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Abstract. A simple graph G = (V, E) admits an H-covering if
every edge in E belongs to a subgraph of G isomorphic to H. In this
case we say that G is H-magic if there is a total labeling f : VUE —
{1,2,--+,|V| + |E|} such that for each subgraph H' = (V’, E') of
G 1somorph1c to H, 3 ey f(¥) + Eee g f(€)) is constant. When
f(V)={1,---,|V]}, we say that G is H-supermagic.

We study H-magic graphs for several classes of connected graphs.
We also provide constructions of infinite families of H-magic graphs
for an arbitrary given graph H.

1 Introduction

Let G = (V, E} be a finite simple graph. An edge-covering of G is a family
of different subgraphs Hi,..., H; such that any edge of E belongs to at
least one of the subgraphs H;, 1 < ¢ < k. Then, it is said that G admits
an (Hy,- - , Hyx)-(edge)covering. If every H; is isomorphic to a given graph
H, then we say that G admits an H-covering.

Suppose that G = (V, E) admits an H-covering. We say that a bijective
function

[:VUE - {1,2,---,|V|+|E|},

is an H-magic labeling of G if there is a positive integer m(f), which we
call magic-sum, such that for each subgraph H’ = (V’, E’) of G isomorphic
to H we have,

FEYE Y 1)+ Y fle) =m(p).

vevV’ ecE’

In this case we say that the graph G is H-magic. When f(V) = {1,---,|V|},
we say that G is H-supermagic and we denote its supermagic-sum by s(f).
In Figure 1 we show an example of a P;-supermagic labelling of Ps.
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Fig. 1. P;-supermagic labelling of Ps .

When H is isomorphic just to one edge, the previous concept coincides
with the well-known magic valuation introduced by A. Rosa [9] in 1966 and
the supermagic case with the one treated with posteriority in [2], see also
[1]. Notice that, in this case, an H-covering is also an H-decomposition.
There are other closely related notions of magic labellings in the literature;
see the survey of Gallian [4] and the references therein. Gallian suggests the
denomination of total edge-magic labellings for what we just called magic
labellings (when H = K,.) For simplicity, in this paper we will use this
shorter denomination.

In Section 2 we study star-magic coverings, particularly for complete
bipartite graphs. We obtain general results which include the classical ones
with respect to the basic magic property, which corresponds to the star with
a single edge. Section 3 deals with path-magic coverings, another extension
of the classical magic labellings. In particular we study the path-supermagic
coverings of paths and cycles. We conclude in Section 4 by showing that, for
any given graph H with some weak conditions, there are infinite families of
H-magic graphs.

We use the following notations. For any two integers n < m we denote
by [n,m] the set of all consecutive integers from n to m.

For any set I C N we write, ), I =)__.; . Note that, for any k € N,

ST+k)y=) I+k|Il.

Finally, given a graph G = (V, E) and a total labelling f on it we denote
by

F@)=Y_fvV)+Y_ f(E).



2 Star-magic coverings

In this Section we study star-magic coverings, which is an extension of
the well-known problem of magic decompositions. We consider the basic
families of complete and complete bipartite graphs with respect to the star—
magic and star-supermagic properties.

It is clear that, for any pair of positive integers n > h, the star K, ,, can
be covered by a family of (}) starsK) . We start by easily proving that
K1, is K p—supermagic for any 1 < h < n.

Proposition 1. The star K, , i3 K n-supermagic for any 1 < h < n.

Proof. Denote by V = {vy, - ,¥n,Vn41} the vertex set of K7 ,,, where vp41
is the vertex with maximum degree, and by E = {e; = vp+1%:,1 < i < n}
its set of edges.

Define a total labeling f : VU E — [1,2n + 1] as follows,

set f(vnt1)=n+1landforeachl1 <i<n

flw)=i,  fle) =2(n+1)—i.

Clearly, f(V) = [1,n+1] and f(E) = [n+2,2n +1].
For each subgraph H of K , isomorphic to K; , we have,

FH)=m+1)+h(Ei+2MR+1)-13)=(n+1)2h+1).
Therefore K p, is K; -supermagic foreach 1 <h <n. a
If a graph G is K} ,-magic then we clearly have h < A(G). Next lemma

says something stronger in this direction and gives as a corollary a sharp
lower bound for A.

Lemma 1. Let f be a Ky ,-magic labeling of a graph G. If the degree of a
vertez € V(G) verifies d(x) > h then, for every vertez y adjacent to z,
we have,

F@) + f(av) = £(m(f)  £(2)).

Proof. Let N(z) = {y1,- - ,y-} be the neighborhood of z, with r > h, and
denote by A the multiset

A={f(n)+ f(zn), -, fly:) + f(zyr)}.
For each pair of h-subsets X, Y of A we have,
m(f) = fl@)+» X=f(z)+).Y
= f@)+Q_X-D (X\V)+ > (Y\X)),
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which implies } (Y \ X) =Y (X \Y).

By taking Y \ X = {f(u) + f(zy:)} and X \Y = {f(y;) + f(zy;)},
i # j, we see that

fn) + flayn) =--- = fyr) + f(zr) =,
for some constant c.
Therefore, m(f) = f(z) + he, which gives the value of c. m]

Corollary 1. Let G be a K, -magic graph with h > 1. Then, for every
edge e = zy of G,
min{d(x), d(y)} < h.

Proof. Suppose on the contrary that min{d(z),d(y)} > h and let f be a
K »-magic labeling of G. By Lemma 1 we have,

f(z) + flzy) + f(y) = %(m(f) - f@)+ f(v)
= f@)+ 3(m(f) - £@))
which implies f(z) = f(y), a contradiction. n]

As a direct consequence of Corollary 1 we obtain the next general result
for regular graphs.

Corollary 2. Let G be a d-regular graph. Then G is not K -magic for
anyl < h<d. o

It is well-known that the complete graph K, is not magic for any order
bigger than six, [3,6,8]. It is also known (7] that the complete bipartite
graphs of any order are magic. As a direct consequence of Corollary 2 we
obtain the following result.

Corollary 3.
(a) The complete graph K,, is not K »-magic for anyl <h<n-1.
(b) The complete bipartite graph K, n is not Ky n-magic for any 1 <
h<n.
0

Using a classical result on the existence of magic squares it is easy to

prove the extremal case for complete bipartite graphs.

Theorem 1. The complete bipartite graph K, , i3 K n-magic for n > 1.
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Proof. 1t is well-known that there are magic squares of each order m > 2,
that is, square matrices of order m with distinc entries in [m?) and all rows
and columns adding up to m(m? + 1)/2.

Set U and W for the stable sets of K,, and E for its set of edges.
Define a labeling f from U UW UE, to [n? as follows.

Take a magic square A of order m = (n + 1) with a;; = (n + 1)? and
for 1 < 4,j < n, define

F(w) = a1, f(w;) = a1,14;, f(wiw;) = 6144145
Therefore, f is a K1 n-magic labeling of K,, ,,. O
The extremal case for complete bipartite graphs with respect the star-
supermagic property is not that easy, as it is shown in what follows. For that

we will use the result contained in the next Lemma, dealing with 2-partions
of sets of consecutive integers with cardinal bigger than two.

Lemma 2. For an integer m > 2 let {X1,X,} be a partition of [1,m].
IfY X1 =% X, then, m=0,3 (mod 4).

Proof. By the definition of X; and X5 we have,
m
s m(m+1)
ZX1+ZX2—§;1— 5
and therefore 1
T xi=Y %= m(m +1)

Hence, m = 0,3 (mod 4). o

Corollary 4. The complete bipartite graph K, , is not K, n-supermagic
for any integer n > 1.

Proof. Let U = {u3, -+ ,un} and W = {wy,--- ,w,} the stable sets of
Kn,» and set E = E(Kp,,). Denote by H; (resp. H}) the star K » in Ky, »
with center u; (resp. w;), 1 <i< n.

Suppose that f is a K ,-supermagic labeling of K, ,, with supermagic-
sum 3(f). Then, we have

ns(f) = Y f(H:) =Y fU)+nY f(W)+ Y f(E)

i=1

=Y fH)=nY FO)+> fW)+ > f(E),
i=1
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which implies Y f(U) = 3 f(W).

Since f is a supermagic labeling, 3" f(U) =n(2n+1)/2 and ) f(E) =
(n2 + 2n + 1)(n? — 2n)/2. Moreover, {f(U), f(W)} is a partition of [1,2n]
and, by Lemma 2, n is even.

Substituting in the above equation, we have

s(f) = (n+1)(2n +1)/2 +n(n? + 2n 4+ 1)/2 = 2n(n + 1) + (n3 +1)/2.

Therefore s(f) is not an integer, a contradiction. O

We next study the same question for general complete bipartite graphs
K,, when 1 < r < s. In [2] it is proved that the only bipartite complete
graphs which are supermagic are the stars.

Corollary 1 ensures that if there exists a K »-magic labeling of K, ,
then h > r. Next Theorem says that in fact there is no integer 1 < h < s
for which K, , admits an K ,-supermagic labelling. It also states that K.,
is K3 s-supermagic, which is an extension of the result given in [2].

Theorem 2. For any pair of integers 1 < r < 8, the complete bipartite
graph K, , is K\ »-supermagic if and only if h = s.

Proof. First we prove that K, ,;, 1 < r < 8, is not K} »-supermagic for any
integer 1 < h # s.

If 1 < h < r, the result follows from Corollary 1.

Suppose that, for some r < h < s there exists a K j-supermagic label-
ing f of K, , with supermagic sum s(f).

Denote by U = {u,--- ,u,} and W = {w,-+ ,w,} the stable sets of
K, 5, and for each 1 < i < r set E; = {wyu, ..., wou}.

Lemma 1 ensures that, for any pair of subscripts 1 <i<rand1<j <
8,

Fluws) + flwgua) = 3(6(7) — () (1)
Denote by a; = (s(f) — f(u;))/h and set A = {a,,...,a,}, where we may
assume a; < @z --- < a,. We have f(U) =s(f) - h-A.
On the other hand, equality (2) implies
f(W) =01 - f(E1) = a2 — f(E2) =--- = ar — f(Ey).
Therefore f(E) = U, f(E;) is the disjoint union
f(B) = Uiy (F(E1) + (@i — a1)).

Denote by @ = min{a;4+1 — a;,1 < i < r}. Then, for some 3,

F(B) N (f(BL) +a) = ((F(By) + ;) N (F(B1) + @ig1)) —ai = 0.
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In particular, the longest interval of integers contained in f(E;) has length
at most a. Since f(W) = a1 — f(E1) the same is true for f(W). But the
elements of f(U) = s(f) — h- A are at mutual distance at least ha > 2a.
Since f is supermagic, we have f(U)U f(W) = [1,r+s]. If a > 2 then f(W)
contains an interval of length at least 22 — 1 > @, a contradiction. If a = 1,
since 8 > r + 2, f(W) also contains an interval of length at least 2. This
contradiction shows that we can not have a K ,-supermagic labelling of
K,,whenr <h<s. '

Assume now that h = s and denote by H;, 1 < i < r, the copy of K3,
in K, ; containing the vertex u; € U.

We are going to give f, a K, ,-magic labeling on K ,. In order to define
it on E(H;) we will consider the following two translations of some interval
I'=[1,5'). Foreach 1 <i<randt=r+s, we define,

L=I+t+5(Gi—1) and I]=I+t+§'(2r —1).

Suppose first that s is odd.
Define the following labeling on the stable sets of V(K. ),

_[fw)=4, 1<i<r
f(U’W)_{f(wi)=T+'i, 1<i<s

Then, f is a bijection from V(K,,,) to [1,r + g].

Take s’ = 231 and define f on E(H;) by any bijection on L; UI! U {t +
rs—i+1}.

Notice that, Ul_, ;= [t +1, t+ 87|, Ul I/ =[t+rs' +1, t +7s— 1]
and U, {t+rs—i+1}=[t+rs—r+1, t+rs]. Therefore,

the family of f(H;) for 1 < ¢ < r is a partition of the interval [t+1, t+7s]
and f is a bijection from E(K,,) to [t+1, t +rs).

In addition, for each 1 < ¢ < r we have,

Zf(V(Hi)) =i+rs+ (3;1)’

D F(EH))=3t+rs+8@2r—1)—i+1+2) I=
=2r+3s+2rs+(s")2+1—i.

Clearly, the addition 3" f(V(H;)) + Y f(E(H;)) is independent of i and
therefore, the supermagic property is satisfied.

Suppose now that s is even.

Define the following labeling on V(K. ). Take f(u;) = 2i—1,for1 <i <
r, and f(W) with any bijection on [1,#] \ f(U). Therefore, f is a bijection
from V(K. ,) to [1,t].
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Define f on E(H;) by any bijection on LUI[U{s+rs—i+1, t+rs—i+1}
but now, s’ = £52. Then we have,

U Li=[t+1,t+487r), U I=[t+rs +1, t+2rs),
Therefore, (Ul_, L) U (Ul I)) =[t+1, t+rs—r]. As
U {t+rs—i+{l,1+r}}=[t+rs—r+1,t+rs,

we also have in this case that f is a bijection from E(K, ) to [t+1,t+rs].
It is easily checked that for each 1 <i <,

Zf(V(H;))=2i+r+(t;1) - ('“2“1) -1,

Y f(B(H)) =3t+rs+s+2-2i+8(s—1)+2) I=
=3r+4s+2rs+ (s')2 4+ 88’ +2 - 2.

Therefore, Y f(V(H;)) + Y f(E(H;)) is also independent of . This
completes the proof. O

3 Path-magic coverings

In this Section we consider path-magic coverings, which is another exten-
sion of the already mentioned magic decompositions. The first result in this
Section concerns the path-supermagic behavior of paths.

Theorem 3. The path P, is P,-supermagic for any integer 2 < h < n.

Proof. Let V = {v;, 1 <i < n} and E = {e; = vjv341, 1 < i < n} be the
vertex and edge set respectively of P,.

For each 1 < i < n consider the decomposition i = %; + ish, with
1<ié43 <£hand0 < i < n/h and write C!(‘i) = (il,iz). Let fi be the
lexicographic ordering of the pairs a(3).

Similarly, for each 1 < i < n, consider ¢ =¢; +i2(h —1) with , 1 <4; <
h—1and 0 < iz < (n—1)/(h—1). Let f2 be the lexicographic ordering of
the pairs G(i).

Consider the total labeling f : V(P,) U E(P,) — [1,2n — 1] defined as
follows: f(z;) = fi(a(i)) on the set of vertices and f(e;) = 2n — f2(8(3))
on the set of edges. It is clear that f(V(P,)) = (1,n] and f(E(P,)) =
[n+1,2n—1].
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Let us show that f i8 a P,-magic labeling. For this let P,Ei), 1<i<
n — h + 1, be the subpath of P, with vertex set {z;, Zi41,...,Zit+n—1} and
edge set {e;,€i41,...,€ith—2}.

For 1 < i< n— h we have,

FEEDY = $(PD) = f(mign) — F(@s) + Fleisn1) — Fls)-

If a(z') = (‘il,iz) then a(i + h) = (il,iz + 1), so that f(z,-.,.;,) - f(:L'i) =1
On the other hand, if A(z) = (¢1,%2), then 8(i + h — 1) = (4;,42 + 1) which
implies f(ei+n-1) — f(es) = —1.

Hence, for each P,E) subpath in P,, we have that f (P(')) = f(P}) and
f is P,-supermagic.

It has already been mentioned that the complete graph K, is not magic
for any integer n > 6. Corollary 3 shows that K, is not P3-magic. Next
easy Lemma implies that complete graphs are not path-magic for any path
of length larger than 2.

Lemma 3. Let G be a P,-magic graph, h > 2. Then G is Ch-free.

Proof. Suppose that C}, is a cycle in G with edges e;,ez,--- ¢, and f is an
Py,-magic labeling of G. Then, by taking the P, subgraphs of C}, with edges

e1,€z, - ,ep—1 and ez, €3, - ,e, we have
h—1 h
Yo @+ fle)= Y. f@)+Y fle)
z€V(Ch) i=1 2EV(Ch) i=2
which implies f(e;) = f(es) and f is not injective. o

Corollary 5. The complete graph K,, is not Py-magic for any2 < h < n.
=}

All cycles are magic, see [5]. It is also known that only the odd cycles
are supermagic [2]. By adding an additional divisibility condition we get
path-supermagic labelings of cycles as shown in the next Theorem.

Theorem 4. The cycle C, is Py -supermagic for any 2 < h < n such that
ged(n, h(h —1)) = 1.

Proof. Let n and h be two positive integers such that 2 < A < n and
ged(n, h(h — 1)) = 1. We prove that C,, is Pj,-supermagic.

Let V ={2;, 0< i< n}and F = {e; = z;1z;, 0 < i < n} be the
vertex and edge set respectively of the cycle C,,, where the subscripts are
taken modulo n.
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We define a total labeling f from V U E to [1,2n] as follows.
Let f(xin) = 144 and f(ein-1)) = 2n—1,0 < i < n. Since ged(n, h) =1
and ged(n,h — 1) =1, f is well defined and clearly we have, f(V) = [1,7]
and f(E) = [n+1,2n).
Let us show that f is a P,-magic labeling.
For each 0 < i < n, let P,E’) be the subpath of C, with vertex set
V(P®) = {zi,%i41, .., Tisn1} and edgeset E(PY) = {eir1, €42, - - » €ivnm1}-
Then, we have

FEEMD) — £(PEW) = f(zaqryn) — Flzan) + f (e+1)n) — flein+1)-

Notice that, th+1 =i(h— 1)+ (1 +1). Consider Jj defined by the equality
j(h=1)=14(h—1) + (i + 1) in Z,. Then,

fleg+ryn) — fleint1) = flegrrym-1y) — fleia-1))-

Ifi # n—1 then f(z(i+1)n)— f(zin) = 1 and f(e+1yn-1))—feja-1)) =
—1.If{ =n—1 then j = n—1 as well and the terms in the right hand side of

the equality are f(zo0)—f(Zn-n) = 1—-n and f(eo)—f(en—(n-1)) = —(1-n).
Therefore, f (P,(,'h)) =f (P,So)) for 0 £ ¢ < n. This completes the proof. O

4 Constructing H-magic graphs

The object of this Section is to obtain infinite families of H-magic graphs
for a given graph H.

We first need some preliminary results.

Let § = {X3,---, Xk} be a partition of a set X of integers. When all
sets have the same cardinality we say that § is a k-equipartition of X. We
identify the partition § with a {1,-- - , k}-coloring of X such that for every
1 < i < k, the set of elements in X colored with the color ¢ determine X;.

We denote the set of subsets sums of the parts of § by

S1=_X1,---, ) X}

Lemma 4. Let h and k be two positive integers and let n = hk. For each
integer 0 <t < |h/2| there is a k-equipartition § of [1,n] such that 39 is
an arithmetic progression of difference d = h — 2t.

Proof. For each integer 0 < t < |h/2], let 4, = {Xft),...,X,(f)} be the
k-equipartition of [1, hk] given by the following coloring,

(1,2, , k)"t (k,k—1,--- 1)
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That is, for each positive integer ¢ < k,
X® = (UIZHG - Dk +1)) U(URSE_{G+ Dk —i+1)).

Then, we have

Y xP=3XP+(i-1)h-t)+1 -t =Y XO + (- 1)(h—20).

Therefore,

2= X0, 3 xP+h-20), 3 XP + (k- 1) - 20)}
forms an arithmetic progression of difference h — 2¢. m}

Lemma 5. Let h and k be two positive integers and let n = hk. In the two
Jollowing cases there exists a k-equipartition § of a set X such that Y. 9§ is
a set of consecutive integers.

(i) h or k are not both even and X = [1, hi)

(i) h =2 and k is even and X = [1,2k + 1]\ {k/2 + 1}.

Proof. (i) If h is odd the result follows from Lemma 4 by taking ¢t = (h —

1)/2.
Suppose that h is even and k¥ > 3 is odd. Consider the partition § =
{X1,--- ,Xi} given by the coloring

L2 R E (R k=1, DI (L), 7(2), -, 7(R)),
where 7 denotes the permutation of {1,--- ,k} given by

N [1+k-2 1<i<(k—1)/2
T(’)‘{1+2(k—z'), (k+1)/2<i<k

Then, we clearly have

D oXi—) X = (h/2)(i— 1)+ (B/2— 1)(1 =) + (7(5) — 7(1))
(R/2)(i — 1) = (R/2—-1)(i - 1) + (7(5) — 7(1))
i+7(i)—k

_ f1-4 1<i<(k—1)/2

- {1+Ic—i, (k+1)/2<i<k "

Hence, ) 9 is the set of consecutive integers,

> X1+ ([—(k-3)/2, 0lU[1, (k+1)/2)).
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(i1) For 1 < i < k consider the sets

5. { G 2(k=i) +3} 1<i<k/2
PE i+, 2k —d) +k+2) k/2<i<k’

Then § = {Xy,...,Xx} is a partition of [1,2k + 1]\ {k/2 + 1} and as

S, = {23 1<i<k/2
T \3k+3-ik/2<i<k’

we have that )"  is the set of consecutive integers

[22-’34-3, 2k +2) U [2k + 3, 5—2’“+2].

This completes the proof. |

Lemmas 4 and 5 allow one to obtain infinite families of H-magic graphs
for a given graph H under some weak conditions.

Lemma 4 has a simple application for the construction of an infinite
family of H-magic non connected graphs.

Lemma 6. Let H be any graph with |V(H)| + |E(H)| even. Then the dis-
joint union G = kH of k copies of H is H-magic.

Proof. Let h = |V(H)|+|E(H)|, so that |V(G)|+|E(G)| = kh. By Lemma,
4 with ¢ = h/2, there is a k-equipartition § = {X1,--- , Xk} of [1, kh] with
Y X1 =Y Xz =--- =) Xj. By assigning to the i—th copy of H the labels
of X; we get an H-magic labelling of G. O

As an application of Lemma 5 we obtain the following result which
provides infinite families of connected H-magic graphs. It is based on the
following graph operation. Let G and H be two graphs and e € E(H) a
distinguished edge in H. We denote by GxeH the graph obtained from G by
gluing a copy of H to each edge of G by the distinguished edge e € E(H).
Figure 6 shows an example of C, * eC3, where e is a any edge of Cj3.

Theorem 5. Let H be a 2~connected graph and G an H-free supermagic
graph. Let k be the size of G and h = |V(H)| + |E(H)|. Assume that h and
k are not both even. Then, for each edge e € E(H), the graph G * eH is
H-magic.

Proof. Note that G x eH admits an H-decomposition corresponding to the
set of edges in G. Moreover, the only subgraphs of G * eH isomorphic to H
are precisely the copies of this graph glued to edges of G. Indeed, any subset
X C V(G+*eH) of cardinality |V(H)| different from the vertex set of a copy
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of H is either contained in V(G) or intersects at least two copies of H. Let
F be the subgraph of G * eH induced by X. Then F does not contain a
subgraph isomorphic to H, in the first case because G is H-free and in the
second one because F is not 2—connected (any vertex z € V(G) NV (F) is
a cutting vertex of F.)

Let f be a supermagic labeling of G. Denote by e; = z;y; the edge in G
with label f(e;) = |V(G)| + 4 and by H; the copy of H glued through it.

Define the total labeling f' of G * eH as follows. The restriction of f’
to V(G) coincides with f. We proceed to define f’' on each of the sets
Y = (V(Hi) \ {z:,:}) U E(H;).

By Lemma 5, there is a k-equipartition § = {Xj,--- , X} of the interval
(1, (h — 2)k] + |V(G)| such that )" q is a set of consecutive integers such
that ZX¢=ZX1+('L'—1) foreachl1 <i<k.

We define f’ by any bijection from Y; to X; for each 1 < i < k. Then,

P = fl@) + Fw) + )Xo = fl@) + flw) + > X +i—1

Flm) + F) + (0 Xa = [V(G)| - 1) + fles)
s(+Y_ X - V()| -1,

where 3(f) is the supermagic sum of f.
Therefore f’ is an H-magic labeling of G * eH. O

An example of the labelling obtained in the above proof is displayed in
Figure 2.

10 9

Fig. 2. A supermagic labeling of Cs, and the C3—-magic labeling of Cs * eCs.
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