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Abstract. A total labeling of graph G with p vertices and ¢ edges
is an one-to-one mapping from V(G) U E(G) onto {1,2,--- ,p+g}.
If the edge-weights (resp. vertex-weights) form an arithmetic pro-
gression starting from a and having common difference d, then the
labeling is called (a,d)-edge (resp. vertez) - antimagic total label-
ing. In this paper we consider such labeling applied to generalized
Petersen graph.

1 Introduction

All graphs considered here are finite, simple and undirected. The graph
G has a vertex set V(G) and edge set E(G) and we let |[V(G)| = p and
|E(G)| = g. For a general reference for graph theoretic notions, see [11] and
[17).

A total labeling on a graph G with p vertices and ¢q edges is a one-to-one
mapping from V(G) U E(G) onto the set of integers 1,2,---,p + ¢q. The
edge-weight of an edge uv under a total labeling is the sum of labels uv and
the vertices u,v incident with uv. Similarly, the vertex-weight of a vertex
u under a total labeling is defined as the sum of label of u and the labels
of all edges incident to u. If the edge-weights (resp. vertex-weights) form
an arithmetic progression starting from a and having common difference
d, then the labeling is called (a,d)-edge (resp. vertez) - antimagic total
labeling. These labelings were introduced by Simanjuntak et al in 2000 [15]
and Baca et al in 2003 [2], respectively.

In this paper we deal with such labelings applied to generalized Petersen
graph. A generalized Petersen graph P(n,m),n > 3,1 < m < |22}, is
a 3-regular graph with 2n vertices ug, u1, U2, ,Un_1,%0,V1,V2,°** ,Vn—1
and edges {uiuit1}, {wivi} , {vivigm}, foralli € {0,1,2,... ,n—1}, where
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the subscripts are reduced modulo . Generalized Petersen graphs was first
defined by Watkins [18]. Various graph labelings heve been considered for
generalized Petersen graphs; see for instances [1,3,4,9,13, 14).

2 An (e,d)-edge-antimagic total labeling

Bodendiek and Walther [8] introduced (a, d)-vertex-antimagic edge label-
ings which they called the (a,d)-antimagic labeling. Simanjuntak et al.
[15] modified the definition of (a,d)-vertex-antimagic edge labeling and
introduced an (a,d)-edge-antimagic total labeling as follows. An (a,d)-
edge-antimagic total labeling on graph G is a one-to-one mapping from
E(G)UV(G) onto the set {1,2,-- ,p+q} so that the set of edge-weight of
all edges in G is {a,a+d,--- ,a+ (g — 1)d}, for two positive integers a > 0
and d > 0. If all vertices receive p smallest labels, then the labeling is called
super (a,d)-edge-antimagic total. The graphs that admit an (a,d)-edge-
antimagic total labeling (resp. a super (a, d)-edge-antimagic total labeling)
are said to be (a, d)-edge-antimagic total (resp. super (a,d)-edge-antimagic
total).

A number of studies on (a, d)-edge-antimagic total labeling graphs has
been investigated. In [15] and [5] it were proved that all cycles and paths
have a (e, d)-edge-antimagic total labeling for some values of a and d.

The (a, d)-edge-antimagic total labeling for wheels, fans, complete graphs
and complete bipartite graphs can be found in [6].

Ngurah and Baskoro [14] showed that every generalized Petersen graphs
P(n,m)n >3,1<m < %, has a (4n + 2, 1)-edge-antimagic total labeling
and a (8n + 2, 1)-edge-antimagic total labeling. Furthermore, in [15] it was
studied the duality of (a, d)-edge-antimagic total labeling as follows.

Proposition 1 [15] If A is an (a, d)-egde-antimagic total labeling of G then
its dual labeling )’ is an (3p+ 3¢+ 3 — a— (¢ — 1)d, d)-egde-antimagic total
labeling.

In [5], Baca et al. provided relationships between (a, d)-edge-antimagic
total labeling and edge-magic total labeling as follows.

Proposition 2 [5] Let G be a graph which admits total labeling and whose
edge labels constitute an arithmetic progression with difference d. Then the
following are eguivalent.

(i). G has an edge-magic total labeling with magic constant k,

(i3). G has a (k — (g — 1)d, 2d)-edge-antimagic total labeling.

In [14), we have described the super edge-magic total labeling of P(n, 1),
n odd, n > 3 with k = 1(11n + 3). Fukuchi [9] proved that for n odd,
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n > 3, P(n,2) has super edge-magic total labeling. From these results and
Proposxtlon 2, for n odd, n > 3 the graph P(n,m), m = 1,2 has a super
((5n +5), 2)-edge—ant1mag1c total labeling.

In the next two theorems, we construct a ( (9n + 5), 2)- edge-antimagic
total labeling of P(n,m) for n odd and m = 1, 2.

Theorem 1 For odd n, n > 3, every generalized Petersen graph P(n,1)
has o (258, 2)-edge-antimagic total labeling.

Proof Consider the labeling f such that

2n+2+1), for i =0 (mod 2),
sw) = { o3 T e 2 bt

3(6n+3+14), for i =1 (mod 2),

1(Tn+3+1), for i =0 (mod 2),i #n—1,
flv) =
3n+1, for i=n-1.

ooy _Jon+2+4 for iF#Fn-1,
f(u'u‘+1)—{2n+1, for i=n—1.

_J4n+2+id, for i£En—1,
f(u‘v‘)_{4n+l, for i=n-—1.

344, for i#n-2,n-1,
f('vi”i+l)—{3+i—n, for i=n-2,n-1

Then the edge-weights of all edges in P(n,1) under the labeling f are

( )= (9n+5)+(2+2z), for 0<i<n-2,

Wrlththis (9n+5), for i=n-—1.
L(13n+1)+(6+2i), for 0<i<n-3,

wy(Viviyy) = ¥(13n+1)+4 for i=n—1,
3(13n+1)+2, for i=n-2.

wy(wiv;) = §(17n+1)+(4+2z), for 0<i<n-2,
FY = am+1) + 2, for i=n 1,

So, the set of edge-weights of P(n, 1) is {1(9n+5), 1(9n+5)+2,- -+ , 1 (21n+
1)}. O

Theorem 2 For odd n, n > 3, every generalized Petersen graph P(n,2)
has a (23£5, 2)-edge-antimagic total labeling.
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Proof Label the vertices and edges of P(n,2) in the following way.

9(us) = f(w;) and g(wsuiv1) = fuiuir).

1@2n-2-1), for i=0 (mod 2),
s(n—2-1), for i=1(mod2),i#n-2,
n, for i=n-2.

9(vivig2) = {

Case : n =1 (mod 4).

1(16n — i), for

y_ ) 7(183n—1), for
g(v) = i(14n — i), for
7(15n —4), for

-;—(1811. +2+ 1), for
z(1Tn + 2+ 1), for

i =0 (mod 4),
i=1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

i =0 (mod 4),
i=1 (mod 4),

g(uivg) = i(mn +2+14), for
1(19n+2+4), for

i=2 (mod 4),
i =3 (mod 4).

Case : n = 3 (mod 4).

i =0 (mod 4),
i =1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

1(16n - i), for

\_ ) 3(15n —4), for
9() = 1(14n—4), for
7(13n — 1), for

%(181; +2+1), for

glusms) = ¥(19n +2+1,), for
' z(16n+2+1), for
(1T +2+14), for

The edge-weights of P(n,2) are

i =0 (mod 4),
i=1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

wo(uithiy1) = wr(uitiy1).

%(17n —3) —1i, for i=0 (mod 2),
We(Vvi42) = -%-(15n —3)—i, for i=1 (mod2),i #n -2,
3(17n+1), for i=n-2.

Case : n =1 (mod 4).



( %(19n+3+i), for i =0 (mod 4),
(i) = 4 -?(18n+3+i), for i=1 (mod 4),
wg(u;v;) = ?(17n+3+i), for i =2 (mod 4),

[ 3(20n+ 3+ 1), for i=3 (mod 4).
Case : n = 3 (mod 4).

( %(19n+3+z’), for i =0 (mod 4),
wg(uss) = 4 ?(20n+3+i), for i =1 (mod 4),

g\U%i) = 5(1Tn + 3 + 1), for i =2 (mod 4),
{ %(18n+3+i), for i =3 (mod 4).

Thus, the set of edge-weight over all edges in P(n,2) is {a,a + d,a +
2d,---,a+(q—1)d}, wherea= 3(9n+5)and d=2. O
Note that, the labeling defined in Theorems 1 and 2 are self dual.

3 An (a,d)-vertex-antimagic total labeling

Baca et al. [2] introduced a new type of graph labeling which called (a, d)-
vertex-antimagic total labeling. They defined an (e, d)-vertez-antimagic to-
tal labeling on graph G as a one-to-one mapping from V(G) U E(G) onto
the set of integers 1,2,3,--- ,p + ¢ such that the set of vertex-weights is
{ae,a+d,a+2d,--- ,a + (v — 1)d} for some integers a > 0 and d > 0.
An (a, d)-vertex-antimagic total labeling is called super if E(G) receive p
smallest labels. A graph is called (e, d)-vertex-antimagic total (resp. super
(a, d)-vertex-antimagic total) if it admits an (a,d)-vertex-antimagic total
labeling (resp. a super (a, d)-vertex-antimagic total labeling).

The (a, d)-vertex-antimagic total labeling is natural extension of the
notion of a vertex-magic total labeling introduced by MacDougall et al. in
(12]. Gray et al[10] examined existence of vertex-magic total labelings of
trees, forests and galaxies. Slamin and Miller [16] described a vertex-magic
total labeling for P(n,m) when n and m are coprime. In [7] is given a
vertex-magic total labeling for the generalized Petersen graphs P(n,m) for
aln>3,1<m< |23,

Proposition 3 /2] Let G be a regular graph of degree . Then G has an
(a, d)-vertex-antimagic total labeling if and only if G has an (a’, d)-vertez-
antimagic total labeling where @' = (r+ 1)(p+q+1) —a— (p— 1)d.

Baca et al. (3], proved that for n odd, n > 3, the prism D, has a (e, d)-
vertex-antimagic total labeling for (a,d) € {(123£2,1), (1247, 3), (2la45 1),
(X37,3)}. Every the prism D, with even cycles admits a (a,d)-vertex-
antimagic total labeling for (a,d) € {(12318,2), (28 4), (1946 9)
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(1248 4)}. Additionally, by the use of the results in [1] and [13], Baca
et al. showed that for n > 4, n even, 1 < m < % — 1, the general-
ized Petersen graph P(n,m) has a (a, 2)-vertex-antimagic total labeling,
for a € {3—""ﬁ n 4 3}, For n > 8, n = 0 mod 4, the generalized Pe-
tersen graph P(n, 2) has a (% + 4,4)-vertex-antimagic total labeling and
a (132 +4, 4)-vertex-a,nt1maglc total labeling. Note that, the prism D,, is
acactly the same with generalized Petersen graph P(n, 1)

Theorem 1 proves the Conjecture 1, proposed in (3], for d = 2.

Theorem 3 Forn >3, 1<m < |25}, every generualized Petersen graph
P(n,m) has a self-dual (8n + 3, 2)-vertez-antimagic total labeling.

Proof The desired vertex-antimagic total labeling of P(n,m) ,n > 3,
1 <m < | 252, can be described by the following formula.
M%) = 3n+1+4, for 0 <i<n—-1 and Musuiqr1) = 144, for 0 <i<n-1.
Mwg) = n+m+i, for 0<i<n-m,
U7 I m+i, for n-m+1<i<n-1

Muswg) = 4n+1, for i=0,
AT I n+1—4, for 1<i<n—-1.

Awivssm) = 2n+m+i, for 0<i<n-m,
Vilitm) =\ n+m+i, for n—-m+1<i<n-—1

Under the labeling A the vertex-weights of P(n,m) are

wr(u;)) =8n+3+2i, for 0<i<n-1.

wr(v;) =10n+2m+1+42i, for 0<i<n-—m,
=8n+2m+1+2i, for- n—-m+1<i<n-1

Thus, the set of all vertex-weights of P(n,m) is {a,a+d,a+2d,--- ,a+
(2n—1)d}, where a = 8n+3 and d = 2. It is easy to verify that this labeling
is self-dual. This completes the proof of the theorem. o

Theorem 4 For n odd, n > 5, every generalized Petersen graph P(n,2)
has a super (18235, 1)-vertez-antimagic total labeling.
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Proof Consider the labeling h such that,

s(8n —

i), for ¢ =0 (mod 2),

h(u;) = { ¥(7n —1), for i=1 (mod 2)

h(v) = (10n i), for i =0 (mod 2),
e (9n —1), for i=1 (mod2).
2n+1, for i=0,

h(uiuiyr) = { ?(6n+ 2—

i), for i =0 (mod 2),i #0,

5(5n+ 2 — 1), for i =1 (mod 2).

2(2+1),

Casen=1 (mod 4).

n+1, for
1(5n +4—1), for
h(viviga) = ¢ z(6n+4 —1), for
f(7'n +4 —1), for
i(8?'1. +4 —1), for

Casen=3 (mod 4).
n+1, for
%(7n +4 1), for
h(vivigo) = %(Gn +4-1), for

%(511 + 4 — i), for
3(8n+4 1), for

Labeling k gives vertex-weights, wp, :

(1T +3) + (2 —1),

N for i =0 (mod 2),
hlusv) = { ?(n+2+z), for i =

1 (mod 2).

i=0,

i=1 (mod 4),

i =2 (mod 4),

i =3 (mod 4),
i=0 (mod 4),7 # 0.

1 =0,

i=1 (mod 4),

i =2 (mod 4),

i =3 (mod 4),

i =0 (mod 4),i # 0.

for i =0,1,

wh(u) = { ¥(19n+3)+ 3(4-2i), for i=2,3,4,

{ %(15n+5)+ ?(2
wp(v;) = 3(16n+4) + 5(3

i), for i=0,2,
i), for i=1,3,5,-

g(17'n-|~3)-}- ?(4—1), for i =4,6,8,-

Hence, the set of vertex—welghts is {4(15n+5), 1(15n+7),- -
Consequently, h is a super ( (157 + 5), 1)-vertex-antimagic total labeling.

o
In Light Proposition 3 we have
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Corollary 1 For odd n, n > 5, every generalized Petersen graph P(n,2)
has a (33£2, 1)-vertez-antimagic total labeling.

Theorem 5 For odd n, n > 7, every generalized Petersen graph P(n,3)
has a super (18245 1)-vertes-antimagic total labeling.

Proof We consider three possible cases.
Casel:forn=1 (mod 6).
Label the vertices and edges of P(n,3) in the following way.

%(1211 —1), for §=0 (mod 3),
ay(u;) = § %(10n—4), for i=1 (mod 3),
L(11n —1), for i =2 (mod 3).

L(15n —1), for i =0 (mod 3),
ar(v) = {

=3}

=),

§(13'n —1), for i=1 (mod 3),
5(14n —1i), for i =2 (mod 3).

o (uittiv1) = h(uitiv)

§(2n+3+i), for i =1 (mod 3),

.%(3 + 1), for i =0 (mod 3),
o (uzv;) =
z(n+3+1i), for i=2 (mod 3).

(n+1, for i=0,

L(tn+6—1), for i=1 (mod6),
%(8n+6—i), for i =2 (mod 6),

a1 (vvip3) = z(In+6—1), for i=3 (mod 6),
g(10n+ 6 — 1), for i =4 (mod 6),
g(111'1.+6 —1i), for i =5 (mod 6),

| -2-(12n+6—i), for i =0 (mod 6),i #0.

Then the vertex-weights under labeling o, are

Wa, (%) = wh(us).

2(15n+5) + (3 — i), for i=0,3,
_ ) (4™ +21-2i), for i =1,4,7,10,--- ,n -3,
Waa (%) =9 Ygon+21-2)  for i=2,581L....n—2
3(51n + 21 — 2i), for i =6,9,12,--- ,n—1.

Hence, a; extends to a super (18232 1).vertex-antimagic total labeling.
Case 2 : for n =3 (mod 6). Label the vertices and edges of P(n,3) in
the following way.



1

1

i
3
1

1

i

3

(12n — 1), for
(1ln+1—13), for
(10n + 2 — i), for i =2 (mod 3).

(15n — 1), for i =0 (mod 3),
(14n +1—1), for i =1 (mod 3),
(13n+2 - i), for i =2 (mod 3).

i =0 (mod 3),
i =1 (mod 3),

az(u;) = {
az(v) = {

o2 (uiv) = {

o (withiy1) = h(uivis1)

13 +19), for i =0 (mod 3),
(n+2+1), for i=1 (mod 3),
(2n+1+14), for i =2 (mod 3).

1

3

(n+1, for i =0,
L@8n+7-1), for i=1 (mod6),
-g—(l()n+ 8 — i), for i =2 (mod 6),
a2(vivigs) = $ §(9n +6—1), for i=3 (mod 6),
-§(11n+ 7 —1), for i =4 (mod 6),
£(Tn+8—1), for i=5 (mod 6),
{ g(l2n+ 6 —1), for i =0 (mod 6),1 # 0.

The vertex-weights under labeling o, are

Wary (i) = Wi (ws)-

—%-(47n+21+in), for i=0,2,
?(15n+5)+-;-(3—i), for i=1,3,

Wa, (1) = ¢ #(49n + 23 — 23), for i =4,7,10,--- ,n—2,
%(47n+25—2i,) for i=5,8,11,.-- ,n—1,
5(51n + 21 — 2i), for :=6,9,12,--- ,n-3.

Hence, a; extends to a super (1828, 1)-vertex-antimagic total labeling

Case 3 : for n =5 (mod 6). Label the vertices and edges of P(n,3) in

the following way.

1(12n — 1), for
as(u;) = { %(lln —1), for
5(10n — 1), for
L(15n - 4), for
as(v) = { i‘-(1471, — 1), for

;(131» — i), for
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ag(uittis1) = h(Uitip1)

?(n+3+z), for i=1 (mod 3),

{ ?(3 + ), for i =0 (mod 3),
a3 (uivi) =
z3(2n+3+1), for i =2 (mod 3).

(n+1, for 1=0,

?(11n+6—z), for i=1 (mod 6),

?(10n+6—z), for i=2 (mod 6),

a3(Viviss) = < ?(9n+6—z), for i =3 (mod 6),
?(8n+6—z), for i =4 (mod 6),

Y(7n+6-—z), for ¢ =5 (mod 6),

| §(12n+6 — ), for i =0 (mod 6),i # 0.

The set of vertex-weights over all vertices in P(n,3) is

Way (4:) = wa(w;).

3(16n +5) + 3(3 — ), for i=0,3,
wog(u) = { §ONF2=20),  for i=1,47,10,- ,n-1,
as\ s = (47n + 21 — 2i), for z=25811 -+ ,n—23,
5(61n + 21 — 2i), for i=6,9,12,--- ,n—2,

Hence, o3 extends to a super (3%t 1)-vertex-antimagic total labeling

We conclude that P(n, 3) is a super (18248, 1)-vertex-antimagic total. =~ O
In light Proposition 3 we have

Corollary 2 For n odd, n > 7, every generalized Petersen graph P(n,3)
has o (2248, 1)-vertez antimagic total labeling .

Theorem 6 For n odd, n > 9, every generalized Petersen graph P(n,4)
has o super (18215, 1)-vertes-antimagic total labeling .

Proof We consider two possible cases.
Case 1:forn=1 (mod 4).
Label the vertices and edges of P(n,4) in the following way.

1(16n —1), for i =0 (mod 4),

_ )} 2(13n =), for i =1 (mod 4),
hr(w) = ?(1411, —1i), for i =2 (mod 4),
(150 — 1), for i =3 (mod 4).



Br(v) =

Br(usv;) =

1(20n - i), for
f(17n - i), for

(18n — i), for
$(19n —19), for

B (usuiy1) = h(u;

1(4+14),
1

i =0 (mod 4),
i =1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

Uit1)

for i =0 (mod 4),
1(3n+441), for i=1 (mod 4),
i(2n+4+1), for i =2 (mod 4),

i(n+4+1), for i=23 (mod4).

To label the edge v;v;+4 consider the following two subcases.
Casen =1 (mod 8).

4

B1(vivigq) = 3

1

§
§
§
§
§

5(9n +8—1i), for
5(10n + 8 —2), for
(1in +8 — ), for
5(12n 4+ 8 — i), for
(13n + 8 —3), for
§(14n + 8 —1), for

§(15n + 8 —1), for
§(16n +8—1), for
(n+1, for

Casen=5 (mod 8).

4

Br(vivigq) = ¢

 n+1,

1

§
¥
§
¥
§

(13n 48 — 1), for
5(10n + 8 — 1), for
5(15n + 8 — i), for
5(12n 4 8 — i), for
(9n+8—1), for

5(14n + 8 — ), for
g(lln + 8 — 1), for
§(16n +8—1), for
for

i=1 (mod 8),

i =2 (mod 8),

i =3 (mod 8),

i =4 (mod 8),
i=5 (mod 8),

i =6 (mod 8),

i =7 (mod 8),

i =0 (mod 8),i # 0,
i=0.

i=1 (mod 8),

i =2 (mod 8),
i=3 (mod 8),

i =4 (mod 8),

i =5 (mod 8),

i = 6 (mod 8),
i=7 (mod 8),
i=0 (mod 8),i #0,
i=0.

Under the labeling 51, the vertex-weights are

wg, (ul) = wh(“i)’
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¥(15n+5)+ 1 —i), for i=0,4,
%(31n+14—z), for 1 =1,5,9,--- ,n—4,
wg, (vs) = (32n + 14 —17), for i=2,6,10,--- ,n—3,
%(33n+14-z), for i=3,7,11,.-- ,n -2,
1(341’o.+14—-z), for i=28,12,16,--- ,n—1.

Hence, 3, extends to a super (_1_5%4_-5_, 1)

Case 2 : forn=3 (mod 4).

-vertex-antimagic total labeling

Label the vertices and edges of P(n,4) in the following way.

1(16n - i), for
(15n — i), for
1(14n —7), for
7(13n =), for

f
.62('“;) = 4 1
f

1(20n — i), for

2(19n — i), for
i(1811 —1i), for
| %(1711 - i), for

?
Bz (v) =

i =0 (mod 4),
i=1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

i=0 (mod 4),
i=1 (med 4),
i =2 (mod 4),
i =3 (mod 4).

Ba(uittis1) = h(uitiy1)

1(4419),

Bo(wivi) =4 §

for
s(n+4+14), for
1(2n + 4+ 1), for
1(Bn+4+1), for

i =0 (mod 4),
i=1 (mod 4),
i =2 (mod 4),
i =3 (mod 4).

To label the edge v;v;14 consider following two subcases.

Case n =3 (mod 8).

[ 1(11n +8 — ), for
§(14n + 8 —1i), for

(9n+8—1), for
§(12n + 8 — 1), for
§(15n +8—1), for
g(IOn +8—1), for
§(l3n +8—1), for
§(16n +8 — 1), for
(n+1, for

Casen=7 (mod 8).

B2(viviqs) =
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i=1 (mod 8),

i =2 (mod 8),

i =3 (mod 8),

i =4 (mod 8),

i =5 (mod 8),

i =6 (mod 8),

i =7 (mod 8),

i =0 (mod 8),i #0,
i=0.



[ 1(15n +8 — i), for i=1 (mod 8),
i(14n +8—1), for i =2 (mod 8),
i(ll’m +8—1), for =3 (mod 8),
i(12n+8 —1), for i =4 (mod 8),
Ba(vivisa) = { L(1ln+8—1), for i =5 (mod 8),

i(1011-!— 8 — i), for i =6 (mod 8),

%(9n+8 —3), for i=7 (mod8),

§(16n + 8 — i), for i =0 (mod 8),i #0,
(n+1, for i=0.

Under the labeling f; the vertex-weights are

wg, (1) = wa(u;).

2(15n+5) + 2(4—4), for i=10,4,

i(33n+14-—i), for i=1,5,9,--- ,n—4,
wg,(v;) = i(32n+14——i), for i =2,6,10,--- ,n—3,

i(31'n+14—i), for ¢=3,7,11,--- ,n—2,

;(34n+14—i), for i =28,12,16,--- ,n 1,

Hence, 3> extends to a (1—5—';—’*2, 1)-vertex-antimagic total labeling .
We conclude that P(n, 4) is a super ( ﬁ’—;ﬂ, 1)-vertex-antimagic total. O
By the duality property (Proposition 3) we have

Corollary 3 For odd n, n > 9, every generalized Petersen graph P(n,4)
has a (2—1’§ﬂ, 1)-vertez-antimagic total labeling .

Theorems 4, 5 and 6 extend the results of Baca et al. in !3] They
showed that for odd n, n > 3 the prism D, (P(n,1)) has a (-ﬁ%"ﬁ,l)-
vertex-antimagic total labeling,

We finish this section by giving the following conjecture.

Conjecture 1 Forn odd , 1 < m < | 51|, every generalized Petersen
graphs P(n,m) has a (2215, 1)-vertez-antimagic total labeling.
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