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Abstract: Let U(n, f) derote the graph with vertex set the set of unlabeled graphs
of order n that have no vertex of degree greater than /. Two vertices H and G of
Uln, f) are adjacent if and only if H and G differ (up to isomorphism) by exactly one
edge. The problem of determining the values of » and f for which U(n, f) contains a
Hamilton path is investigated. There are only a few known non-trivial cases for
which a Hamilton path exists. Specifically, these are U(5, 3), U(6, 3), and U(7, 3).
On the other hand there are many cases for which it is shown that no Hamilton path
exists. The complete solution of this problem is unresolved.

1. Introduction

By an f-graph we mean a graph having no vertex of degree greater than f. Let U(n, f)
denote the graph whose vertex set consists of all unlabeled f-graphs of order n >
S+ 1. A pair {G, H} of f-graphs of order n is an edge in U(n, f) if and only if G and
H differ (up to isomorphism) by exactly one edge.

The graph U(n, f) is the underlying graph of D(n, f), the transition digraph for the
Random f-Graph Process [1] and any Markov process whose states are the unlabelled
J-graphs of order n such that all of its transitions are one-edge extensions with non-
zero probability, for example see [2][3]). Such processes are prototypes for random
graph process having a variety of applications, for example, see [4]. The transi-
tion digraphs D(4, 2) and D(4, 3) are shown in Figures 1 and 2, respectively.

At each step of this process exactly one edge is added, thus U(n, /) is bipartite with
its vertices that correspond to even and odd size graphs forming a bipartite vertex set
partition.

An f-graph G is edge-maximal (EM f-graph), if no edge can be added to it without in-
troducing a vertex of degree greater than f. The f-graph G is edge-transitive (ET f-
graph), if for each pair of edges e, and e; in G, there is an automorphism of G that
sends e; to e2. We call an f-graph that is both EM and ET an EMT f-graph. A vertex
of degree one in U(n, f) is a pendant vertex. The following is obvious:

JCMCC 56 (2006), pp. 3-16



(i) An EM f-graph does not have any f-graph one-edge-extended supergraphs.

(ii) An ET f-graph, other than K,‘, the empty graph, has a unique proper one-edge-
deleted subgraph.

(iii) An EMT f-graph corresponds to a pendant vertex U(n, f).

Let Py denote a path of order k. If we wish to specify the starting and ending verti-
ces of a path from x to y, we write x > y. The latter is defined as a sequence x,,
Xa,..., X of distinct vertices of U(n, f) such that x; =x, x; = y, and {x;, x;,,} is an
edge of U(n, f) foreachi=1,2,...,k-1. Let N(n, f) denote the order of U(n, f).
A Hamilton path in U(n, f) is a path with k= N(n, f).

General Problem. Determine the values of n and f for which U(n, f) contains a
Hamilton path.

The cases U(n.0)=K ,U(n) =k = -, and UB3,2)= F, being paths, each con-
tain a Hamilton path, but are considered trivial.

For f=2, and n >4, no U(n, 2) has a Hamilton path. This follows easily from ob-
servations that are made in Section 2 (see Theorem 2.5). In Section 3 we consider f
= n -1 and state the first open problem. The case f = 3 is considered in Section 4
and where the only known nontrivial examples, for any f, having a Hamilton path
are given. Namely, U(5, 3), U(6, 3), and U(7, 3). 1t is noted that some of the meth-
ods used when f = 3 apply when f > 4. However, other than for f= 0, 1, and 2, the
complete solution of the General Problem remains unresolved.

2. Basic observations and f=2 withn >3

U(n, f) is a connected graph and it is obvious that, if U(n, f) has more than two
pendant vertices, then U(n, f) does not contain a Hamilton path. When f=n ~ 1,
U(n, /) always has exactly two pendant vertices, namely, the vertices associated
with K,° and K,,. However, when f < n - 1 there are cases when U(n, f) will have at
least three pendant vertices. Such cases provide a sufficient condition for the non-
existence of a Hamilton path in U(n, f).

Our first lemma provides necessary conditions for the existence of a Hamilton path.

Let e{n) and o(n) denote the number of unlabeled f-graphs of order n having even
and odd size, respectively.

Lemma 2.1. If U(n, /) contains a Hamiliton path K,°-> G, then
(a) The order N(n, f) of U(n, f) and the size of G have opposite parity.
(b) efn)-odn)=0 when N(n,f)iseven; efn)-o{n)=1 when N(n,f)is odd.

(c) U(n, f) has no more than two pendant vertices.



Proof. (a) Since K, is a pendant vertex in U(n, f), every Hamilton path in U(n, f)
must have K,°as one of its endvertices. Let K, - G be a Hamilton path in U(n, f).
Then, since U(n, /) is bipartite, le{n) - oAn)l <1. K,°has even size, thus, if N(n, f) is
even, then efn) = o(n) and G must have odd size. Similarly, if N(n, f) is odd , then
ef(n) = o{n) + 1 and G must have even size.

{b) See proof of (a) and Tables 1 and 2 for data concerning f=2 and 3.

(c) This is a necessary condition for any graph with a Hamilton path. I

Lemma 2.2. If there exist two EMT f-graphs G and H of order n, then U(n, f) does
not contain a Hamilton path and if in addition G and H are f-regular then
U(n + 1. f) does not contain a Hamilton path.

Proof. By (i), an EM f-graph does not have any one-edge-extended supergraphs that
are f-graphs. By (ii), every ET f-graph, other than X,’, has the property that, up to
isomorphism, it has exactly one one-edge-deleted subgraph. Therefore, the EMT f-
graphs G and H each are pendant vertices in U(n, f). Combining this with the fact
that K,*, which corresponds to a pendant vertex in U(n, f) for all n and f, yields a
third pendant vertex in U(n, f). Consequently, U(n, f) cannot contain a Hamilton
path.

Note that if in addition G and H are f-regular, then GUK, and H UK, are two
EMT f-graphs of order n + 1. Thus, by the same reasoning as the preceding,
U(n + 1, f) does not contain a Hamilton path. W

Lemma 2.3. If there exists an EMT f-graph G of order n and an EMT f-graph H of
order n - 1, such that H UK, isan EMT f-graph and G # H UK, then U(n, f)
does not contain a Hamilton path.

Proof. Since G and # UK, are two nonisomorphic EMT f-graphs of order n, we
have by Lemma 2.2, U (n, f) does not contain a Hamilton path. I

Lemma 2.4. If n = ab such that there exists EMT f-graphs G, and Gy of order a and
b respectively, then U(n, f) does not contain a Hamilton path and in addition if G,
and Gy are f-regular then U(n+1, f) does not contain a Hamilton path.

Proof. The graphs aG, and bG, (a copies of G, and b copies of G,) are distinct
EMT f-graphs of order n. Thus, by Lemma 2.2, neither U(n, f) nor U(n+1, f) con-
tain a Hamilton path. Il

Theorem 2.5. For all n > 4, U(n, 2) does not contain a Hamilton path.

Proof. For n 2 4 the ncycle C, is an EMT 2-graph of order n and C,.;is an EMT 2-
graph of order n - 1. Since C, # C,_; U K;, we have by Lemma 2.3, U(n, 2) does

not contain a Hamilton path. H



3. f=n-1

As noted in Section 2, U(1, 0), U(2, 1), and U(3, 2) each contain a Hamilton path
and are considered trivial for this study. In [5], B.R. Santos showed that U(4, 3) and
U(5, 4), which have order 11 and 34, respectively, do not contain a Hamilton path.
The following general result by F. Schmidt was also shown in [5]. The proof uses
results that are informative and useful in other contexts. Thus, we include it here.

Theorem 3.1. [f n=0,1(mod 4)and n =4, then U(n, n - 1) does not contain a
Hamilton path.

Proof. It was shown by F. Schmidt that, if U(4, 3) has a Hamilton path, then this
path must contain the only two edges incident to a pendant vertex in U(4, 3) and
every edge that is incident to a vertex of degree 2. This selects 10 such edges and
since U(4. 3) has order 11, these must be all of the edges of this Hamilton path.
-However, these 10 edges do not form a Hamilton path. Thus, U(4, 3) does not con-
tain a Hamilton path.

Assume n 2 S and n=0,1 (mod 4). A Hamilton path in the graph U(n, n - 1) must
alternate between graphs of even size and graphs of odd size. This requires that
le_{m-o_ (n)] <1.In the solution given in [6], it is noted that e(n) - o(n) = s(n),
where s(n) is the number of unlabeled self-complementary graphs of order n. Thus,
s(n) £1. However, this contradicts a known result (see for example, M. Kropar and

R.C. Read [7]), that if n>5and n=0,1 (mod 4), then s(n)22. Thus, U(n,n - 1)
does not contain a Hamilton path. I

PROBLEM 1. For what values of n=2,3(mod4)and n26 does U(n, n - 1)
contain a Hamilton path?

4. f=3
From Theorem 3.1, we have U(4, 3) does not contain a Hamilton path.

The following two algorithms RandHP and ConstrHP have been used to search for
Hamilton paths in U(n, f) (see [8]).

Algorithm RandHP
Input: N =order of U = U(n, f); A = adjacency matrix of U; v| = pendant vertex in U.
QOutput: P= (P, 1 <i <N, a Hamilton path in U, if such a path exists.

Method: A modified DFS method is used. Let X denote the set of visited vertices of
the graph U and i be the level of recursion (the number of vertices of a path P).

Step A. Initialization: X := @ and P;:=Oforeach1 <i<N.



Step B. Perform the following recursive procedure HP with parameters N, i=1,
v=v,A, X, and P.

procedure HP(N. i, v,A, X, P)
1. Add vertex v to the path P: P; :=v.

2.1f i = N, then the result is positive: otherwise do the following steps.
a. Add vto the set X.
b. Generate o, a random permutation of {1, ..., N}.
c. If forsomeje {1,..,N}, w=o() ¢ X, (v, w} is an edge in U
and HP(N, i + 1, w, A, X, P) is true, then the result is positive;
otherwise it is negative.
d. Remove v from the set X.

ConstrHP
Input: N = the order of U, A(U) = the adjacency matrix of U.

Output: If successful, a Hamilton path in U is obtained.

Method: Initially, let all vertices of U be colored red. If a vertex is assigned to P,
then it is recolored green. The number of red neighbors of a vertex is called its
active degree. A path is constructed starting from both ends, that is, from two pen-
dant vertices x and y of U, both colored green.

At each step i a new verlex is added to P, selected from the neighbors of the previ-
ous vertex having minimum active degree.

Construction of P from a given end-vertex is continued until conditions for this
continuation are not worse than for the other end-vertex.

The‘orem 4.1. U(5, 3), U(6, 3), and U(7, 3), each contain a Hamilton path.

Proof. U(5, 3) has order 23 (see Table 2), size 46, and exactly two pendant vertices,
namely, Ks° and K, UK, . An examination of U(5, 3) reveals a Hamilton path (see
Figures 3 and 4).

U(6, 3) has order 62 (see Table 2), size 168 and exactly two pendant vertices,
namely K¢ and K;3. The graph U(7, 3) has order 150 and size 562 with pendant
vertices K;° and K 33 VUK, . Applying the above algorithms to U(6, 3) and U(7, 3)
yields Hamilton paths in these graphs. Due to the order and size of U(6, 3) and
U(7, 3), drawings of these graphs and their respective Hamilton paths are not in-
formative and are thereby not given here. B

A graph G is totally traceable means each edge in G is contained in some Hamilton
path. Since U(n, 0), U(n, 1), and U(3, 2) are paths, these are trivially totally trace-
able.

Theorem 4.2. U(5, 3) is totally traceable.



Proof. Application of Algorithm RandHP yields at least 971 distinct Hamilton
paths in U(5, 3) (see {8]). It is also determined that six of these Hamilton paths is
sufficient to cover all of the edges of U(5, 3). I

PROBLEM 2. For what values of n and fis U(n, f) totally traceable?

A graph G is vertex-transitive, if for each pair of vertices x and y, there is an auto-
morphism of G that sends x to y. A graph is called symmetric, if it is both edge-
transitive and vertex-transitive.

Using the extensive, but not complete, known information on symmetric graphs,
one may determine many values of n for which U(n. 3) does not contain a Hamilton
path (see Theorem 4.3). The Foster collection of connected symmetric 3-graphs
(necessarily 3-regular) (cf. [9]) and its extension by G. Royle, M.D.E. Conder, B.
Mckay, and P. Dobscanyi can be accessed at [10]. This web-site lists the known
connected symmetric graphs with less than 1,000 vertices. It is known to be com-
plete for up to 768 vertices, but for 770-998 vertices it includes only the Cayley
graphs. In [9], the graphs where there is more than one such graph of a given order
the order is followed by a capital Latin letter to distinguish these graphs. For exam-
ple, the existence of the symmetric graph of order 18 and the two symmetric graphs
of order 20, is indicated by the listing as 18, 20A, and 20B, respectively. In what
follows we denote these graphs Fyg, Faoa, and Fyop. For convenience, this extended
Foster Census is reproduced here as Table 3.

Theorem 4.3. For n 28, the graph U(n, 3) does not have a Hamilton path for the
Sollowing values:

n=10, 11, 14, 15, and when n = 0,1 (mod x),

where x = 8, 12, 18, 20, 28, 30, 42, 50, 52, 7Q, 76, 78, 98, 102, 110, 114, 124, 130,
148, 172, 182, 186, 190, 222, 244, 258, 266, 268, 292, 310, 316, 338, 366, 370, 388,
402, 412, 430, 434, 436, 438, 474, 484, 494, 506, 508, 518, 556, 582, 602, 604, 610,
618, 628, 652, 654, 670, 722, 724, 726, 730, 762, 772, 790, 796, 806, 834, 844, 854,
892, 906, 916, 938, 942, 962, 964, or 97Q.

Proof. The cases n=4, 5, 6, and 7 are covered by Theorems 3.1 and 4.1.

For n = 10, 11, 14, and 15, the nonexistence of a Hamilton path in U(n, 3) is ob-
tained as follows.

From Table 2 we have the N(10, 3) = 3,547 and the only possible endvertices of a
Hamilton path in U(10, 3), if it exists, are K1o° and P, the Petersen graph. Since P
has size 15 we apply the contrapositive of Lemma 2.1(a) to obtain U(10, 3) does
not contain a Hamilton path.

If there is a value of n for whichl e, (n) - o,(n)1 22, then applying Lemma 2.1(b)

shows U(n, 3) does not have a Hamilton path. This occurs when n = 11, 14, and
15. Here e3(11) = 5474 and 05(11) = 5472 (see Table 2). When n =14, we have



e3(14) = 224,659 and 03(14) = 224,580. This yields | ¢,(14) —o,(14) }= 79 and for n

= 15, e3(15) = 840,340 and 05(15) = 840,630, we have le (15)—o,(15)}=290.
Thus, U(11, 3), U(14, 3), and U(15, 3) do not contain a Hamilton path.

To obtain values of n>8and #10,11,14,and 15 for which neither U(n, 3) nor
U(n+1, 3) contain a Hamilton path, it is sufficient to find pairs, G,, G, of noniso-
morphic EMT 3-graphs of order » and apply Lemma 2.2 or pairs G,, G, with n =
ab and apply Lemma 2.4. Keeping in mind that the graphs in the Foster Census are
connected and 3-regular, pairs G,, G, can be obtained by using multiples of these
graphs. Note that, for n = 4, 6, 8, and 10, we have the familiar graphs

Fy=K,, Fy=K,;, F3 =0,, the 3-cube, and Fyy = P.

For n = 8k, G, = 2kK, and G, = k(J; provide a pair that show the graphs U(8k, 3)
and U(8k + 1, 3) do not have a Hamilton path. By completely analogous methods
using the graphs in the extended Foster Census it is easily shown that the graphs
U(xk, 3) and U(xk + 1, 3), for x as listed in the statement of the theorem, do not
have a Hamilton path. In particular, note that if x is on the list given in the state-
ment of the theorem, then no multiple of x need be included on the list. B

Remark 1. Theorems 3.1, 4.1, and 4.3 cover the cases n = 4 up to n = 21. Thus,
for f =3, the smallest unresolved case of the General Problem is n = 22.

PROBLEM 3. Prove or disprove that U(5, 3), U(6, 3) and U(7, 3) are the only
nontrivial cases of a U(n, 3) that contains a Hamilton path.

As noted the nontrivial components of the graphs G, G, used in the proof of
Theorem 4.3 were all symmetric graphs, that is, both edge- and vertex-transitive.
Therefore, if there exists an EMT, but not vertex-transitive 3-graph of order n, then
as above, such a graph can be paired with another of its type or paired with an
EMT 3-graph to show the nonexistence of a Hamilton path in U(n, 3).

The Gray graph of order 54 is the smallest order 3-regular edge- but not vertex-
transitive graph [11][12]. This graph paired with 9K;3 yields U(54, 3) does not have
a Hamilton path. However, this result is already contained in Theorem 4.3 by pair-
ing 9K33 with 3F g or with the connected symmetric graph Fs, (see Table 3).

A preprint of paper [13] contains a list of all 3-regular edge- but not vertex-
transitive graphs having orders up to 768. Such graphs are called semisymmetric.
Each of these is an EMT 3-graph. However, each graph in this set that might have
been used to obtain a new case of a U(n, 3) with no Hamilton path is already cov-
ered by Theorem 4.3. On the other hand, the use of both symmetric and
semisymmetric can be applied to obtain a lower bound on the number of pendant
vertices in U(n, 3). Specifically, let B(n) denote the number of pendant vertices in
U(n, f) and a the number of f-regular graphs of order n that are either symmetric or
semisymmetric, then these graphs are EMT f-graphs and by (iii) in Section 1, are
pendant vertices in U(n, f). Since K, is always a pendant vertex, B(n) > o +1.



PROBLEM 4. Does there exist an f-graph G that corresponds to a pendant vertex
in U(n, f) such that G is neither symmetric nor semisymmetric?

5. A comment on forbidden subgraphs

If G is a vertex of degree 2 in U(n, f) and U(n, f) does not contain a Hamilton path
that has G as an end vertex, then every Hamilton path in U(n, f) contains the two
edges incident to G. This observation leads to noting that:

If U(n, f) has an induced 4-cycle C with a pair of nonadjacent vertices of degree 2 in
U(n, /) neither of which are endvertices of a Hamilton path, then every Hamilton
path in U(n, /) contains C. Thus, U(n, f) does not contain a Hamilton path.

The graph U(4, 3) contains a 4-cycle of type C (see Figures 2 and 4).

PROBLEM 5. Find subgraphs X of U(n, ) such that if U(n, f) contains X in some
designated form, then U(n, f) does not contain a Hamilton path.
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Figure 1. The transition digraph D(4, 2)
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Figure 2. The transition digraph D(4, 3) and the four graphs
that induce a 4-cycle in the graph U(4, 3)
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Table 1. N(n,2), e,(n), 0,(n) and the difference of the latter for 3 < n <20

n N@n, 2 a = ey(n) b =04(n) a-b
3 4 2 2 0
4 7 4 3 1
5 11 6 5 1
6 19 10 9 1
7 29 15 14 1
8 46 24 22 2
9 70 36 34 2
10 106 54 52 2
11 156 79 77 2
12 232 118 114 4
13 334 169 165 4
14 482 243 239 4
15 686 345 341 4
16 971 489 482 7
17 1357 682 675 7
18 1894 951 943 8
19 2612 1310 1302 8
20 3592 1802 1790 12

Table 2. N(n, 3), ¢,(n), o,(n) and the difference of the latter for4 <n <17

n N(n, 3) a = e3(n) b = o5(n) a-b
4 11 6 5 1

5 23 12 11 1

6 62 31 31 0

7 150 75 75 0

8 424 214 210 4

9 1165 585 580 5
10 3547 1773 1774 -1
11 10946 5474 5472 2
12 36327 18177 18150 27
13 124380 62191 62189 2
14 449239 224580 224659 =79
15 1680970 840630 840340 290
16 | 6553568 3277075 3276493 | 582
17 | 26400465 | 13198356 | 13202109 | -3753
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Table 3. The orders of the graphs in the Extended Foster Census

2 4 6 8 440 446 448 450
ABC ABC
10 14 16 18 456 458 468 474
AB
20 24 26 28 480 482 486 488
AB ABCD ABCD
30 32 38 40 494 496 500 504
AB ABCDE
42 48 50 54 506 512 518 536
AB ABCDEFG | AB
56 60 62 64 542 546 554 558
ABC AB
72 74 78 80 566 570 576 578
AB ABCD
84 86 90 96 582 584 592 600
AB
98 102 104 108 602 608 614 618
AB AB
110 112 114 120 620 624 626 632
ABC AB AB
122 126 128 134 640 648 650 654
AB ABCDEF AB
144 146 150 152 660 662 666 672
AB ABCD
EFG
158 162 168 182 674 680 686 688
ABC ABCDEF | ABCD AB ABC
186 192 194 200 698 702 720 722
ABC AB ABCDEF | AB
204 | 206 208 216 726 728 734 744
ABC ABCDEFG AB
218 | 220 222 224 746 750 758 762
ABC ABC
234 | 240 242 248 768 774 776 784
AB ABC ABCD AB
EFG
250 | 254 256 258 794 798 800 806
ABCD AB AB
266 | 278 288 294 818 824 832 834
AB AB AB
296 302 304 312 840 842 854 864
AB AB ABCD
314 326 336 338 866 872 878 880
ABCDEF | AB
342 344 350 360 882 888 896 906
AB AB AB ABC
362 364 366 378 912 914 926 936
ABCDE AB AB AB
FG
384 386 392 398 938 942 950 960
AB AB ABC
400 | 402 408 416 962 968 974 976
AB AB AB
422 | 432 434 438 918 992 998
ABCDE | AB
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