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Abstract. Let A be an edge-magic total (EMT) labeling of graph
G(V, E). Let W C V(G)UE(G). Any restriction of A to W is called
a partial EMT labeling on G. A partial EMT labeling 7 is a critical
set in A if X is the only edge-magic total labeling having  as its
partial EMT labeling, and no proper restriction of « satisfies the
first condition. In this paper, we study the property of critical sets
in such a labeling. We determine critical sets in an EMT labeling
for a given graph G.
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1 Introduction

The notion of critical sets in Latin squares was first introduced and studied
by J. Nelder in 1977 [7]. Now, this study has developed, see for instances [1-
3]. In this paper we introduce a similar notion for edge-magic total labelings
on a given graph.

An edge-magic total (EMT) labeling on graph G(V, E) with n vertices
and m edges is a bijection A from V(G) U E(G) onto the set of integers
1,2,---,m + n such that there exists a positive integer k satisfying

Az) + Mzy) + My) =k,

for each edge zy € E(G). We shall follow [9] to call A(z) + A(zy) + A(y) the
edge sum of zy, and k the magic constant of graph G. A graph that admits
an EMT labeling is said to be edge-magic total (EMT).

The notion of edge-magic total labeling was introduced by Kotzig and
Rosa. [4] under the name of magic valuation.
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For any EMT labeling A on graph G with n vertices and m edges, its
dual labeling )’ is defined by

z\’(v.-) =M- /\(’Ug),

for any vertex v;, and
N(z) = M - Xz),

for any edge z, where M =n+m+1.

It is easy to see that if A is an EMT labeling with magic constant k
then ) is an EMT labeling with magic constant k' = 3M — k. The sum of
vertex labels of X is s’ = nM — g, where s is the sum of vertex labels of A.

Either s or &' will be less than or equal to —;-nM . This means that, in
order to see whether a given graph is EMT, it suffices to check either all
cases with 8 < 2nM or all cases with s > 3nM (equivalently, k < 3M or
k> sM).

th A be an EMT labeling on graph G(V, E). Let W C V(G) U E(G).
Any restriction of A to W is called a partial EMT labeling on G. A partial
EMT labeling 7 on graph G is said to be uniquely completable if there is
only one EMT labeling having 7 as its partial EMT labeling on G. A partial
EMT labeling 7 is a critical set in an EMT labeling A on G if

1. 7 is uniquely completable, and
2. no proper restriction of 7 satisfies the property 1.

Example 1. Let A be the EMT labeling on path P; as in Fig. 1(a).
Thus, we can write A = {(1,1),(2,5), (3,3), (4,4), (5,2)}, by noting that
the first integers in each tuples represent the position. It can be easily ver-
ified that {(1,1),(4,4)} as Fig. 1(b) is a critical set in A. However, the set
{(8,3),(4,4)} as in Fig. 1(c) is not a critical set, since other than A, the
labeling {(1,5), (2, 1), (3, 3), (4,4), (5,2)} also contains {(3,3), (4,4)} as its
partial EMT labeling.

The labeling in Fig. 1(a) can be represented as {1, 5, 3,4,2} if we know
in which order we label the graph. Then, the critical set in Fig. 1(b) can be
represented as {1,_,,4,_}, or for short we write {1,4}. Therefore, we may
consider any critical set as a set. Precisely, it is a set of some labels in a
given edge-magic total labeling of a graph.

This paper studies the property of critical sets in an edge-magic total
labeling.

2 Basic property and lower bound

In this section, we give some basic property of any critical set and we derive
a lower bound of its size for a given EMT labeling of any particular graph.
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Fig. 1. The notion of critical set.

Theorem 1. Let Q = {a;,a2,:+ ,a,} be a critical set of an EMT labeling
A on graph G with n vertices and m edges. Then Q' = {M — a;, M —
ag,--+ ,M — ay} is a critical set of the dual labeling N on G where M =
n+4+m+ 1.

Proof. Since @ is uniquely completable to A then Q' is uniquely completable
to )’ (by the duality property). Since no proper subset of Q can be uniquely
completable, no proper subset of Q' can be also uniquely completable.
Therefore, @’ is a critical set of X’ on G. o

Corollary 1 Let s be a fized positive integer. If an EMT labeling A doesnot
have any critical set of size s then neither does its dual labeling )'.

Proof. Suppose X’ has a critical set of size s. Then, by Theorem 1 the
dual of X', namely ) itself, also has a corresponding critical set of size s, a
contradiction. 0

The following theorem gives a lower bound and provide some informa-
tion about which labels any critical set should consist of.

Theorem 2. Let A be any EMT labeling of graph G. If v is the number
of leaves in G then the size of each critical set of ) is greater than r.
Furthermore, if x is the label of any leaf and y is the label of the edge
adjacent to it then each critical set in A\ must contain either = or y, not
both.

Proof. Let {v1,v3,...,v,} be the set of all the leaves of G, and {e1, ez, .. ., e,}
be the set of all edges incident to these leaves, accordingly. Let A\(v;) = z;,
AMe;) = y; where ¢; = {z;,3:}, i =1,2,...,7. Let Q) be a critical set of A
and for a contrary assume |@Q,| < r. Then, there exists some %, say i = k,
such that neither z; nor y is in Q. Therefore, completing @, by swap-
ping these two labels z; and y; will get a EMT labeling other than A on
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G, a contradiction. Therefore, |Qx| > r. The second statement immediately
follows. O

Corollary 2 The size of any critical set of an EMT labeling on tree T, is
at least v, where T is the number of its leaves. 0

3 Stars and its disjoint unions

In the following we show that for some particular tree, for instance stars,
the size of some of its critical set is exactly the same as the number of its
leaves.

Wallis et al. [9] showed that in every EMT labeling on a star S, of n
vertices, the center point of S, always recieves a label either 1, n or 2n —1.

Theorem 3. Let A be an EMT labeling on a star S, on n vertices. Then,
the size of any critical set of \ is eithern—1 orn.

Proof. Let Q be any critical set of A. From Theorem 2, |@| > n — 1. Thus
it suffices to show that |Q| < n + 1. For a contrary assume that there is a
critical set @ of A with |@| = n + 1. Then, one of the following situations
must hold: (i) @ contains label of the center and labels of some leaf together
with an edge incident to it, (ii) @ contains labels of two leaves together with
two edges incident to them. By Theorem 2, both cases are impposible. O

Theorem 4. Let \ be a given EMT labeling on a star S, on n vertices.
Let ¢ be the center point of Sn. Let Qx be a critical set in \. Then, we have
the following:

. Qx=1{1,2,4,---,2n -2} and @» = {L,n+1,n+2,---,2n — 1} are the
only critical sets of size n if AM(c) = 1;

. Qa = {1,2,3,--,n} and Qx = {n,n+1,n+2,--+,2n — 1} are the only
critical sets of size n if A(c) =n;

. Qx=1{1,2,-- ,n—1,2n—1} and Q) = {2,4,-:- ,2n — 2,2n — 1} are the
only critical sets of size n if M(c) =2n — 1.

Proof. By Theorem 2, If the label of some leaf is not in @, then the label
of the edge adjacent to it must be included in @, or vice versa. Thus, if
|Qx] = n then A(c) € @x. Therefore, the only way to get |Qx| = n if we
have one of the following conditions.

1. If A(c) = 1 then Q, is either the set of label 1 together with all even
labels or the set of label 1 together with labels n + 1,7 +2,---, and
2n —1;
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2. fXM(c) =nthen Q) ={1,2,3,--- ,n}or Qs = {n,n+1,n+2,--- ,2n—
1}

3. If M(c) = 2n — 1 then Q, is either the set of label 2n — 1 together with
labels 1,2,--- ,n — 1, or the set of label 2n — 1 with all even labels. O

The following theorem enumerates all the critical sets of a given EMT
labeling on a star S,, on n vertices.

Theorem 5. For each EMT labeling ) of a star S, on n vertices there are
two critical sets of A with size n and 2"~ ~ 2 critical sets of sizen — 1.

Proof. This follows immediately from Theorems 2, 3 and 4. O
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Fig. 2. List of all critical sets in a given EMT labeling on S;.

In Figure 2(b), we list all critical sets of an EMT labeling on S; given
in Fig. 2(a).

Now, let us denote by A; and )z, respectively the EMT labelings of
a star S, with the vertex-set {c;v1,v2,-- ,v,—1} and c the center vertex
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with the following properties.
/\1(0) = 1, )\1(‘0‘) =i+ 1, A;(cv;) =2n- i, Vi.

Ao(c) =, do(vs) =14, Ao(cvs) =2n —1i, Vi.

Next, based on these two labelings we will determine a critical set in an
EMT labeling of the unions ¢S, of ¢ disjoint copies of Sy, where ¢ is odd.
We know that tS, is an EMT graph, see [8]. One way to label such a graph
is the following. Take the EMT labeling A, or Az on S,. Define a proper
total colouring 7 in S, by

n(e) =1, n(v)=2, nlev)=3

fori=1,2,...,n—1.
Denote the copies of S, by Go,Gh,...,Gay, Where 2r + 1 = t. Define
matrix A = [a,g) as follows:

0 1 «or=17 r+1 .« 2r—12r
r+1 r4+2 -« 2r 0 1 o r=-1r].
2%-12r-3... 1 2r2r-2... 2 0
Then the graph element z of Gg, 8 =0,1,...,2r, receives a label

'rj(:v) = t()\j (z)-1)+1+ Cy(z)B

for each z € V(tS,,) U E(tS,) and j = 1,2.
We can see that 7, and 72 are two different EMT labelings of ¢S,.
Since all edge labels in 7; and 7, are exactly the same, namely 71 (cv;) =
T2(cv;) for every i = 1,2...n — 1, then by Theorem 2 the set of all edge
labels plus label of one center vertex form a critical set in either 71 or 72 of
tS,. Therefore, we have the following theorem.

Theorem 6. Lett be an odd integer. Let 71 be a super EMT labeling defined
above on graph tS,. Let Q = {1} U {n(zy)|zy € E(tSn)}. Then Q is a
critical set of 7y with |Q| =t(n —1)+1. 0

4 Complete graphs

In [8], Kotzig and Rosa showed that no complete graph with more than
6 vertices is EMT. Furthermore, Wallis [9] enumerated all different EMT
labelings on complete graphs with at most 6 vertices. Let k be the magic
contant, S and s be the set of vertex labels and the sum of vertex labels,
respectively. The complete list of all different EMT labelings for complete

38



graphs is given below (see [9] and [8]). (Notice that in every case the solu-
tion for a given k is unique (if one exists).)

K> Trivially possible.
K3 Sum values to be considered are k = 9,10, 11, 12.
k= 9,s= 6, §={1,2,3}.
k=10, s= 9, §={1,3,5}.
k=11, s= 12, S = {2,4,6}.
k=12, s= 15, § = {4,5,6)}.
K, No solutions.
K5 Sum values to be considered are k = 18,21, 24, 27, 30.
k=18, s= 20, S={1,2,3,5,9}.
k= 21, s = 30, no solutions.
k=24, s= 40, S = {1,8,9,10,12}.
k=24, s= 40, S = {4,6,7,8,15}.
k = 27, s = 50, no solutions.
k= 30, s= 60, S ={7,11,13,14,15}.
K¢ Sum values to be considered are k = 21, 25,29, 33,37, 41, 45.
k= 21, s= 21, no solutions.
k=25 s= 36, 9={1,3,4,5,9,14}.
k=29, s= 51, S={2,6,7,8,10,18}.
k= 33, s= 66, no solutions.
k=37, s= 81, §={4,12,14,15,16, 20}.
k=41, s= 96, S={8,11,17,18,19,21}.
k = 45, s = 111, no solutions.

Theorem 7. The only critical sets of an EMT labeling on K3 are any
partial EMT labeling of size 2 other than {1,3}, {1,6}, or {4,6}.

Proof. Let 6 = {1,2,3,4,5,6}. Since any z € 6 is contained in two S's
then any singleton subset of 6 cannot be a critical set for A of K3. Clearly,
a critical set cannot contain all vertex labels nor all edge labels. Thus,
2 £ |Q| £ 4. Let Q = {a, b} be any set of size 2 and Q # {1, 3}, {1, 6}, {4,6}.
Then, it can be verified that Q is uniquely completable and no singleton
subset of Q has the same property. Therefore Q is a critical set. Next, we
will show that no critical set of size more than 2 is possible. Suppose we
have a critical set Q of size 3 and let Q = {a, b, c}. This yields that any 2-
subset of () cannot be uniquely completable. Therefore, the three 2-subset
of @ must be {1,3},{1,6} and {4,6}. This is impossible. As a consequence,
there is no critical set of size 4 either. (m]

Theorem 8. The number of critical sets of sizes 1,2, and 3 are 3,36, and
7 for the first labeling (as well as for the third labeling by the duality); while
the critical sets of sizes 1,2, and 3 are 2,34, and 19 respectively for the
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second labeling (as well as for the fourth labeling by the duality) on Ks. A
critical set of a greater size does not exist.

Proof. We will enumerate all critical sets of all EMT labelings on Ks. Since
the third labeling is the dual of the first one, and the fourth labeling is the
dual of the second, so to enumerate all critical sets we suffice to enumerate
critical sets for the first and second labelings. The critical sets of the third
labeling are all the dual critical sets of the first labeling. Similarly, all critical
sets of the fourth labeling are the dual of ones from the second labeling (by
Theorem 1).

From now on, let Q be a critical set from one of the first two labelings
on Kj above (with § = {1,2,3,5,9} or S = {1,8,9,10,12}).

Case 1. |Q| = 1.

Since any single edge label is contained in more than one EMT labelings
on Ky then no singleton critical set containing one edge label. If @ contains
a vertex label z and z € {2,3,5,10,12} then Q is uniquely completable.
Therefore Q is a critical set. In this case, all critical sets of size 1 for the
first labeling are {2}, {3} and {5}; while for the second labeling we have
{10} and {12}.

Case 2. |Q| =2.
If Q is a set of two vertex labels then the first labeling has no such a critical
set and for the second labeling Q must be either {1,8} or {8,9}.

If Q is a set of two edge labels then it can be verified that the first
and second labelings have: {4, 15}, {6, 14}, {6, 15}, {7,11}, {7,13}, {7,14},
{8,11},{8,15} as such critical sets. Additionally, the first labeling has fur-
ther 17 such critical sets: {4,10}, {6,8}, {6,12}, {7,8}, {7,10}, {7,12},
{8,10}, {8,11}, {8,13}, {8,14},{8, 15}, {10, 13}, {10, 15}, {11,12}, {11,14},
{12,13}, {12,15}. Additionally, the second labeling also has further 9 such
critical sets: {2,7}, {2,15}, {3,4}, {3,6}, {3,7}, {3,15}, {4,5}, {5,7},
{5,15}.

If Q is a critical set consisting of one vertex label a and one edge
label b then @ € {1,8,9}. If a = 1 then (b € {8,10,11,12,13} for the
first labeling) or (b € {2,3,5,11,13} for the second one). If a = 9 then
(b € {4,6,8,10,12,14} for the first) or (b € {2,3,4,5,6, 14} for the second).
If o = 8 then b € {4,6,7,15} (only for the second labeling).

Case 3. |Q| =3.

Next, we will enumerate all critical sets of size 3 for the first and second
labelings. Let @ = {a,b,c}. Assume Q contains one vertex label, say a.
Then a ¢ {2,3,5,10,12}. Therefore the only possible values of a's are 1
and 9 (for the first labeling), 1, 8 and 9 (for the second labeling). This
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means that there is no @ of size 3 consisting of three vertex labels, since
{1,8} is a critical set. So, at least one of b and c are an edge label, say c. In
the first labeling, if a = 1 then c € I = {4,6,7,14,15}. If b is a vertex label
then b must be 9. If b is an edge label then b € I. Therefore no matter label
b will be chosen, @ cannot be a critical set. If = 9 then ¢ € {7, 11,13, 15}.
By a similar argument @ cannot be a critical set in this case. So, no critical
set of size 3 contains at least one vertex label for the first labeling. By
similar argument, we can also show that there is no such a critical set of
the second labeling,.

Now, in this case it remains to consider the case of Q containing three
edge labels: a,b and c. Clearly, Q cannot contain any critical set of size 2
containing edge labels only. To count all such critical sets Q for the first
labeling, start by letting @ = 4 and b = 6. Then the possible values of ¢’s are
either 8,10, 11, 12,13, 14, or 15. However, only ¢ = 8 yields a critical set. Do
the same process by changing b and a (respectively) with higher edge labels.
It can be verified that the whole process will yield 7 critical sets: {4, 6,8},
{4,8,13}, {4,8,14}, {4,12,14}, {6,10,11}, {12, 14, 15}, and {13,14,15} for
the first labeling. For the second labeling, by using the same process we
have 19 such critical sets: {2, 3,5}, {2,3,11}, {2,4,11}, {2,4,13}, {2,4, 14},
{2,5,6}, {2,5,13}, {2,6,11}, {2,6,13}, {2,11,13}, {3,5,14}, {3,11, 14},
{4,11,14}, {5,6,11}, {5,6,13}, {5,13,14}, {11,13,14}, {11,14, 15}, and
{13,14,15}.

Case 4. |Q| > 4.

As a consequence of Case 3, there is no critical set of size 4 or greater
containing at least one vertex label. Therefore, the only critical sets @ of
size > 4 consists of edge labels only. Let now consider Q of size 4 for the
first labeling, and let @ = {a,b,c,d}. For astart leta=4,5=6,c="7 and
d € {8,10,11,12,13,14,15}. By considering all critical sets of lower sizes
we can show no such @ with a =4, b =6, ¢ = 7. Iterate values a, b and ¢
over all possible edge labels. Since Q@ cannot contain any critical set of size
< 3 then it can be verified that no such Q is possible for the first labeling.
Since there is no critical set @ of size 4 then neither is critical set of size
2> 5. By a similar process, we can show that the second labeling has no
critical sets of size > 4. m]

5 Open Problems

To conclude this paper, let us present the following open problem to work
on.
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Problem 1.

1. Characterize all critical sets in an EMT labeling for other class of graphs
V4

2. Construct an algorithm to verify whether a given partial EMT labeling
is a critical set or not ?
3. Study the characteristics of critical sets in other type of labeling on

graphs?
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