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Abstract. Let G = (V, E) be a graph with v vertices and e edges.
A (e, d)-vertez-antimagic total labeling is a bijection o from V(G)U
E(G) to the set of consecutive integers 1,2, ..., v + ¢, such that the
weights of the vertices form an arithmetic progression with the ini-
tial term a and the common difference d. If a(V(G)) = {1,2,...,v}
then we call the labeling a super (a,d)-vertez antimagic total. We
study basic properties of such labelings and show how to construct
such labelings for some families of graphs, such as paths, cycles
and generalised Petersen graphs. We also show that such labeling
do not exist for certain families of graphs, such as cycles with at
least one tail, trees with even number of vertices and all stars.

1 Introduction

In this paper we consider simple and connected graphs. For a graph G =
G(V, E) we will denote the set of vertices V = V(G) and the set of edges
E = E(G). We also denote v = |V(G)| and e = |E(G)).

A labeling o of a graph G is a mapping that assigns elements of a graph
to set of numbers (usually positive integers). If the domain of the mapping
is the set of vertices (respectively, the set of edges) then we call the labeling
vertez labeling (respectively, edge labeling). If the domain is V U E then we
call the labeling a total labeling. For a further explanation of vertex, edge
and total labelings, see [8], [17].

The vertez-weight wt(x) of a vertex z € V, under a labeling o : VUE —
{1,2,...,v+ e}, is the sum of values a(zy) assigned to all edges incident to
a given vertex z together with the value assigned to z itself.

A bijection a : VUE — {1,2,..,v + e} is called an (a,d)-vertez-
antimagic total (in short, (a,d)-VAT) labeling of G if the set of vertex-
weights of all vertices in G is {a,a+d,a+2d,...,a+(v—1)d}, wherea > 0
and d > 0 are two fixed nonnegative integers.
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If d = 0 then we call a a vertez-magic total labeling. The concept of
the vertex-magic total labeling was introduced by MacDougall et al. [14] in
2002. In this paper, they also showed that some families of graphs cannot
have SVMT labeling, for example, graphs that have a vertex of degree 1;
also wheels, fans, friendship graphs, ladders and complete bipartite graphs.
For other results in vertex magic total labeling, see [4], [10], [12], [13], [14].

An (a, d)-vertex-antimagic total labeling a is called a super (a, d)-vertez-
antimagic total (in short, super (a,d)-VAT) labeling if a(V)) = {1, 2, ...,v}
and o(E) ={v+1,v+2,..,v+¢€}.

On the other hand, Baga et al. [2] investigated basic properties of (a, d)-
VAT labelings and constructed such labelings for some families of graphs.
They also studied dual labeling and a relationship between SVMT labeling
and an (a,d)-antimagic graph. Furthermore (a,1)-VAT labelings for the
family of quartic graphs R, have been described in [1], and (a,1)-VAT
labelings of the complete graph K,, n =2 or n > 5, n # 0 (mod 4), and
of the complete bipartite graph Ky n,n > 3, follow from Stewart’s results
[16] (see [2]).

In this paper we study basic properties of super (a,d)-VAT labeling
and we show how to construct such labelings for certain families of graphs,
including complete graphs, complete bipartite graphs, cycles, paths and
generalised Petersen graphs. We also show that some families of graphs do
not admit super (a,d)-VAT labelings.

2 Basic properties

Suppose that graph G has a super (a,d)-VAT labeling. Let S, be the sum
of all the vertex labels and let S, be the sum of all the edge labels. If §
is the smallest degree in G then the minimum possible vertex-weight is
1+(w+1)+(w+2)+...+ (v+6). Then

a21+v6+£(6-—;i). (1)

If A is the largest degree of G then the maximum possible vertex-weight is
v+(v+e)+(v+e-1)+..+(v+e-(A4-1)).
Consequently,

a+(-1d<v+ DA v +e—i). @
From (1) and (2), we conclude that

A@Rv+2e—A+1) -5 +5+1)

d<1+ 2Av-1) (3)
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The sum of all the vertex labels and all the edge labels used to calculate
the vertex-weights is

Sy + 28, = v(v;— 1 +2ve +e(e +1). 4)
The sum of all the vertex-weights is
Lrevwt(z) = av + M. (5)

Combining Equations (4) and (5), we obtain

a=%(v+1-(v-1)d)+2e+e—(°;v+—ll. ©)

3 New labelings from old

If a regular graph possesses an (a,d)-VAT labeling then we can create a
new labeling from it.

Leta: VUE — {1,2,...,u + e} be an (a,d)-VAT labeling for a graph
G. Define the dual labeling of o on V U E as follows [2]:

o' (z) =v+e+1—a(z), for any vertex z € V,

o' (zy) = v+e+1— a(zy), for any edge zy € E.

Clearly, the labeling o' is also a bijection from the set V U E into
{1,2,...,v + e}. We say that o is the dual of a.

Proposition 1 (2] The dual of an (a,d)- VAT labeling of a graph G is an
(a’,d)-VAT labeling for some o’ if and only if G is regular.

The following theorem gives a relationship between a vertex-antimagic
edge labeling and a super vertex-antimagic total labeling for a regular

graph.

Theorem 1 An (a,d)-vertez-antimagic edge labeling of G is a super (o', d+
1)-VAT labeling or a super (a”,d — 1)-VAT labeling for some a’ and a”, if
and only if G is regular.

Proof. Suppose ) is an (a, d)-vertex-antimagic edge labeling of G and let
wty(z) be the vertex-weight of z under the edge labeling A. Then W =
{wtr(z):z €V} ={a,a+d,a+2d,...,a+ (v—1)d} is the set of vertex-
weights of G. Let z; be the vertex of V such that wty(z;) = a + (i — 1)d,
fori=1,2,...,v. We will distinguish two cases. -
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Case 1. Define a new mapping « in G by

a(r;)=1i+e, fori=12,...,v

a(zy) = A(zy), for all zy € E.

Under the labeling ¢, the vertices and edges of G use each integer from

the set {e+1,e+2,...,e+ v} and {1,2,...,e}, respectively.
Then wty(z;) = wtr(z:)+a(z;) = a+(i—1)d+i+e = ate+1+4(i—1)(d+1),
fori=1,2,...,v, ie., the weights of the vertices constitute an arithmetic
progression with the difference d + 1 and with the initial term ¢ + e + 1.
Thus the labeling a is a (a + € + 1,d + 1)-VAT labeling.

In the light of Proposition 1, the dual of an « labeling is an (a’,d + 1)-
VAT labeling if and only if G is regular. We can see that the vertices
of G under the dual labeling of «, use exactly all the integers from the set
{1,2,...,v}. Therefore, the dual labeling is a super (a',d+1)-VAT labeling.

Case 2. We construct a new mapping 3 of G by

B(z;))=v+e+1—i, fori=1,2,...,v
B(zy) = Mzy), for all zy € E.

Under the labeling 8, the vertices and edges of G receive the integers
e+1l,e+2,...,e+vandl,2,...,e, respectively. Then
witg(z;) = wir(z:)+P(z:) = a+(i—1)d+v+e+1—i = a+v+e+(i—1)(d—1)
fori=1,2,...,v, i.e., the labeling 8 is a (a + v + e,d — 1)-VAT labeling.
According to Proposition 1, the dual of a 8 labeling is an (a”,d — 1)-VAT
labeling if and only if G is regular.

Evidently, under dual labeling of 3, the values of the vertices are 1,2,...,v.
This implies that the dual labeling of 3 is a super (a”,d — 1)-VAT labeling.
(]

Stewart [16] showed that the complete graph K, has a super-magic
edge labeling when n = 2 or n > 5 and n # 0 (mod 4). From [16], we know
that the complete bipartite graph K, ,, is super-magic for all n > 3. In our
terminology a super-magic labeling is a super (a, 0)-vertex-antimagic edge
labeling.

The complete graph K, is of course a regular graph. Consequently, from
Theorem 1, it follows the following that:

Corollary 5 Ifn =2 orn > 5 and n # 0 (mod 4 ), then the complete
graph K, has a super (a’,1)-VAT labeling.
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Since the complete bipartite graph K, , is also a regular graph, the
following results is obvious.

Corollary 6 There is a super (a/,1)- VAT labeling of K n, for alln > 3.

4 Generalized Petersen graph

Let n and m be positive integers, n > 3 and 1 < m < %. The gener-

alized Petersen graph P(n,m) is a graph that consists of an outer-cycle
Y0, Y1, Y2, - - - » Un—1, & set of n spokes y;7;, 0 < 7 < n—1, and n edges ;T ym,
0 £ i < n—1, where all the subscripts are taken modulo n. The standard
Petersen graph is the instance P(5,2). Generalized Petersen graphs were
first defined by Watkins [18]. From (3), it follows that if P(n,m), n > 3,
1 <m < %, has a super (a,d)-VAT labeling then d < 5.

The following proposition was proved in [5)

Proposition 2 [5/ A generalized Petersen graph P(n,m) has an (a,1)-
vertez-antimagic edge labeling if and only if n is even,n >4,1<m< 3-1
and a = 122,

Since P(n,m) is regular of degree r = 3, by Theorem 1 we have

Corollary 7 Forn even,n > 4,1 <m < §—1, every generalized Petersen
graph P(n,m) has a super (a’,2)-VAT labeling and o super (a”,0)-VAT
labeling.

The next theorem gives a super (a,1)-VAT labeling of P(n,m) for n
odd.

Theorem 2 For n odd, n > 3, 1 < m < 3, every generalized Petersen
graph P(n,m) have a super (a,1)- VAT labeling.

Proof. Let the generalized Petersen graph P(n,m) has V(P(n,m)) =
{zo,z1,.. s Ta—1} U {vo-1,.--,¥n-1} and

E(P(n,m)) = {vizi, Yiviv1, ZiTitm :1=0,1,2,...,0 — 1} with the in-
dices taken modulo n. Now, consider two cycles of P(n,m); the outer-cycle

Y0,¥1,- .-, ¥n—1 and the inner-cycle zo, Tm,T2m,- - -, T(n—1)m- Rename the
inner cycle vertices: z§ = 20,2} = Tm,T3 = Tam,..-,Tp—1 = T(n—1)m-
Then we have the inner-cycle g, =3, ..., 25 _;.

Define the total labeling 8 for the outer-cycle and the inner-cycle as
follows.

Bzl)=i+1lfori=0,1,...,n -1
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By)=n+1l+ifori=0,1,...,n—-1
. y_/[3n—4% forieven
ﬂ(ytyi'l"l) = { % for i Odd
ev \_ J4n—4 forieven
Alaizin) = { In=t =~ for i odd

‘We can see that

B(yi-1%:) + By:) + B(yiyir) = 13"2+ 3
and .
Bli_1m}) + B(a}) + Blaizin) = —

fori=0,1,...,n— 1, where all the subscripts are taken modulo n.
If we complete the labels for spokes by

Blyizi) =4n+1+i, fori=0,1,...,n—-1

then the vertex-weights of P(n, m) are

2In+5
wig(ps) = —5— +1

and
wta(zs) = 23n2+ 5 i

fori=0,1,...,n—1.

Thus the total labeling 3 is a super (212+5,1)-VAT labeling. O

Note that the generalized Petersen graph P(n,1) is known as a prism.
Baga and Hollander (3] proved
Proposition 3 /3] Ifn is odd, n > 3, then the prism P(n, 1) has a (2%£3,2)-
vertez-antimagic edge labeling.

Proposition 4 [8] If n is even, n > 4, then the prism P(n,1) has a
(I2t4, 1) -vertez-antimagic edge labeling and a (2238, 3)-vertez-antimagic
edge labeling.

For prism P(n,1), by Theorem 1, we can obtain two corollaries when
d=3and d=4.
Corollary 8 Forn odd, n > 3, every prism P(n,1) has a super (a’,3)-VAT
labeling.

Corollary 9 For n even, n > 4, every prism P(n,1) has a super (a’,4)-
VAT labeling.
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5 Cycles and Paths

Next we define the edge-weight of an edge zy (w(zy)), under a vertex la-
beling to be the sum of the vertex labels corresponding to the vertices z
and y. Under a total labeling, we would also add the label of zy.

An (a,d)-edge-antimagic total (in short, (a,d)-EAT) labeling is defined
as a one-to-one mapping from V U E onto the set {1,2,...,v + e} so that
the set of the edge-weights of all theedges in G is equal to {a,a + d,a +
2d,...,a+ (e —1)d}, for two integers @ > 0 and d > 0.

An (a,d)-EAT labeling f is called super (¢,d)-EAT if f(V) = {1,2,...,v}
and, consequently f(E) = {v+1,v+2,...,v+¢€}.

These labelings are natural extensions of the notion of an edge-magic
labeling which was introduced by Kotzig and Rosa [11] and of the notion
of super edge-magic labeling which was defined by Enomoto et al. in [7].

The following theorem is proved in [6].

Proposition 5 [6] The cycle C, has a super (a,d)-EAT labeling if and
only if either

(?) d € {0,2} and n is odd, n > 3, or

(#)d=1andn>3.

The following theorem gives a relationship between (a,d)-EAT and
(@,d)-VAT labelings for cycles.

Theorem 3 For cycles and only for cycles, a super (a,d)-EAT labeling is
equivalent to a super (a’,d)-VAT labeling.

Proof. Let the cycle C,, be defined as follows: V(Cy) = {z¢,21,...,2Zn-1}
and E(C,) = {2;,Ziy1 : 1 =0,1,...,n — 1}, with the indices taken modulo
n. Suppose that a bijection f from V(C,)UE(C,) onto the set {1,2,...,2n}
is super (a,d)-EAT. This means that {w¢(z:Zit1) : we(zizisr) = f(2:) +
f(@ig1) + f(2:%ig1),4=0,1,...,n—1} = {a,a+d,a+2d,...,a+(n—1)d}
is the set of edge-weights of C,,.

Define a new mapping a by
a(zizit1) = f(z;) for i =0,1,...,n—1

a(w.-+1) = f(a:.-:ri.,.l) fori= 0,1,.. ,n—1.

It can be seen that (V) = {n+1,n+2,...,2n} and o(E) = {1,2,...,n}.
Moreover wy(2:Ziy1) = f(2:)+f(Zit1)+(@i%is1) = a(@:iTip1)+a(Tip1Tigp2)+
(Tit1) = wa(Tiy1) foralli = 0,1,...,n—1, ie., the edge-weight ws(ziTis1)
is equivalent to the vertex-weight wto(ziy,) for all i = 0,1,...,n — 1. So,
labeling « is (a, d)-VAT.
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We construct the dual labeling o/ by
o'(z) = 2n+ 1 — a(z) for any vertex z € V(C,)

o'(zy) = 2n+ 1 — a(zy) for any edge zy € E(C,).

Since the cycles are regular graphs it follows from Proposition 1 that
the dual labeling o' is (a’, d)-VAT. Again it is readily verified that o/(V) =
{1,2,...,n} and &/(E) = {n+1,n+2,...,2n}. This guarantees that o’ is
super (a’,d)-VAT labeling. O

In light Theorem 3 and Proposition 5 we can claim

Theorem 4 The cycle C,, has super (a,d)-VAT labeling if and only if ei-
ther

(i) d € {0,2} and n is odd, n > 3, or

(i) d=1andn > 3.

Next we turn our attention to a super (a,d)-VAT labeling of path P,
n 2 3. Let the path P, be defined as follows: V(P,) = {v,va,...,vs} and
E(P,) = {vivi+1:1=1,2,...,n—1}. From (3) it follows that if P,, n > 2,
has a super (a, d)-VAT labeling then d < 4.

Theorem 5 For the path P,, n > 3 and d € {0,1} there is no super
(a,d)-VAT labeling.

Proof. The fact that P, does not have any super (a,0)-VAT labeling was
already proved in [15].

Suppose, to the contrary, that v is a super (a,1)-VAT labeling of P,.
Using equation (6) we find a = 3n — 2. However, the maximum weights of
end vertices v; and v, can be obtained as sum of the biggest possible vertex
labels and edge labels as follows:

wty(v))=n+2n-1)=3n—-1and wt,(va) =(n-1)+(2n-2) =
3n—-3<aor

wty(v1) =n+(2n—-2) =a and wi,(vy) =(n—1)+(2n - 1) =a.

We have a contradiction. Thus, P, does not have any super (3n — 2,1)-
VAT labeling. O

Theorem 6 The path P,, n 2> 3, has a super (a,2)-VAT labeling if and
only if n is odd.

Proof. From (6) we have that for a super (a,2)-VAT labeling of P, the
smallest vertex-weight is a = 383,
If n is even this contradicts the fact that a is an integer.

For n odd we define the bijection
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B:V(P)UE(PR,) — {1,2,...,n}U{n+1,n+2,...,2n — 1} in the
following way:

B(v1) =n
Bv;)=i—-1fori=2,3,...,n

3ni .
ﬂ(vi'Ui_'_l) = { 2 for i odd

n+ -;— for 4 even.
The vertex-weights form the arithmetic progression

Sn=8 Smil .., 28T Thus P, has the super (2273,2)-VAT labeling for
n odd. O

Theorem 7 Every path P,, n > 3, has a super (a,3)- VAT labeling.

Proof. We discuss two cases.
Case 1. n odd.
‘We construct a labeling ¢ in which the vertices receive labels

p(v1) =1
p(vn) =n
pv;))=n—i+1lfori=23,...,n—1
and the edges receive labels
(Uivis1) = 2n—-1—1 for ¢ odd
PUWYi+1) = 2n+1—4 for i even.

‘We can see that the labeling ¢ is super labeling and the vertex-weights
form the arithmetic progression with difference 3, namely 2n — 1,2n +
2,...,5n - 4.

Case 2. n even.
Define the labeling 9 : V(P,) U E(P,) — {1,2,...,2n — 1} where

Y(n)=n-2

P(vn) =n
2i—3 fori=2,3,..

LE+1
¢(vi)={2(n—i) fori=3+2,%+3,

ey —1
and
o _ Jnt+2i—1 fori=12,...,%
Ylowvi) = { 3n—2 fori=2+1,2+2,...,n—1.
We conclude that the total labeling 9 extends to a super (2n—1, 3)-VAT.
m}

We summarise our results for path as follows.
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Theorem 8 The path P, has a super (a,d)-VAT labeling if and only if
either

(i)d=2 andn is odd, n > 3, or

(i) d=3 andn > 3.

6 Families of Trees and Unicyclic Graphs

Recall that in this paper we consider only connected graphs. In this section
we present a super (a,d)-VAT labeling of slightly more general graphs, in
particular trees instead of paths and unicyclic graphs instead of cycles. We
shall start by unicyclic graphs.

Let G be a graph where v = e. From (6) we have that a = w.}ﬂ)i‘.
If v is even then a is integer only for d odd.

Theorem 9 For every cycle with at least one tail and even number of
vertices there is no super (a,1)- VAT labeling.

Proof. Let G be a cycle with at least one tail. Suppose that « is a super
(e,1)-VAT labeling of G for a = 3v + 2 (see (6)). By assumption, G has at
least one vertex of degree 1, say ,. Then the maximum possible vertex-
weight of z, can be obtained by the biggest value of vertex and the biggest
value of edge, i.e., wty(Zp) = v + 2v = 3v. However wit,(zp) < a and we
have a contradiction. O

Now, we consider a super (a, d)-VAT labeling for tree wheree =v—1 >
Tv=5—(v—

1. Applying equation (6) we have a = —2(—13. If v is even then a is
integer only for d odd.

Theorem 10 For every tree with even number of vertices there is no super
(a,1)- VAT labeling.

Proof. Let G be a tree with e = v — 1 and v be even. G has at least two
vertices of degree one, say z, and z,. Suppose, to the contrary, that g is
a super (a,1)-VAT labeling of G for a = 3v — 2. Considering the extreme
values of the labeling of vertices and edges, the largest vertex-weights for
zp and x, are

wtp(zy) = v+ (2v—1) = 3v—1 and wig(zy) = (v - 1)+ (v - 2) =
3v—-3<aor

wig(zp) =v+ (2v—2) = a and wig(zy) = (v—-1)+(2v—-1) =a.
It is obvious that both cases give a contradiction. O

Let 2o denote the central vertex of star S,, n > 1,and z;, 1 < i < n be
its leaves. In light of Theorem 10, the star S, for n odd has not any super
(a,1)-VAT labeling. More generally, we have the following theorem.
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Theorem 11 For star S,,n > 3, there is no super (a,d)- VAT labeling for
any d.

Proof. Suppose that ¢ is a super (a,d)-VAT labeling of star S,. From
inequality (3) it follows that d < &J‘u. The smallest vertex-weight of
the central vertex zp under the labeling ¢ is

3n 4342

min (wt,(zo)) =14+ (n+2)+(n+3)+--+(2n+1) = 3

and the largest vertex-weight of a leave z; is
max (wty(z;)) = (n+1)+(2n+1)=3n+2.
Clearly, min (wt, (o)) — max (wt,(z;)) < d and thus
(n+1)(3n%2-9n+4) <0.

The last inequality holds only for two integers: n = 1 and n = 2. It
means that S, has a super (4, 1)-VAT labeling only for n = 1 (a(zo) =1,
o(z,) = 2, a(zoz;) = 3) and a super (a,d)-VAT labeling for n = 2 (see
Theorem 8). O

7 Open Problems

We list here two problems for further investigation.

Open Problem 1 For the complete graph K,, and complete bipartite graph
K, 5., determine (if there is) a super (a,d)-VAT labeling for every feasible
value of d > 1.

Open Problem 2 For the generalized Petersen graph P(n,m), find (if
there is) a construction of a super (a,d)-VAT labeling for
(i)neven,n>4,1<m< % -1, andd € {3,4}
(#)n odd, n>3,2<m < %}, endd € {0,2,3,4}.
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