y i-2k-1, ifi € [2k+2,3k+2];
6k —i+5, if i € 3k + 3,4k + 2);
2% —i+2, ifie€ Lk
F) = { 2k+i+2, ifielk+1,3k+3);
10k —i+7, if i € [3k +4,4k + 2;

and f(z) =2k +2.

Therefore, by Lemma 1, f extends to a super edge-magic labeling of G
with valence 5n + 4.



With the aid of Theorem 7, we are now able to provide the super edge-
magic deficiency of the 2-regular graph 3C,,.

Theorem 9. For every integer n > 3,

0, ifn is odd;
ps(3Cp) =<1, ifn=0 (mod 4);
+00, ifn=2 (mod 4).

Proof. 1t follows from Theorem 7 that u,(3C,) = 0 when n is odd; so we
now assume that n = 0 (mod 4). Then, by Theorem 7, the 2-regular graph
3Cy, is not super edge-magic, that is, 2,(3C,) > 1.

To verify that 1,(3Cy) < 1, let G 22 3C,, U K; be the graph with

V(G) = {z:|1 <i<3n/2} U {3l <i<3n/2}U{z}
and

E(G) = {ziy|]l <1< 3n/2}
U{zyi4111 i< n/2 - 1} U {2njomn }
U{:v,'y,~+1|n/2 +1<i<n—- 1} U {zny,,/z.,.l}
U{zigir1In +1 <4< 3n/2 - 1} U {Za3n/2Un+1}

and consider two cases.
For n = 4, define the vertex labeling f : V(G) — {1,2,...,13} such that

(f(mi))?=l = (1,3,2,7,4,5);
(f(yl))f=1 = (8)9) 61 12, 11, 13); and
f(2) = 10.

: For n = 4k, where k is an integer with k& > 2, define the vertex labeling
f:V(G) = {1,2,...,12k + 1} such that f(z;) =1, if i € [1,6k];

(8k—-1, ifi=1;

6k +i—1, if i € [2,k);

9k, ifi=k+1;

6k +i—2, if i € [k +2,2k);
) = 4 6k+i, ifie[2k+1,3k-1};
V7Y 6k+i+3, if i € [3k,4k — 1);
8k, if i = 4k;

6k +i+2, if i € [4k + 1, 5k];
9%k +2,  ifi=>5k+1;

6k +i+1, if i € [5k + 2, 6k];

and f(z) = 9k + 10.
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Thus, by Lemma 1, f extends to a super edge-magic labeling of G with
valence 15n/2 + 3, and we conclude that 42,(3Cr) =1 whenn =0 (mod 4).
Finally, the remaining case immediately follows from Lemma 3.

Now, in light of the above results, it seems natural to explore the super
edge-magic deficiency of the 2-regular graph 4C,. However, the authors
have only been able to provide a partial solution to this question, which is
contained in the following theorem and the subsequent comment.

Theorem 10. For every positive integer n =0 (mod 4), p,(4C,) = 1.

Proof. Throughout this proof, assume that n =0 (mod 4). Then notice by
Theorem 7 that the 2-regular graph 4C, is not super edge-magic. Thus, it
suffices to show that u,(4C,) < 1. To do this, let G & 4C, U K be the
graph with

V(G ={m|l <i<2n}u{mll <i<2n}u{z}
and

EG) = {zwmill <i < n}
U{Zigi41 |1 4 < n/2 =1} U {Znjatn }
U{ziyis1 In/2 +1<i<n=1}U{Zn¥nj241}
U{zipit1 [n+1 <i<3n/2 =1} U {Z3n/2¥n41}
U{&:yit1 137/2+1 < i < 2n— 1} U{T2nYsn/2+1} »

and consider five cases according to the possible values for the integer n.

Case 1: For n = 4, define the vertex labeling f : V(G) — {1,2,...,17} such that

(f(wi))?_—_l = (113a 2,6,4,8,7, 9)1
(Fw), = (10,11,13,15,12,14,16,17); and
f(z) = 5.

Case 2: For n = 8, define the vertex labeling f : V(G) — {1,2,...,33} such that

(Fza))is, = (1,2,4,5,7,10,14,15,
3,6,8,12,11,13,17,16);

(F@))ie, = (18,19,20,21,22,23,28,32,
24,25, 26,27, 29, 30, 31, 33); and

f(z) =09.
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Case 3: For n = 12, define the vertex labeling f : V(G) — {1,2,...,49} such that

(Fz:)N, = (1,2,3,4,5,11,6,7,
15,19, 20, 23,8,9,10,12,
14,17, 16, 18,22, 25, 24, 21);
(Fw)2, = (26,27,28,29,30,31,32,33,
34,41, 45,48, 35, 36, 37, 38,
39, 40,42, 43, 44,47, 49, 46); and
f(z) =13.

Case 4: For n = 8k+8, where k is a positive integer, assume that ! is an integer with
1 <1 < k, and define the vertex labeling f : V(G) — {1,2,...,32k + 33}
such that

@) = i, ifi€[1,4k + 3);
¥=\i-1, ifie[dk+5,6k+5];

J(Takss) = 8+ T; f(Zer+6) = 10k + 10;
f($8k+7) = 15k + 15; f($8k+8) = 15k + 16;
f(z10k411) = 8k +8; f(z12k412) = 10k +12;

f(z12k413) = 10k +11;  f(Ti2k414) = 10k +13;

(9k+6l+9, ifi=6k+2l+05;
9k + 61 + 10, if i =6k + 2l +6;
8k+20+8, ifi=10k+ 2!+ 10;
flz) = ¢ 8k+2l+9, ifi=10k+20+11;

V7Y 4k 4+ 61+18, ifi=10k+ 2l +15;
4k + 61 +19, ifi =10k + 2l + 16;
16k — 61 + 23, if i = 14k + 21 + 13;
16k — 61 + 22, if i = 14k + 21 + 14;

\
f(zsk+ivs) =5k +i+5,if i € [1,2k + 2);
f(y:) =16k + i+ 17, if i € [1,6k + 6);

f(yer+7) = 26k + 28; f(ysras) = 32k + 32;
f(yr2k413) = 26k +29  f(yr2k414) = 26k + 30;
f(yizks1s) = 26k +31;  f(yrak416) = 32k + 33;

26k -+ 61 + 26, if i = 6k -+ 21 + 6

%6k + 61+ 27, if i = 6k+ 2+ T,

o) 26k 61430, if i = 126+ 20+ 14;
F) =\ 26k +61+31, if i = 12Kk + 21 + 15;
32k — 61+ 35, if i = 12k + 20 + 17;

3%k — 61+ 34, if i = 12k + 20 + 18;
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f(Ysksivs) = 22k +i + 23, if i € [1,4k + 4]; and f(z) =8k +9.

Case 5: For n = 8k+12, where k is a positive integer, assume that [ is an integer with
1 <! < k, and define the vertex labeling f : V(G) — {1,2,...,32k + 49}
such that

_[i, ifie1,4k+5;
f(=) = {i— 1, if i € [4k +7,6k +8);
f(zak+6) = 8k +11; f(Zek+9) = 10k +15;
f(zsksr0) = 16k+19;  f(zsk+n) = 16k +20;
f(zsk+12) = 16k + 23; f(z10k+16) = 8k +12;
F(zr2k418) = 10k +17;  f(Z128410) = 10k + 16;
f(x12k+2o) = 10k + 18; f(214k+21) = 16k + 22;
f(Z14k422) = 16k +25;  f(T14k+23) = 16k +24;
f(Z14k424) = 16k +21;

10k + 6! + 13, if i =6k 4+ 2 + 8;
10k + 6l + 14, if i =6k +2[ + 9;
Fz:) = 10k+61+17, ifi =12k + 214+ 9;
¢ 10k + 6l + 18, if i = 12k + 21 + 10;
16k — 61 + 22, if i = 14k + 21 4 23;
16k — 61 + 21, if ¢ = 14k + 21 + 24;

F(osrinn) = 6k+i+7, ifi€[1,2k+3);
8k+i+12) = \ 6k +i+9, if i € [2k+ 5,4k + 5];

fly:) =16k +i+25,if i € [1,6k +9);

J(Yer+10) = 26k +41; F(ysk+11) = 32k + 45;

f(ysks12) = 32k +48;  f(yr2k+10) = 26k + 42;
F(tnzks20) = 26k +43;  f(rar4m) = 26k +44;
f(yrakea2) = 32k +47;  f(tr4k+23) = 32k +49;
F(y14k424) = 32k + 46;

26k + 61 + 39, if i =6k + 21 +9;

26k + 61 + 40, if 5 = 6k + 21 + 10;
\_ ) 26k+61+43, if i = 12k + 21 +20;
FW) =\ o6k + 61+ 44, if i = 12k + 20 +21;
32k — 61 + 48, if i = 14k + 21 + 23;
32k — 61 + 47, if i = 14k + 2 + 24;

f(y3k+,'+12) =22k+i+34,ifi € [1,4k + 6], and f(z) =8k +13.

Therefore, by Lemma 1, f extends to a super edge-magic labeling of G
with valence 10n + 4, which leads to conclude that u,(4C,) = 1.
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When 7 # 0 (mod 4), our knowledge is limited to the value of u,(4Cs)
which we determine to be 1 as follows: first, by Theorem 7, the 2-regular
graph 4Cs is not super edge-magic; however, the graph 4Cg U K is super
edge-magic by labeling the vertices in its cycles with 14 -1 —15—2— 16 —
5—14,17-3-19-4-21-10-17,18-6—-20—-8-—22—11 —18 and
23-9—-25—-13—24—12— 23, and its isolated vertex 7 to obtain a valence
of 64.

Now, Lemma 3, all the results in this section and the authors’ compu-
tation of p,(Cy) in [5] lead us to the following conjecture.

Congjecture 3. For every two integers m > 1 and n > 3, u,(mGC,) = 1, if
mn =0 (mod 4).

Finally, to put forth a similar conjecture for the edge-magic deficiency of
multiple copies of a cycle, we make some observations. First, if we combine
Theorem 1 with Goldbold and Slater’s result [9] or Kotzig and Rosa’s re-
sult [12] that the cycle C, is edge-magic, we have that the 2-regular graph
mC, is edge-magic when m is odd. Also, the authors have shown in [6]
that mC, is edge-magic when m = 2 (mod4) and n =4 or6,0orn =1,
5 or 7 (mod 12). Furthermore, Kotzig and Rosa [12] showed that 2C; is
not edge-magic, and mentioned that its edge-magic deficiency is 1. Indeed,
an edge-magic labeling of 2C3 U K is obtained by labeling its cycles with
2-6-13—-2and 3—-7-9- 3, and letting the valence be 20. Therefore,
all these facts lead us to the following conjecture.

Congjecture 4. For every two integers m > 1 and n > 3,

1, fm=2andn=3;
wmCp) = { 0, otherwise.

4 Some Open Problems

We conclude this paper with some remarks on bounds for the edge-magic
and super edge-magic deficiencies of graphs, and some open problems.
Notice that all the graphs that we study in this paper are either bipartite
or tripartite, which means that the bounds of Corollary 1 hold for all of
them. Unfortunately, these bounds are not sharp (for example, we know
from that p5(Cjys) = 1, which implies that 4,(3Cy,) < 3; however, we know
by Theorem 9 that actually p,(3C4n) = 1). Nevertheless, these bounds are
better than those found in [14, p. 62-64] (which are in terms of Sidon
sequences), where Wallis commented that no good bounds were known for
edge-magic deficiencies and the only known classes of graphs for which the
exact values are known are the various classes of edge-magic graphs (which
of course have edge-magic deficiency 0). Moreover, Kotzig and Rosa [12]

29



easily found an upper bound for the ed§e-magic deficiency of a graph G of
order p, namely, 4(G) < Fpy2 —2 — (°}'), where F, is the p-th term of the
Fibonacci sequence. This motivates us to propose the following problem.

Problem 1. Find a good upper bound for the (super) edge-magic deficiency
of bipartite and tripartite graphs.

Finally, as mentioned in the introduction, the authors proved in [5] that
ts(K2,n+1) = n for every nonnegative integer n. This leads us to ask in the
last problem whether a similar result is possible for edge-magic deficiency.

Problem 2. Given a nonnegative integer n, construct a graph G such that
#(G) =n.
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