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Abstract. For graphs G, G2, , Gk, the (generalized) size mul-
tipartite Ramsey number m;(G1,Ga, -+ ,Gk) is the least natural
number m so that any colouring of the edges of K xm with k colours
will yield a copy of G; in the ith colour for some i. In this note, we
determine the exact value of the size multipartite Ramsey number
mj(Ps, P,) for s = 2,3 and all integers ¢ > 2, where P; denotes a
path on ¢ vertices.

1 Introduction

Recently, Burger and van Vuuren [3] studied one of generalisations of the
classical Ramsey number as follows. Let K,,.; denote a complete, balanced,
multipartite graph consisting of n partite sets and ! vertices per partite set.
Let j,{,n,s and ¢ be natural numbers with n,s > 2. Then the size multi-
partite Ramsey number m;(Knxi, Koxt) is the smallest natural number ¢
such that an arbitrary colouring of the edges of K¢, using two colours
red and blue, necessarily forces a red K,x; or a blue K,; as subgraph.
In this paper, we generalize this concept by releasing completeness re-
quirement in the forbidden graphs as follows. Let § > 2 be a natural num-
ber. For graphs G;,Ga, - - - , G, the (generalized) size multipartite Ramsey
number m;(G1,Ga,- - - , G) is the smallest natural number m so that any
colouring of the edges of K;xm with & colours will yield a copy of G; in the
ith colour for some i. The existence of all numbers m;(G,Ga,--- ,Gg) for
J = 2 follows from a result of Erdés and Rado [4]. For the case of k = 2,
with G1, G2 are complete balanced multipartite graphs, the numbers can be
derived from result Burger and van Vuuren (3]. The exact values of bipartite
Ramsey numbers b(P;, P;) = ma(Ps, P;) of two paths can be obtained from
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a special case of some results of Gyérfas and Lehel [6], and Faudree and
Schelp [5]. Furthermore, Hattingh and Henning (7] determined the exact
values of bipartite Ramsey numbers b(Pp,, K1 ). In this paper, we estab-
lish the exact values of the size multipartite Ramsey numbers m;(Ps, P;)
of two paths with s = 2,3.

2 Main results

In this note, we prove the following theorem.
Theorem 1. Ifn > 3 then m;(P,, P,) = [?] fors=2,3.

Proof. Let k = [?] If all edges of FF = Kjx (k1) are colored by blue
then F contains neither red P, (and P5) nor blue P, for n > 3. Therefore,
m;j(Psy Pp) > k for s =2,3 and n > 3. It easy to see that m;(P, P,) < k,
and so m;j(Pz, P,) = k. Now, we prove that m;(P;, P,) < k. Let all edges
of F = Kjx) be colored by red or blue, so that F' contains no red P3. To
show that F contains a blue path P, on n vertices, consider the following
three cases.

Case 1. j = 2.

Let Vi1={a1, aa, ...,ax} and Vo={by, ba, ..., bx } be the partite sets of F. If all
edges of F are blue then the proof is complete. Now, suppose F' contains
7 red edges, r < k. Since there is no red P, these red edges are indepen-
dent. Without loss of generality, we may assume that the r red edges are:
a1by,azbs, - - - ,a.b.. If r is odd then

arboagby - - - ar_2br_1a.b102b3G4 - - - br_20r1brar41br 1101420042 -0

is a blue path with at least n vertices in F. Now, if r is even then we have
a blue path a1b2a3bs - - - ¢r_3br—20r-10r8r—2br_30r—4 - - -b3a2br0r
br—10r41b541 - - - agby with at least n vertices in F.

Case 2. j = 3.

If all edges of F are blue then it is finished. Let V3, V, and V3 be the
partite sets of F. Now, assume, without loss of generality, there exist r, s
and ¢ red edges connecting V; to V2, V; to V3, and V, to Vi, respectively.
By considering these red edges, partition V;,V> and V3 as follow: V; =
RUXUS;, Vo = RoUY UT; and V3 = S3UZUT3, where |R1| = IRzl =7,
|S1] = |S3| = s and |T3| = |T3] = ¢ so that all edges connecting R; to Rs,
S; to S3 and T, to T3 are red. Next, without loss of generality, assume
r < 8 < t. This implies that |Z| < |Y| < |X|. Observe that there exist three
independent blue paths: (i) path P, of 2r vertices connecting all vertices
of R; and some of S3 with the initial vertex @ € R; and the terminal vertex
b € 83, (ii) path Py of 2r vertices connecting all vertices of R; and some
of T3 with the initial vertex ¢ € R, and the terminal vertex d € T3, (iii)
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path Py of 2s vertices connecting all vertices of S; and some of T with
the initial vertex e € T3 and the terminal vertex f € S, see Fig.1.(i). We
can the join all these paths into one larger blue path o Pf:=, Py PyeFPy. This
path has 4r + 2s vertices, see Fig.1.(ii).

® (i)

Fig. 1. The three blue paths form a larger blue path starting from vertex a € R;
and ending at f € S;.

Let denote by A, B and C the subsets of Tp, S3 and T3, respectively,
which contain all vertices not in the above three blue paths. Then, we have
Y] + |A| = |X| and |B| + |Z| + |C| = |X| + |B| = |X] + (s — ), and
(s —7) = |Y] —|Z| < |X|. We will show that there exists a blue path
connecting X, Y U A and BU Z U C with at least 3|X| + (s — r) vertices.

Partition the sets C = C; U C> such that C, consists of all end-vertices
of red edges connecting A and C, and so |Cs| = |A| = (t — 8) and |Cy| =
|B| = (s—r). Partition the sets X = X; UXj such that | X;| = |C2|; Clearly
|X1| = |Y|. Suppose D = B U Z U C). Note that |X3| = [A| = |Ca|. Let
C2 = {alaa27" : 1am}, X2 = {bl,sz’ o ybm}a and A = {01,62,' i ,cfn}y
where m = t — s. Then we obtain a blue path ai1byc1a3b2¢3 - - - @mbmem.-
This path has 3(¢ — s) vertices, and is denoted by 4, P.,,. Since fa; is a blue
edge then by joining the two paths P and 4, P.,, we have a blue path
with 4r + 3t — s vertices. This resulting path, denote by , P, , starts from
a and ends at ¢,,;. Next, we consider the following three subcases.
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D=BUZUGC

() (0}

Fig. 2. (i) A blue path 4P, (ii) A blue path 4P,

Subcase 2.1. |Z| =0.

Since |Z| = 0 then |D| = |[BUC,| = 2|Y| = 2|X,| = 2(s — r). Then,
we obtain a blue path by connecting all vertices in X; with a half of D
alternatingly, and continuing connecting the other half of D with all the
vertices in Y alternatingly. This path starts at some vertex g € X; and
ends at h € Cy, and is denoted by 4P, (see Fig.2.(i)). Note that this path
has 4(s ~r) vertices. Since ¢,,g is a blue edge then by joining the two paths
oP.,, and 4P, we have a blue path with 3(s+t) vertices. This resulting path
uses all vertices of F, and so F' contains a blue path with at least n vertices.

Subcase 2.2. 0< |Z| < |Y].

Since |Z| < |Y| then |D| = |BU Z U Cy| < 2|Y|. Then, we obtain a blue
path P, connecting all vertices in X; with all vertices in Y through all
vertices in D one by one each time, until all the vertices in D have been
totally used. If there are still some vertices in X, (and so in Y') left then
connect directly these remaining vertices alternatingly, see Fig.2.(ii). Since
cmu is a blue edge then by joining the two paths , P, and ,P,, we have
a blue path with 3(]Y| +  + t) vertices. This resulting path contains all
the vertices of F, and so F has contains a blue path with at least n vertices.

Subcase 2.3. |Z| = |Y]| #0.

Since | Z| = |Y|, then s—r = 0 and so | D| = | Z|. Then we obtain a blue path
wP: connecting all vertices in D, X;, and Y alternatingly, where w € D
and z € Y. Since ¢,,w is a blue edge then by joining the two paths P,
and ,,P,, we have a blue path with 3(|Y| + r + t) vertices. This resulting
path will contains all the vertices of F.
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Case 3. j > 4.

Let V1, V2,---,V; be the partite sets of F. Trivially, if all edges of F are
blue then it is finished. If j even by Case 1 we have % blue paths connecting
all vertices V4 to Va, V3 to V4, ---, Vj_1 to Vj. Each path has 2k vertices.
Since F' has no a red P3 then we can concatenate these £ paths into one
blue path of kj vertices. This final path will have at least n vertices. Ifj is
odd then by Case 1 we obtain -7;—3 blue paths connecting all vertices V; to
Va, V3 to Vy, -+« Vj_4 to Vj_3 independently. Each path has 2k vertices.
By using the method in Case 2 we get another blue path connecting all
vertices in V;_2, Vj_, and Vj. Again, since F has no red P;, we can join all
these paths into one with at least n vertices.O

Corollary 1. Ifn > 3 then m;(P,,Cn) = [%] for s =2,3.

Proof. Let . P, be the final blue path obtained in the proof of Theorem 1.
This path consists of at least n vertices. Since zy is a blue edge then by
joining the two vertices £ and y, we have a blue cycle C,, with at least n
vertices.O
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