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Abstract. Let G = G(v, e) be 2 finite simple graph with v vertices
and e edges. An (a, d)-edge-antimagic-vertezr (EAV) labeling is a
one-to-one mapping f from V(G) onto the integers 1,2,...,v with
the property that for every zy € E(G), the edge-weight set {f(z)+
Ff@W)lz,y € V}={a,a+d,a+2d,...,a+ (e — 1)d}, for some positive
integers a and d.An (a, d)-edge-antimagic-total labeling is a one-to-
one mapping f from V(G)UE(G) onto the integers 1,2,...,v+e with
the property that, for every zy € E(G), the edge-weight set {f(z)+
fW) + f(zy)lz,y € V(G),zy € E(G)} = {a,a+d,a+2d,....a+
(e — 1)d}. Such labeling is called super (a,d)-edge-antimagic total
labeling if f(V(G)) = {1,2,...,v}. In this paper we investigate the
relationship between the adjacency matrix, (a,d)-edge-antimegic
vertex labeling and super (e, d)-edge-antimagic total labeling and
show how to manipulate this matrix to construct new (a, d)-edge-
animagic vertex labeling and new super (a, d)-edge-antimagic total
graphs.

1 Introduction

In this paper, we consider finite simple undirected graphs. The set of vertices
and edges of a graph G will be denoted by V(G) and E(G), respectively.
We put v = [V(G)| and e = |E(G)|. For simplicity, we denote V(G) by V
and E(G) by E.

A labeling of a graph G is a mapping that carries a set of graph elements
into a set of numbers (usually positive integers), called labels. Edge magic
total labeling was introduced by Kotzig and Rosa in 1970 [5]. Many results
on graph labeling, including edge magic total labeling, have been discovered
since then. A recent survey of graph labelings can be found in [4].
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An (e, d)-edge-antimagic-vertex (EAV) labeling is a one-to-one mapping f
from V onto the integers 1,2,...,v with the property that for every zy € E,
the edge-weight set {f(x) + f(y)|z,y € V}={a,a +d,a + 2d,...,a + (e —
1)d}, for some positive integers a and d. A graph that has an (a, d)-edge-
antimagic-vertex labeling is called (e, d)-edge-antimegic vertex graph. An
(@, d)-edge-antimagic-total (EAT) labeling is a one-to-one mapping f from
VUE onto the integers 1,2,...,u+e with the property that, for every zy € E,
the edge-weights set {f(z)+ f(y) + f(zy)|2,y € V,2y € E} = {a,a+d,a+
2d,...,a + (e — 1)d}. Such a labeling is called super (a, d)-edge-antimagic
total (SEAT) labeling if f(V) = {1,2,...,v}. A graph that has a super
(@, d)-edge-antimagic-total labeling is called a super (a, d)-edge-antimagic-
total graph Note that a super edge-magic-total labeling is a special case of
a super (a, d)-edge-antimagic-total labeling when d = 0.

In this paper, we investigate the relationship between the adjacency matrix
and EAV labeling of graphs and show how to manipulate this matrix to
construct new EAV graphs. Moreover, we use these results to construct
similar results for SEAT graphs.

2 Adjacency matrix

Let G = (v,e) be a graph and f be a SEAT labeling of G. Let V =
{z1,22, ...,z } be the set of vertices in G with the labels 1,2,...,v. A sym-
metric matrix A = (ai;),%,j = 1,...,v is called an adjacency matriz of G
if
~_ | 1 if there is an edge between z; and z;,
%3 = 0 otherwise.

If G is an EAV graph, then the rows and columns of A can be labeled using
1,2,...,v such that every skew-diagonal (diagonal of A which is traversed
in the "northeast” direction) line of matrix A has either zero or two ”1”
elements. The set {f(z) + f(¥) : z,y € V} in a skew-diagonal line generates
a sequence of integers of difference d. If d = 1 then the non-zero skew-
diagonal lines form a band of consecutive integers. If d = 2 then the non-
zero skew-diagonal lines form a band of difference 2 but with a zero skew-
diagonal line in between. We have similar skew-diagonal line bands for
d=34,... . We denote such a skew-diagonal band as a d-band.

Observation 1 The number of edges of mazimal (a,d)-EAV graph is [252 ]+
r=21.

Consequently, a graph that has d-band for d > 2 cannot be connected.
In this paper we only deal with the case d = 1.
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A mazimal EAV graph is a graph that has an EAV labeling and has the
maximum possible number of edges. If G has a maximal (a,1)-EAV labeling
then @ = 3. By checking the number of edges possible in an adjacency
matrix of an EAV graph, we obtain the following observation.

If d = 1 then the number of edges of a maximal (a, 1)-EAV graph is 2v —3.
The same maximal number of edges of a super edge magic total graph was
obtained by Enomoto et al [2].

0111 1 00110
1 00 01 00 0 11
1 00 01 10 0 00
10 0 01 01 0 00
11110 01 00 O
Maximal EAV Non-maximal EAV
1 5
3 1 4 2 5
o —o—0 00—
2 3 4

Fig. 1. Examples of adjacency matrices of maximal and non-maximal EAV graphs
with d = 1.

3 Constructing a new graph from an old one

In this section we construct new (a*,1)-EAV graphs from an existing (a, 1)-
EAV graph, based on its adjacency matrices manipulation. For simplicity,
we use EAV graph instead of (a,1)-EAV graph in the rest of the paper.

3.1 Constructing equivalent EAV graphs

Considering the adjacency matrix of an EAV graph G of order v, if we
move the element ”1” along the skew-diagonal line, we obtain another graph
that also has an EAV labeling with the same d and the same set of edge-
weights. This process can be repeated several times. Thus, if we have a
non-maximal (respectively, maximal) graph G then we can obtain another
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non-maximal (respectively, maximal) graph G*. If the graph G* is obtained
by the previous technique of moving a ”1” element, then we say that G and
G* are EAV-equivalent. Figure 2 shows an example of generating a new
maximal (3,1)-EAV graph from an old one.

0 11 / 1 1 01 1 01
1 00 01 101 01
1 00 01 \ 110 01
10 0 01 y 00 0 01
11110 11110
Moving "1" entry from
1 5 position (1,4) to (2,3) 1 5
2 3 4 2 3 4

Fig. 2. Generating & new EAV graph.

In Figure 2, graph G* is obtained from graph G by moving the element
”1” from position (1,4) to position (2,3) in the same skew-diagonal line.
By using this technique several times, we can obtain new graphs that have
(a,d)-EAV labelings and the same edge-weights set as G. Two EAV labeled
graphs that have the same edge-weights set are called edge-weight equiva-
lent. By counting all the possibilities of moving the ”1” elements (including
disconnected graph results), we have the following observation.

Observation 2 The number of non isomorphic edge-weight equivalent maz-
imal labeled (a,1)-EAV graphs on v vertices is

(5531)4(252)3, for v odd,

(25214, for v even.

Figure 3 contains all the possible maximal EAV graphs on 5 vertices, ex-

cept one graph that already mentioned in Figure 2. There are 48 different
possibilities for a maximal EAV graph on 6 vertices.

Using the adjacency matrix A for a maximal EAV graph G with v vertices
and e = 2v — 3 edges, we can find the other maximal EAV graphs with
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A RN, RN,
RN AA

Fig. 3. Maximal EAV graphs on 5 vertices.

the same number of vertices and the same equivalent-edge weights set. Let
EW¢ be an edge-weights set of an EAV graph G’ that has equivalent-edge
weights set which is the same as in G.

3.2 Constructing new larger EAV graphs

Given an EAV graph G, there are several ways to obtain a larger EAV
graph, for example,

by adding some edges

by combining two (or more) given EAV graphs

by adding some vertices and edges

The results are presented in the following theorems.

Theorem 1 Any non-mazimal EAV graph can be extended to a mazimal
EAV graph.

Proof.

If G is a non-maximal EAV graph of order v then its adjacency matrix
A has v rows and v columns but only some p < 2v — 3 non-empty skew-
diagonal lines. By adding element ”1” in 2v — 3 — p empty skew-diagonal
lines, we obtain a maximal EAV graph. O

Figure 4 illustrates a maximal EAV labeling extending a non-maximal EAV
graph of order 5. We can see that Ps is not a maximal EAV graph. It has
only 4 edges, the maximal EAV graph on 5 vertices has 7 edges. To extend
Py as a maximal EAV graph, we need 3 more edges. In this case, we only
have one possible way to enter all four ”1” elements in the adjacency matrix
of P5.
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Theorem 2 Let Gy and G2 be any EAV graphs of order v and w respec-
tively. Then there exists an EAV graph of order v + w which contain Gy
and G as induced subgraphs. The number of additional edges needed is
2v — 1 + min{wt(e;) : e; € E(G2)} — max{wt(e;) : e; € E(G1)}.

Proof.

Recall that the weight of an edge zy under a labeling a is wt(zy) = a(z) +
a(y). Let G and G be EAV graphs of order v and w, respectively, and with
the number of edges e and f, respectively. Let A and B be the adjacency
matrices of G; and Ga, respectively. Since A and B are adjacency matrices
of EAV graphs then each of them has a skew-diagonal line bands. Create a

new adjacency matrix C as
A0
c=(43).

Considering the set of skew-diagonal lines in C, we have several empty
skew-diagonal line bands in the middle. If we put two ”1” elements in every
skew-diagonal line of the set of these empty skew-diagonal bands and define
new vertex labels corresponding to the new arrangement then we obtain an
EAV graph with v + w vertices. 0O

0 0110 011 10
0 00 11 10 0 11
1 00 00 % 10 0 01
110 00 11 0 01
01 0 00 011 10

3 1 4 2 5 3 1(_4\.2 5
Non-—maximal graph. Maximal graph.

Fig. 4. Expanding non-maximal EAV graph on 5 vertices.

Using a different composition, we can obtain different larger EAV graphs
with different number of vertices. Let G1 and G3 be EAV graphs of order
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v and w. Define a new graph G* = (G1 * G2)a,,...z i,y fOF SOMe integer
r < min{v,w}, as G* = (V(G*), E(G*)) where V(G*) = V(G1) UV (G2),
with z; = y;, i = 1,...,7 for z; € V(G1),%: € V(Gz) and E(G*) = E(G1)U
E(Gs).

Theorem 3 Let G, and G3 be two EAV graphs of order v and w, respec-
tively. Then there exist EAV graphs of orders v+w—1 and v+w — 2 which
contain G1 end Ga as subgraphs.

Proof.

Let A = (a;;) and B = (by;) be adjacency matrices of G; and G3, respec-
tively. Generate a new graph G* = (G * G2)z,,...z,:51,...0» T € {1,2}.
Case 1. The order of new graph is v +w — 1.

We obtain the adjacency matrix of G* is C as follows

A0 0
cC={ 0 X 0 ].
0 0 B*

where A* is a (v — 2) x (v — 2) submatrix consisting of the first v — 2 rows
and columns of A, B* is a (w—2) x (w— 2) submatrix consisting of the last
w — 2 last rows and columns of B, and X is 1 x 1 matrix with entry £ = 0.
Then we have a new larger adjacency matrix C with order v +w — 1. If we
put two "1” elements in every skew-diagonal line of the set of the empty
skew-diagonal bands and define new vertex labels corresponding to the new
arrangement then we obtain an EAV graph G* with v 4- w — 1 vertices.

Case 2. The order of new graph is v+w —2. Let A =(a;;) and B = (bn1)

be adjacency matrices of G; and G2, respectively. Create a new symmetric
diagonal block matrix C as follows

A* 0 0
C=|0X 0 |.
0 0 B*
where A* and B* are the same matrices as in the previous case and
_{ 0 =z
X= (m 1 ) .
is a 2 x 2 matrix with entry z2; = max( @y_1,0,012) and 212 = max(

@u,u-1,b21). Then we have a new larger adjacency matrix C with order
v+w—2. If we put two ”1” elements in every skew-diagonal line of the set of
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the empty skew-diagonal bands and define new vertex labels corresponding
to the new arrangement then we obtain an EAV graph with v + w — 2
vertices. O

Note that we can enlarge the graph by as little as one vertex using G, as
the original graph and G3 = K;.

Theorems 3 and 4 can be generalised as follows.

Theorem 4 Let G;,i = 1,...,p be EAV graphs of order v;,% = 1,...,p re-
spectively. Then there are EAV graphs of orders w, Y b vi —2(p—1) £
w< Zfz__l v;, each containing Gy,i = 1,...,p, a3 induced subgraphs.

Using the above theorems, we obtain the following corollary.
Corrolary 1 Every EAV graph has an EAV supergraph.

Enomoto et al. [3] proved that every graph can be embedded in a connected
SEMT graph as an induced graph. Similarly, we have the following results.

Theorem 5 Every graph can be embedded in a connected EAV graph as an
induced graph.

Proof:

Let G be an arbitrary graph with adjacency matrix A. Suppose that there
are more than two "1” elements in a skew diagonal line. Note that the
number of nonzero elements in one skew-diagonal line must be even. For
ilustration, suppose that there are four ”1” elements in one skew-diagonal
line, in positions (3,k), (4,1), (k,%) and (l,7). Add one additional row be-
tween rows i—1 and %, rows j—1 and j, rows k—1 and k, and rows ! —1 and
{. Add also one additional column between columns k — 1 and k&, columns
!l -1 and !, columns ¢ — 1 and %, and columns j — 1 and j. Repeat this
process until there are only two ”1” elements in every non-empty skew-
diagonal line. Add to the empty skew-diagonal line with a "1” element in
arbitrary place, until we have a full d-band of skew-diagonals. Denote the
resulting adjacency matrix as B. Then the graph that is represented by B
is an EAV graph. O

3.3 Contracting an EAV subgraph

All theorems in Subsection 3.2 deal with the expansion of an EAV graph.
On the other hand, we can also contract a maximal (respectively, non-
maximal) EAV graph by choosing a submatrix of the adjacency matrix of a
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EAYV graph of a maximal (respectively, non-maximal) EAV graph G to have
a subgraph G that still have the EAV property. If the submatrix has a non-
zero entry in position (1,1) then we have to add one column (say the first
column) in the matrix or put zero value in the position (1,1). Then we still
need to adjust the submatrix to make it onto a symmetric matrix and also
adjust the labeling of all vertices and edges of the subgraph. However, we
can only chose the submatrix so that the subgraph still remains connected.

Theorem 6 Every EAV graph has an EAV subgraph.

Figure 5 gives an example of constructing a subgraph that is still an EAV
graph.

0 1 110 01 1 1
1 001 1 1 0 0 1
1 00 01 > 10 0 0
1 1 0 01 11 1 0
01 1 10
3 1 4 2
o .\0'/.
An EAV graph on 5 vertices. An EAV subgraph on 4 vertices.

Fig. 5. Constructing non-maximal sub-EAV graph.

4 Relationship between adjacency matrix and SEAT
labeling

Bata et al. [1) proved the following theorem.

Theorem 7 If G has an (a,d)-EAV labeling then

~ G has a (a+ |V|+1,d + 1)-SEAT labeling, and
— G has a (a+|V| +|E| — 1,d — 1)-SEAT labeling
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According to this theorem, if we have an (a,d)-EAV labeling for a graph
G then we can add labels {v + 1,v + 2,...,v + €} to the edges of G in
such a way that we obtain a super (a + |V| + 1,d + 1)-SEAT labeling and
a (a + |V| + |E|,d — 1)-SEAT labeling. In particular, if we start from an
(@,1)-EAV labeling, we can obtain a (a+|V'|+1,2)-SEAT labeling or SEMT
labeling. From an (a,2)-EAV labeling, we can get a (a + |V| + 1,3)-SEAT
labeling and a (a+|V| +|E| - 1,1)-SEAT labeling. Note that in this paper
we only consider the connected graph and an (a,1)-EAV graph.

The following theorem concerns EAV graph G with odd number of edges
then we have the following result.

Theorem 8 Let G be an (a,1)-EAV graph. If e = |E| is odd then G has
an (a,1)-SEAT labeling.

Proof:
Suppose that G, with odd number of edges, has an (a,1)-EAV labeling
a. Then the set of the edge-weights {wa(es) : i = 1,2,...,v} consists of

consecutive integers, namely, W = {a,a+1,...,a+ (e—1)}. Under the EAV
labeling «, vertices of the graph have the consecutive labels 1,2,...,v. And

so we can label the edges of G using labels v+ 1,v+2,...,v+e. To an edge
e; with weight a+i—1, i = 1,2, ...,e in (a,1)-EAV labeling, label the edges
of G as follows

a(e;) = _n_-_;;l—_g’ for ¢ odd
afe;))=n+1- %, for z even

Using this labeling the edge-weights set under the new labeling also consists
of consecutive integers. O

If we delete all edge labels from every super edge magic total labeling then
vertex labels will form an EAV graph. Thus we have the following result.

Theorem 9 Every super edge magic total graph has an (a,1)-EAV labeling.

5 Constructing new super (a, d)-edge-antimagic total
graphs

Using Theorem 8 and 9, we can generalised the results of Section 3 by
adding labels to all edges in a graph G to obtain the following results. Note
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that the way to add the edge labels depends on the SEAT that we construct.
Since all the results in Section 3 hold for (a,d)-EAV graph for d = 1 then
the known results hold for super (a,d)-EAT graphs when d € {0,2}, for
every case, and when d = 1 for e odd. We only consider all SEAT graphs
that have an EAV labeling, and, in particular, (a,1)-EAV. For simplicity
we use the term EAV-SEAT labeling and EAV-SEAT graph.

Theorem 10 IfG' is a graph with e = 2v—3 edges and G’ has an adjacency
matriz B such that there is a permutation matrizc P and B = P~1AP,
where A is an adjacency matriz of a EAV-SEAT graph, then G' is also a
EAV-SEAT graph.

Since the basic idea of the proofs in this section is used repeatedly, we only
prove one of the theorems.

Theorem 11 Any non-mazimal EAV-SEAT graph can be extended to a
mazimal EAV-SEAT graph.

Proof:

Let G be a non-maximal (a, d)-EAV-SEAT graph of order v and d € {0,2}
for any n, and d = 1 for n odd. Then the adjacency matrix A has v rows and
v columns but only p, p < 2v—3, non-empty skew-diagonal lines. By adding
element ”1” in 2v — 3 — p empty skew-diagonal lines, we obtain a maximal
EAV graph with the set of edge-weights equal to {a,a+d, ...,a+2v — 3d} .

Call the new EAV labeling a. Then a: V — {1, ...,2v — 3}. Next add the
edge labels as follows

Case 1.
B(x;) = a(z;) for every i =1, ...,v

B(zy) = 2v — 3 + 1 if the weight of the edge zy under « is a + id
Then we obtain a (a’,2)-SEAT graph.

Case 2.

B(z;) = a(z;) forevery i = 1,...,v
B(zy) = 2v — 3+ v + e — i if the weight of the edge zy under a is a + id
Then we obtain a SEMT graph.

Case 8.

B(z;) = afz;) for every i =1,...,v
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Using the property of consecutive integers, we can obtain §(zy) to complete
the labels, and we can obtain (¢”,1)-SEAT. D

Theorem 12 Let G, and G5 be two EAV-SEAT graphs of order v and w,
respectively. Then there exists a SEAT graph of order v 4+ w which contain
G1 and Gy as induced subgraphs. The number of additional edges needed is
2v — 1 + min{wt(e;) : ; € E(G2)} — max{wt(e;) : e; € E(G1)}.

Theorem 13 Let G; and G be two non-mazimal EAV-SEAT graphs of
order v and w, respectively. Then there are SEAT graphs of orders v+w—2
and v+ w — 1, each containing G1 and G2 as induced subgraphs.

Note that for constructing an (a,1)-SEAT graph, the number of edges of
a new graph cannot be even. Theorems 14 and 15 can be generalised as
follows.

Theorem 14 Let Gi,i = 1,...,p be EAV-SEAT graphs of order v;,i =
1,...,p, respectively. Then there are SEAT graphs of orders 3_F_, v;, 35, vi—
p+1and 37, v; — 2(p — 1), each containing Gy, i = 1,...,p, a3 induced
subgraphs.

Corrolary 2 Every EAV-SEAT graph has a SEAT supergraph.

Theorem 15 Every graph can be embedded in a connected SEAT graph as
an induced subgraph.

Theorem 16 Every EAV-SEAT graph contains a SEAT subgraph

6 Conclusion

In this paper we presented a method, using adjacency matrix of an EAV
graph, to create a new EAV graph. Moreover, we used this method to create
a new SEAT-graph whenever the original SEAT graph also an EAV graph.
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