The metamorphosis of λ -fold kite systems into maximum packings of λK_n with triangles*

C. C. Lindner

Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA lindncc@mail.auburn.edu

Giovanni Lo Faro and Antoinette Tripodi Department of Mathematics, University of Messina Contrada Papardo,31-98166 Sant'Agata, Messina, Italy lofaro@unime.it, tripodi@dipmat.unime.it

1 Introduction

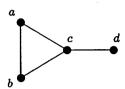
A kite is a triangle with a tail consisting of a single edge. A λ -fold kite system (λ -fold triple system) of order n is a pair (X, B), where B is a collection of kites (triangles) which partitions the edge set of λK_n (λ copies of the complete undirected graph on n vertices) with vertex set X. When $\lambda = 1$ we will simply say kite system (triple system). If we drop the quantification "partitions" we have the definition of λ -fold partial kite system (λ -fold partial triple system).

A packing of λK_n with triangles is a triple (X,T,L), where T is a collection of edge disjoint triangles and L is the set of edges not belonging to a triangle in T. The collection of edges L is called the *leave*. If |T| is as large as possible, the packing (X,T,L) is said to be *maximum*. (So, for example, a λ -fold triple system of order n is a maximum packing of λK_n with leave the empty set.)

In what follows we will denote the m-cycle with edges $\{x_1, x_2\}$, $\{x_2, x_3\}$, ..., $\{x_{m-1}, x_m\}$, $\{x_m, x_1\}$ by any cyclic shift of $(x_1, x_2, x_3, \ldots, x_m)$ or $(x_2, x_1, x_m, x_{m-1}, \ldots, x_3)$ (in particular, the triangle with edges $\{a, b\}$,

^{*}Supported in part by M.U.R.S.T. "Strutture geometriche, combinatoria e loro applicazioni", COFIN. 2001, and I.N.D.A.M. (G.N.S.A.G.A.)

 $\{b,c\}$, $\{c,a\}$ will be denoted by any cyclic shift of (a,b,c) or (b,a,c); and the kite



by (a,b,c)-d or (b,a,c)-d. Now let (X,K) be a λ -fold kite system of order n and let $E(K) = \{\{c,d\} \mid (a,b,c)$ - $d \in K\}$ and $T_1(K) = \{(a,b,c) \mid (a,b,c)$ - $d \in K\}$. Then $T_1(K)$ is a λ -fold partial triple system. If the edges belonging to E(K) can be arranged into a collection of triangles $T_2(K)$ with leave L, then $(X,T_1(K) \cup T_2(K),L)$ is a packing of λK_n with triangles, and is said to be a metamorphosis of (X,K). (The algorithm of going from (X,K) to $(X,T_1(K) \cup T_2(K),L)$ is also called a metamorphosis.) There are some fairly extensive results on similar metamorphosis problems, and the interested reader is referred to [2,3,5,6,7] for further reading. The purpose of this paper is the complete solution of the problem of constructing for each λ and for each admissible value of n a λ -fold kite system of order n having a metamorphosis into a maximum packing of λK_n with triangles with all possible leaves. It is sufficient to give a solution of this problem for $\lambda = 1,2,3,4,5,6,7,8,9,10,11,12$, since these results can be pasted together to obtain a complete solution for all other values of λ .

2 Kite systems

It is well known that the spectrum for kite systems is the set of all $n \equiv 0, 1 \pmod{8}$ [3] and a maximum packing of K_n with triangles has leave [4]:

- (i) a 1-factor if $n \equiv 0, 2 \pmod{6}$;
- (ii) a 4-cycle if $n \equiv 5 \pmod{6}$;
- (iii) a tripole (the graph consisting of (n-4)/2 disjoint edges and a 3-star (see Figure 1) if $n \equiv 4 \pmod{6}$; and
- (iv) the empty set if $n \equiv 1, 3 \pmod{6}$.

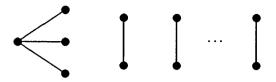


Figure 1: tripole.

In this section we will show that for every admissible value of n there exists a kite system of order n having a metamorphosis into a maximum packing of K_n with triangles. To begin with, we will give examples for n = 8, n = 9, n = 16, and n = 17 followed by a recursive construction for the remaining cases.

Example 2.1. (n=8). Let (X, K) be the kite system with $K = \{(4, 6, 1)-2, (4, 7, 2)-3, (4, 5, 3)-1, (6, 7, 5)-1, (3, 8, 6)-2, (1, 8, 7)-3, (2, 5, 8)-4\}.$ Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of K_8 with triangles, where $T_2(K) = \{(1, 2, 3)\}$ and $L = \{\{1, 5\}, \{2, 6\}, \{3, 7\}, \{4, 8\}\}.$

Example 2.2. (n=9). Let (X, K) be the kite system with $K = \{(1, 2, 3)-5, (4, 6, 5)-7, (8, 9, 7)-3, (4, 7, 1)-8, (2, 5, 8)-6, (3, 9, 6)-1, (1, 5, 9)-2, (6, 7, 2)-4, (3, 8, 4)-9\}. Then <math>(X, T_1(K) \cup T_2(K))$ is a Steiner triple system of order 9, where $T_2(K) = \{(3, 5, 7), (1, 6, 8), (2, 4, 9)\}.$

Example 2.3. (n=16). Let (X,K) be the kite system where $X=(\{a,b,c\}\times Z_5)\cup \{\infty\}$ and $K=\{(b_i,c_{3+i},\infty)-a_i, (b_{4+i},c_{3+i},a_i)-a_{1+i}, (a_i,b_{1+i},b_{3+i})-c_i, (c_{1+i},c_i,a_i)-a_{2+i}, (c_{1+i},c_{4+i},a_{2+i})-b_{2+i}, (c_{2+i},b_{1+i},b_{2+i})-a_i \mid i\in Z_5\}$. From here on we will use subscript notation x_i to denote the ordered pair (x,i).) Then $(X,T_1(K)\cup T_2(K),L)$ is a maximum packing of K_{16} with triangles, where $T_2(K)=\{(\infty,a_0,a_1),(\infty,a_2,a_3)\}\cup \{(a_i,a_{2+i},b_{2+i})\mid i\in Z_5\}$ and $L=\{\{a_4,\infty\},\{a_4,a_3\},\{a_4,a_0\},\{a_1,a_2\}\}\cup \{\{c_i,b_{3+i}\}\mid i\in Z_5\}$.

Example 2.4. (n=17). Let (X, K) be the kite system where $X = \{x_1, x_2, x_3, x_4, x_5\} \cup Z_{12}$ and $K = \{(8, 11, 9) - 10, (7, 8, 10) - 0, (2, 11, 0) - 9, (3, 0, 1) - 10, (x_1, 5, 1) - 2, (x_1, 9, 2) - 4, (x_1, 3, 7) - 6, (x_1, 11, 4) - 1, (6, 10, x_1) - x_2, (8, 0, x_1) - x_3, (x_2, 1, 6) - 9, (x_2, 10, 2) - 3, (x_2, 8, 3) - 5, (x_2, 0, 5) - 2, (4, 9, x_2) - x_3, (7, 11, x_2) - x_4, (x_3, 8, 1) - 11, (x_3, 10, 3) - 4, (x_3, 0, 4) - 6, (x_3, 11, 6) - 3, (2, 7, x_3) - x_4, (5, 9, x_3) - x_5, (x_4, 3, 11) - 10, (x_4, 8, 4) - 5, (x_4, 10, 5) - 7, (x_4, 0, 7) - 4, (1, 9, x_4) - x_5, (2, 6, x_4) - x_1, (x_5, 1, 7) - 9, (x_5, 2, 8) - 5, (x_5, 11, 5) - 6, (x_5, 0, 6) - 8, (3, 9, x_5) - x_1, (4, 10, x_5) - x_2\}.$ Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of K_{17} with triangles, where $T_2(K) = \{(x_1, x_3, x_5), (x_2, x_4, x_5), (0, 9, 10), (1, 10, 11), (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7), (5, 6, 8), (6, 7, 9)\}$ and $L = \{(x_1, x_2, x_3, x_4)\}$.

In order to handle the remaining cases we need the following example.

Example 2.5. (A $K_{4,4,4}$ kite system having a metamorphosis into a packing of $K_{4,4,4}$ with triangles with leave the empty set). Let $K_{4,4,4}$ have parts $\{x\} \times Z_4$, $\{y\} \times Z_4$, and $\{z\} \times Z_4$ and define a collection of kites $K = \{(x_2,y_1,z_0)-x_1, (y_2,z_1,x_0)-y_1, (x_1,z_2,y_0)-z_1, (y_0,z_0,x_3)-y_3, (x_3,y_1,z_1)-x_2, (x_3,y_2,z_2)-x_0, (x_0,z_0,y_3)-z_3, (y_3,z_1,x_1)-y_2, (y_3,z_2,x_2)-y_0, (x_0,y_0,z_3)-x_3, (x_1,z_3,y_1)-z_2, (x_2,z_3,y_2)-z_0\}$. Then $T_1(K) \cup T_2(K)$, where $T_2(K) = \{(x_0,y_1,z_2), (x_2,y_0,z_1), (x_1,y_2,z_0), (x_3,y_3,z_3)\}$, partitions the edge set of $K_{4,4,4}$ into triangles.

The main ingredient we will need in our recursive construction is a $\{3\}$ -GDD of type 2^k or $2^{k-2}4^1$. It is well known (see [1]) that there exists a $\{3\}$ -GDD of type 2^k for every $k \equiv 0, 1 \pmod{3}$ and a $\{3\}$ -GDD of type $2^{k-2}4^1$ for every $k \equiv 2 \pmod{3} \ge 5$.

The 8k + r Construction. Write 8k + r = 4(2k) + r, where $2k \ge 6$ and $r \in \{0, 1\}$. Let S be a set of size 2k, R be a set of size r, and (S, \mathcal{G}, T) a $\{3\}$ -GDD of type 2^k (for $k \equiv 0, 1 \pmod{3}$) or $2^{k-2}4^1$ (for $k \equiv 2 \pmod{3}$). Set $X = R \cup (S \times Z_4)$ and define a collection K of kites as follows.

- (1) For every group $g \in \mathcal{G}$, let $(R \cup (g \times Z_4), K_g)$ be a kite system of order 4|g|+r having a metamorphosis into a maximum packing with triangles with leave L_g (see Examples 2.1, 2.2, 2.3, and 2.4); put $K_g \subseteq K$.
- (2) For every $t = (x, y, z) \in T$, let $(K_{4,4,4}, K_t)$ be a kite system with parts $\{x\} \times Z_4, \{y\} \times Z_4, \{z\} \times Z_4$, having a metamorphosis into a packing of $K_{4,4,4}$ with triangles with leave the empty set (see Example 2.5); put $K_t \subseteq K$.

Then (X, K) is a kite system of order 8k + r. The metamorphosis is the following: for each group in \mathcal{G} use the metamorphosis in (1) and for each triple in T use the metamorphosis in (2). The leave is $L = \bigcup_{g \in \mathcal{G}} L_g$; we have the following four cases.

- (a) The case of r = 0, $k \equiv 0, 1 \pmod{3}$ (and so $8k + r \equiv 0, 2 \pmod{6}$). Each L_g is a 1-factor of K_8 with vertex set $g \times Z_4$ and so L is a 1-factor of K_{8k+r} .
- (b) The case of r = 0, $k \equiv 2 \pmod{3}$ (and so $8k + r \equiv 4 \pmod{6}$). Each L_g is a 1-factor of K_8 with vertex set $g \times Z_4$ with one exception, a tripole, corresponding to the group of size 4 and so L is a tripole.
- (c) The case of r = 1, $k \equiv 0, 1 \pmod{3}$ (and so $8k + r \equiv 1, 3 \pmod{6}$). $L_g = \emptyset$ for each $g \in \mathcal{G}$ and so $L = \emptyset$.

(d) The case of r=1, $k\equiv 2\pmod 3$ (and so $8k+r\equiv 5\pmod 6$). $L_g=\emptyset$ for each $g\in G$ with one exception, a 4-cycle, corresponding to the group of size 4 and so L is a 4-cycle.

Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of K_{8k+r} with triangles.

Lemma 2.1. There exists a kite system of order n having a metamorphosis into a maximum packing of K_n with triangles for all $n \equiv 0, 1 \pmod{8}$. \square

3 2-fold kite systems

It is well known that the spectrum for 2-fold kite systems is the set of all $n \equiv 0, 1 \pmod{4}$ [3] and a maximum packing of $2K_n$ with triangles has leave [1]:

- (i) the empty set if $n \equiv 0, 1, 3, 4 \pmod{6}$; and
- (ii) a double edge if $n \equiv 2, 5 \pmod{6}$.

In this section we will show that for every admissible value of n there exists a 2-fold kite system of order n having a metamorphosis into a maximum packing of $2K_n$ with triangles. To begin with, we will give examples for n = 4, n = 5, n = 8, and n = 9 followed by a recursive construction for the remaining cases.

Example 3.1. (n=4). Let (X, K) be the 2-fold kite system where $K = \{(3,4,1)-2, (1,4,2)-3, (2,4,3)-1\}$. Then $(X, T_1(K) \cup T_2(K))$ is a 2-fold triple system, where $T_2(K) = \{(1,2,3)\}$.

Example 3.2. (n=5). Let (X, K) be the 2-fold kite system where $K = \{(3,5,1)-2, (4,5,2)-3, (2,4,3)-1, (2,5,1)-4, (3,5,4)-1\}$. Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of $2K_5$, where $T_2(K) = \{(1,2,3)\}$ and $L = \{\{1,4\},\{1,4\}\}$.

Example 3.3. (n=8). Let (X, K_1) be a kite system of order 8 having a metamorphosis into a maximum packing of K_8 with triangles with leave $L = \{\{1,2\},\{3,4\},\{5,6\},\{7,8\}\}$ (see Example 2.1), and (X,K_2) the kite system where $K_1 = \{(5,8,1)-2,(5,6,3)-1,(2,3,4)-1,(7,8,2)-5,(1,7,6)-2,(4,5,7)-3,(4,6,8)-3\}$. Then $(X,K_1 \cup K_2)$ is a 2-fold kite system of order 8. The metamorphosis is the following: use the metamorphosis of (X,K_1) and delete the tail from each of the kites of K_2 ; reassemble these edges including the edges of L into the triangles $\{(1,3,4),(2,5,6),(3,7,8)\}$ with leave $\{\{1,2\},\{1,2\}\}$.

Example 3.4. (n=9). Take a kite system of order 9 having a metamorphosis into a Steiner triple system (see Example 2.2) and double each kite. The result is a 2-fold kite system of order 9 having a metamorphosis into a 2-fold triple system.

In order to handle the remaining cases we need the following example.

Example 3.5. (A $K_{2,2,2}$ kite system having a metamorphosis into a packing of $K_{2,2,2}$ with triangles with leave the empty set). Let $(K_{2,2,2}, K)$ be the kite system where $K = \{(x_1, y_1, z_0)-y_0, (y_1, z_1, x_0)-z_0, (x_1, z_1, y_0)-x_0\}$. Then $T_1(K) \cup T_2(K)$, where $T_2(K) = \{(x_0, y_0, z_0)\}$, partitions the edge set of $K_{2,2,2}$ into triangles with parts $\{x\} \times Z_2$, $\{y\} \times Z_2$, $\{z\} \times Z_2$.

The 4k + r Construction. Write 4k + r = 2(2k) + r, where $2k \ge 6$ and $r \in \{0, 1\}$. Let $S = \{1, 2, ..., 2k\}$, R be a set of size r, (S, \mathcal{G}, T) be a $\{3\}$ -GDD of the type 2^k (for $k \equiv 0, 1 \pmod{3}$) or $2^{k-2}4^1$ (for $k \equiv 2 \pmod{3}$), with groups $g_1 = \{1, 2\}, g_2 = \{3, 4\}, ..., g_k = \{2k - 1, 2k\}$ or $g_1 = \{1, 2, 3, 4\}, g_2 = \{5, 6\}, ..., g_{k-1} = \{2k - 1, 2k\}$, respectively. Set $X = R \cup (S \times Z_2)$ and define a collection K of kites as follows.

- (1) For every group $g \in \mathcal{G}$, let $(R \cup (g \times Z_2), K_g)$ be a 2-fold kite system of order 2|g| + r having a metamorphosis into a maximum packing with triangles with leave L_g (see Examples 3.1, 3.2, 3.3, and 3.4); put $K_g \subseteq K$.
- (2) For every $t = (x, y, z) \in T$, let $(K_{2,2,2}, K_t)$ be the kite system in Example 3.5; put $2K_t \subseteq K$.

Then (X, K) is a 2-fold kite system of order 4k + r. The metamorphosis is the following: for each group in \mathcal{G} use the metamorphosis in (1) and for each triple in T use the metamorphosis in (2); combine the leaves in (1) and (2) to obtain the leave L as the case may be.

- (a) The case of r = 0, $k \equiv 0, 1 \pmod{3}$ (and so $4k + r \equiv 0, 4 \pmod{6}$). $L_g = \emptyset$ for each $g \in \mathcal{G}$ and so the leave $L = \bigcup_{g \in \mathcal{G}} L_g$ is the empty set.
- (b) The case of r = 0, $k \equiv 2 \pmod{3}$ (and so $4k + r \equiv 2 \pmod{6}$). Each L_g is the empty set with one exception, a double edge, corresponding to the group of size 4 and so the leave $L = \bigcup_{g \in \mathcal{G}} L_g$ is a double edge.
- (c) The case of r = 1, $k \equiv 0, 1 \pmod{3}$ (and so $4k + r \equiv 1, 5 \pmod{6}$). Use the metamorphosis in (1) with leaves $\{\{1_0, 2_0\}, \{1_0, 2_0\}\}, \{\{3_0, 4_0\}\}, \ldots, \{\{(2k-1)_0, (2k)_0\}, \{(2k-1)_0, (2k)_0\}\}$. These leaves plus all edges of the triples (x_0, y_0, z_0) is a copy of $2K_{2k}$. Replace

these deleted edges with a maximum packing of $2K_{2k}$ with a leave L. The result is a maximum packing of $2K_{4k+1}$ with triangles with leave L.

(d) The case of r=1, $k\equiv 2\pmod 3$ (and so $4k+r\equiv 3\pmod 6$). Use the metamorphosis in (1) with leaves \emptyset , $\{\{5_0,6_0\},\{5_0,6_0\}\},\{\{7_0,8_0\}\},$ $\{7_0,8_0\}\},\ldots,\{\{(2k-1)_0,(2k)_0\},\{(2k-1)_0,(2k)_0\}\}$. These leaves plus all edges of the triples (x_0,y_0,z_0) is a copy of $2K_{2k}$ with a hole of size 4, $\{1_0,2_0,3_0,4_0\}$. Replace these deleted edges with a 2-fold triple system of order 2k with a hole of size 4 (see [1]). The result is a maximum packing of $2K_{4k+1}$ with triangles with leave $L=\emptyset$

Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of $2K_{4k+r}$ with triangles.

Lemma 3.1. There exists a 2-fold kite system of order n having a metamorphosis into a maximum packing of $2K_n$ with triangles for all $n \equiv 0, 1 \pmod{4}$.

4 3-fold kite systems

It is well known that the spectrum for 3-fold kite systems is the set of all $n \equiv 0, 1 \pmod{8}$ [3] and a maximum packing of $3K_n$ with triangles has leave [1]:

- (i) a 1-factor if $n \equiv 0 \pmod{6}$;
- (ii) the empty set if $n \equiv 1, 3, 5 \pmod{6}$;
- (iii) a graph on n vertices with (n+4)/2 edges and odd vertex degrees (see Figure 2) if $n \equiv 2 \pmod{6}$; and
- (iv) a tripole if $n \equiv 4 \pmod{6}$.

In this section we will show that for every admissible value of n there exists a 3-fold kite system of order n having a metamorphosis into a maximum packing of $3K_n$ with triangles with all possible leaves. To begin with, we will settle the case $n \equiv 0 \pmod{8} \equiv 2 \pmod{6}$.

Lemma 4.1. For every $n \equiv 0 \pmod{8} \equiv 2 \pmod{6}$ there exists a 3-fold kite system of order n having a metamorphosis into a maximum packing of $3K_n$ with triangles with all possible leaves.

Proof. Take three kite systems of order $n(X, K_1)$, (X, K_2) , and (X, K_3) , with $X = \{1, 2, ..., n\}$, having a metamorphosis into a maximum packing of K_n with triangles with leaves the 1-factors L_1 , L_2 , and L_3 , respectively (see Section 2). Then $(X, K_1 \cup K_2 \cup K_3)$ is a 3-fold kite system of order

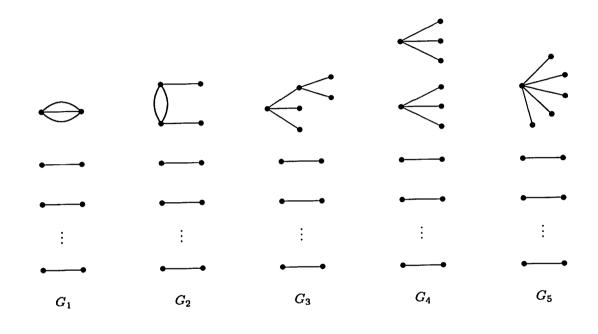


Figure 2: All possible graphs on n vertices with (n+4)/2 edges and odd vertex degrees

- n. The metamorphosis is the following: use the metamorphoses of (X, K_1) , (X, K_2) , and (X, K_3) with $L_1 \supseteq F_1 = \{\{1, 3\}, \{4, 6\}, \{7, 9\}, \dots, \{n-4, n-2\}\}, L_2 \supseteq F_2 = \{\{1, 2\}, \{4, 5\}, \{7, 8\}, \dots, \{n-4, n-3\}\}, \text{ and } L_3 \supseteq F_3 = \{\{3, 2\}, \{6, 5\}, \{9, 8\}, \dots, \{n-2, n-3\}\} \text{ and combine the edges of } F_1, F_2, \text{ and } F_3 \text{ to obtain } (n-2)/3 \text{ triangles, } (1, 2, 3), (4, 5, 6), \text{ and } (n-4, n-3, n-2).$ Rearrange the remaining edges of L_1 , L_2 , and L_3 as the case may be:
- (1) Let $\{n, n-1\} \in L_1$, $\{n, n-1\} \in L_2$, and $\{n, n-1\} \in L_3$. The result is a maximum packing of $3K_n$ with triangles with leave a 3-times repeated edge and (n-2)/2 disjoint edges.
- (2) Let $\{\{2, n-1\}, \{5, n\}\} \subseteq L_1$, $\{\{3, n-1\}, \{6, n\}\} \subseteq L_2$, and $\{\{1, n-1\}, \{4, n\}\} \subseteq L_3$; combine these edges into the two 3-stars, $\{\{n-1, 1\}, \{n-1, 2\}, \{n-1, 3\}\}$ and $\{\{n, 4\}, \{n, 5\}, \{n, 6\}\}$. The result is a maximum packing of $3K_n$ with triangles with leave two 3-stars and (n-8)/2 disjoint edges.
- (3) Without loss of generality suppose $(4,5,n-1) \in T_2(K_1)$. Let $\{\{2,n-1\},\{5,n\}\} \subseteq L_1, \{3,n-1\} \in L_2, \text{ and } \{\{1,n-1\},\{4,n\}\} \subseteq L_3; \text{ rearrange these edges along with the edges of } (4,5,n-1) into the triangle <math>(4,5,n)$ and the 5-star $\{\{n-1,1\},\{n-1,2\},\{n-1,3\},\{n-1,4\},\{n-1,5\}\}$. The result is a maximum packing of $3K_n$ with triangles with leave one 5-star and (n-6)/2 disjoint edges.
- (4) Let $\{\{2, n-1\}, \{5, n\}\}\subseteq L_1$, $\{\{3, n-1\}, \{6, n\}\}\subseteq L_2$, and $\{n, n-1\}\in L_3$. The result is a maximum packing of $3K_n$ with triangles with leave $\{n-1, 2\}$, $\{n-1, 3\}$, $\{n-1, n\}$, $\{n, 5\}$, $\{n, 6\}$ and (n-6)/2 disjoint edges.
- (5) Let $\{n, n-1\} \in L_1$, $\{n, n-1\} \in L_2$, and $\{\{1, n-1\}, \{4, n\}\} \subseteq L_3$. The result is a maximum packing of $3K_n$ with triangles with leave $\{n-1, n\}$, $\{n-1, n\}$, $\{4, n\}$, $\{1, n-1\}$ and (n-4)/2 disjoint edges. \square
- **Lemma 4.2.** For every $n \equiv 0, 1 \pmod{8}$ there exists a 3-fold kite system of order n having a metamorphosis into a maximum packing of $3K_n$ with triangles with all possible leaves.
- *Proof.* If $n \equiv 0 \pmod{8} \equiv 2 \pmod{6}$ the statement follows from Lemma 4.1. Let $n \equiv 0, 1 \pmod{8}$, $n \not\equiv 2 \pmod{6}$.
- Let (1) (X, K_1) be a kite system of order n having a metamorphosis into a maximum packing of K_n with triangles with leave L_1 and (2) (X, K_2) a 2-fold kite system of order n having a metamorphosis into a maximum packing of $2K_n$ with triangles with leave L_2 . Then $(X, K_1 \cup K_2)$ is 3-fold kite system of order n. The metamorphosis is the following: use the metamorphosis in (1) and (2) and combine the leaves L_1 and L_2 to obtain the leave L as the case may be.
 - (a) The case of $n \equiv 0 \pmod{6}$. L_1 is a 1-factor and $L_2 = \emptyset$. The leave is $L = L_1 \cup L_2$, a 1-factor.

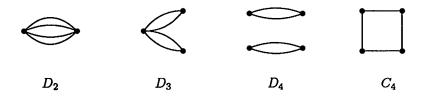


Figure 3: all possible graphs with 4 edges and even vertex degrees.

- (b) The case of $n \equiv 1, 3 \pmod{6}$. $L_1 = L_2 = \emptyset$ and so the leave $L = L_1 \cup L_2$ is the empty set.
- (d) The case of $n \equiv 4 \pmod{6}$. L_1 is a tripole and $L_2 = \emptyset$. The leave is $L = L_1 \cup L_2$, a tripole.
- (e) The case of $n \equiv 5 \pmod{6}$. Use the metamorphosis in (1) with leave the 4-cycle $L_1 = (a, b, c, d)$ and use the metamorphosis in (2) with leave $L_2 = \{\{a, c\}, \{a, c\}\}\}$. Reassemble the edges belonging to L_1 and L_2 into the 2 triangles (a, b, c) and (a, c, d). The result is a maximum packing of $3K_n$ with leave $L = \emptyset$.

Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of $3K_n$ with triangles.

5 4-fold kite systems

It is well known that the spectrum for 4-fold kite systems is the set of all integers $n \ge 4$ [3] and a maximum packing of $4K_n$ with triangles has leave [1]:

- (i) the empty set if $n \equiv 0, 1, 3, 4 \pmod{6}$; and
- (ii) a graph with 4 edges and even vertex degrees (see Figure 3) if $n \equiv 2, 5 \pmod{6}$.

In this section we will show that for every $n \ge 4$ there exists a 4-fold kite system of order n having a metamorphosis into a maximum packing of $4K_n$ with triangles with all possible leaves.

To begin with, we will handle the case $n \equiv 0, 1 \pmod{4}$.

Example 5.1. (n=5, with leave a 4-cycle). Let (Z_5, K) be the kite system where $K = \{(2+i, 3+i, i)-(1+i), (4+i, 3+i, i)-(2+i) | i \in Z_5\}$. E(K) is a copy of K_5 . Replace these deleted edges with a maximum packing of K_5 with triangles with leave a 4-cycle (see Section 2). The result is a maximum packing of $4K_5$ with triangles with leave a 4-cycle.

Example 5.2. (n=8, with leave a 4-cycle). Let (X,K) be the 2-fold kite system of order 8 of Example 3.3 and (X,K') be a 2-fold kite system of order 8 having a metamorphosis into a maximum packing with triangles with leave $\{\{2,3\},\{2,3\}\}$. Then $(X,K\cup K')$ is a 4-fold kite system of order 8. The metamorphosis is the following: use the metamorphoses of (X,K) and (X,K'). Since the triangle $(1,3,4)\in T_2(K)$, its edges can be used in a rearrangement and so combine them with the leaves $\{\{1,2\},\{1,2\}\}$ and $\{\{2,3\},\{2,3\}\}$ and reassemble these deleted edges into the triangle (1,2,3) and the 4-cycle (1,2,3,4).

Lemma 5.1. There exists a 4-fold kite system of every order $n \equiv 0, 1 \pmod{4}$ having a metamorphosis into a maximum packing of $4K_n$ with triangles with all possible leaves.

Proof. As was pointed out in Section 3, the spectrum for 2-fold kite systems having metamorphoses into maximum packings of $2K_n$ with triangles is the set of all $n \equiv 0, 1 \pmod{4}$. So let (X, K) and (X, K') be two such systems of order n. Then $(X, K \cup K')$ is a 4-fold kite system of order n. Clearly, if $(X, T_1(K) \cup T_2(K), L)$ and $(X, T_1(K') \cup T_2(K'), L')$ are metamorphoses of (X, K) and (X, K'), respectively, into maximum packings of $2K_n$ with triangles, then $(X, T_1(K \cup K') \cup T_2(K \cup K'), L \cup L')$, is a metamorphosis of $(X, K \cup K')$ into a maximum packing of $4K_n$ with triangles, where $T_2(K \cup K') = T_2(K) \cup T_2(K')$. If $n \equiv 0, 1, 3, 4 \pmod{6}$, $L = L' = \emptyset$ and so $L \cup L' = \emptyset$. If $n \equiv 2, 5 \pmod{6}$, L and L' are isomorphic to $2K_2$ (a double edge) and there are three possibilities: L = L'; L and L' have one point in common; L and L' have no point in common. It follows that $L \cup L'$ is isomorphic to D_2 , D_3 , or D_4 , respectively (see Figure 3). There are four possible leaves for a 4-fold kite system of order $n \equiv 2, 5 \pmod{6}$; the fourth is a 4-cycle. The following is a solution for a 4-cycle. For n=5and n = 8 see Examples 5.1 and 5.2. For $n \equiv 2, 5 \pmod{6} \ge 17$ use the 4k + r Construction (see Section 3) to obtain (X, K) and (X, K') with the metamorphoses $(X, T_1(K) \cup T_2(K), L)$ and $(X, T_1(K') \cup T_2(K'), L')$, respectively, where $L = \{\{1_0, 2_0\}, \{1_0, 2_0\}\}, L' = \{\{1_0, 3_0\}, \{1_0, 3_0\}\}, \text{ and }$ $(2_0,3_0,z_0)\in T_2(K)$. The edges of $(2_0,3_0,z_0)$ can be used in a rearrangement; so combine them with the leaves L and L' and reassemble these deleted edges into the triangle $(1_0, 2_0, 3_0)$ and the 4-cycle $(1_0, 2_0, z_0, 3_0)$. \square We will now handle the case $n \equiv 2, 3 \pmod{4}$. The following examples take

care of the cases n = 6, n = 7, n = 10, and n = 11.

Example 5.3. (n=6). Let $(\{\infty\} \cup Z_5, K)$ be the 4-fold kite system where $K = \{(i, 2+i, \infty)-(i+1), (1+i, 2+i, i)-\infty, (2+i, 4+i, i)-(i+1) | i \in Z_5\}$. Then $(X, T_1(K) \cup T_2(K))$ is a 4-fold triple system of order 6, where $T_2(K) = \{(i, 1+i, \infty) | i \in Z_5\}$.

Example 5.4. (n=7). Let (Z_7, K) be the 4-fold kite system where $K = \{(i, 1+i, 3+i)-(i+6), (i, 1+i, 3+i)-(i+5)(2+i, 3+i, 5+i)-(i+6) | i \in Z_7\}$. Then $(X, T_1(K) \cup T_2(K))$ is a 4-fold triple system of order 7, where $T_2(K) = \{(i, 2+i, 3+i) | i \in Z_7\}$.

Example 5.5. (n=10). Let $(\{\infty\} \cup Z_9, K)$ be the 4-fold kite system where $K = \{(i, 4+i, \infty) - (1+i), (4+i, 6+i, i) - \infty, (3+i, 5+i, 1+i) - i, (4+i, 1+i, i) - (3+i), (2+i, 1+i, i) - (3+i), |i \in Z_9\}$. Then $(X, T_1(K) \cup T_2(K))$ is a 4-fold triple system of order 10, where $T_2(K) = \{(i, 1+i, \infty) | i \in Z_5\} \cup (2\{(0, 3, 6), (1, 4, 7), (2, 5, 8)\})$.

Example 5.6. (n=11, with all possible leaves). Let $S = \{x_0, x_1, x_2, x_3, x_4\}$ and $X = S \cup Z_5 \cup \{\infty\}$. Define a collection K of kites as follows.

- (1) Let (S, K') be a 4-fold kite system of order 5 having a metamorphosis into a maximum packing with triangles (see Example 5.1 and Lemma 5.1); put $K' \subseteq K$.
- (2) For every $i \in Z_5$ set $K_i = \{(i-1,i+1,x_i)-\infty, (i-2,i+2,x_i)-(i+1), (x_i,i,\infty)-(i+1), (\infty,i,x_i)-(i+2), (i-1,i+1,x_i)-i, (x_i,i-2,i+2)-i, (\infty,i,x_i)-(i-2), (i-2,i+2,x_i)-(i-1), (x_i,i+1,i-1)-(i-2)\}$ with arithmetic modulo 5; put $K_i \subseteq K$.

Then (X, K) is a 4-fold kite system of order 11. The metamorphosis is the following: use the metamorphosis in (1) with leave L; for every $i \in Z_5$, delete the tail from each kite in K_i and reassemble them into the triangles $(\infty, i+1, x_i)$, $(i, i+2, x_i)$, and $(i-1, i-2, x_i)$. The result is a maximum packing of $4K_{11}$ with triangles with leave L.

In order to handle the remaining cases we need the following examples. In what follows a *hole* is a set of vertices H with all edges between any two vertices in H removed.

Example 5.7. (A 4-fold kite system of order 6 with a hole of size 2 having a metamorphosis into a packing of $4(K_6 \setminus K_2)$ with triangles with leave a double edge). Let $K = \{(1, 2, a) - 3, (2, 3, a) - 1, (0, 3, a) - 2, (a, 1, 0) - b, (a, 1, 2) - 3, (a, 0, 3) - b, (b, 0, 1) - 3, (1, 3, b) - 2, (b, 3, 2) - 0, (b, 2, 0) - a, (b, 3, 1) - 2, (b, 2, 0) - 3, (0, 1, 2) - 3, (0, 3, 1) - b\}. Then <math>(X, K)$ is a 4-fold kite system of order 6 with hole $\{a, b\}$ and $(X, T_1(K) \cup T_2(K), L)$ is a packing of $4(K_6 \setminus K_2)$ with triangles, where $T_2(K) = \{(a, 1, 2), (a, 0, 3), (b, 0, 2), (b, 1, 3)\}$ and $L = \{\{2, 3\}, \{2, 3\}\}$.

Example 5.8. (A 4-fold kite system of order 7 with a hole of size 3 having a metamorphosis into a packing of $4(K_7 \setminus K_3)$ with triangles with leave the empty set). Let $K = \{(a,4,3)-1, (a,4,2)-b, (a,3,2)-c, (a,1,2)-4, (a,3,1)-b, (a,4,1)-c, (b,4,3)-a, (b,2,4)-1, (b,2,3)-c, (b,2,1)-a, (b,2,3)-c, (b,2,1)-a, (b,2,3)-c, (b,2,3)-c, (b,2,3)-c, (b,2,3)-c, (b,2,3)-c, (b,2,3)-c, (b,2,3)-c, (b,3,3)-c, (b,3,3)-c,$

(b, 1, 3)-2, (b, 1, 4)-c, (c, 3, 4)-a, (c, 2, 4)-b, (c, 2, 3)-4, (c, 1, 2)-a, (c, 1, 3)-b, (c, 4, 1)-2}. Then (X, K) is a 4-fold kite system of order 7 with hole $\{a, b, c\}$ and $T_1(K) \cup T_2(K)$ is a decomposition of $4(K_7 \setminus K_3)$ into triangles, where $T_2(K) = \{(a, 3, 4), (a, 1, 2), (b, 2, 4), (c, 2, 3), (b, 1, 3), (c, 1, 4)\}.$

The 4k+s Construction. Write 4k + s = 2(2k) + s, where $2k \ge 6$ and $s \in \{2,3\}$. Let $S = \{1,2,\ldots,2k\}$, R a set of size s, and (S,\mathcal{G},T) a $\{3\}$ -GDD of the type 2^k (for $k \equiv 0, 1 \pmod{3}$) or $2^{k-2}4^1$ (for $k \equiv 2 \pmod{3}$), with groups $g_1 = \{1,2\}, g_2 = \{3,4\}, \ldots, g_k = \{2k-1,2k\}$ or $g_1 = \{1,2,3,4\}, g_2 = \{5,6\}, \ldots, g_{k-1} = \{2k-1,2k\}$, respectively. Set $X = R \cup (S \times Z_2)$ and define a collection K of kites as follows.

- (1) Let $(R \cup (g_1 \times Z_2), K_{g_1})$ be a 4-fold kite system of order $2|g_1| + s$ having a metamorphosis into a maximum packing with triangles with leave L_{g_1} (see Examples 5.3, 5.4, 5.5, and 5.6); put $K_{g_1} \subseteq K$.
- (2) For every group $g \in \mathcal{G} \setminus \{g_1\}$, let $(R \cup (g \times Z_2), K_g)$ be a 4-fold kite system of order 2|g| + s with a hole of size s having a metamorphosis into a packing of $4(K_{2|g|+s} \setminus K_s)$ with triangles with leave L_g (see Examples 5.7 and 5.8); put $K_g \subseteq K$.
- (3) For every $t = (x, y, z) \in T$, let (S_t, K_t) be the $K_{2,2,2}$ kite system of Example 3.5; put $4K_t \subseteq K$.

Then (X, K) is a 4-fold kite system of order 4k + s. The metamorphosis is the following: for the group g_1 use the metamorphosis in (1); for each group in $\mathcal{G} \setminus \{g_1\}$ use the metamorphosis in (2); for each triple in T use the metamorphosis in (3); and combine the leaves in (1), (2), and (3) to obtain the leave L as the case may be.

(a) The case of s=2, $k\equiv 0,1$ (mod 3) (and so $4k+s\equiv 2,0$ (mod 6)). $L_{g_1}=\emptyset$ (see Example 5.3); use the metamorphosis in (2) with leaves $\{\{3_0,4_0\},\{3_0,4_0\}\},\{\{5_0,6_0\},\{5_0,6_0\}\},\ldots,\{\{(2k-1)_0,(2k)_0\},\{(2k-1)_0,(2k)_0\}\}$. These leaves plus all edges of $2(x_0,y_0,z_0)$ for each $(x,y,z)\in T$ is a copy of $2K_{2k}$ with a hole of size 2, $\{1_0,2_0\}$; replace these deleted edges with a packing of $2(K_{2k}\setminus K_2)$ with triangles with leave L. More precisely, if $k\equiv 0$ (mod 3), take a decomposition $(S\times\{0\},T')$ of $2K_{2k}$ into triangles (for the existence see Section 3) such that $\{\{1_0,2_0,z_0\},\{1_0,2_0,z_0'\}\}\in T'$, with $z_0\neq z_0'$, and delete the double edge $\{\{1_0,2_0\},\{1_0,2_0\}\}$; the leave is a 4-cycle $L=(1_0,z_0,2_0,z_0')$. If $k\equiv 1\pmod{3}$, take a decomposition of $2K_{2k}$ into triangles with leave $\{\{1_0,2_0\},\{1_0,2_0\}\}$; the result is a decomposition of $2(K_{2k}\setminus K_2)$ into triangles with leave $L=\emptyset$.

- (b) The case of s = 2, $k \equiv 2 \pmod{3}$ (and so $4k + s \equiv 4 \pmod{6}$). $L_{g_1} = \emptyset$ (see Example 5.5); use the metamorphosis in (2) with leaves $\{\{5_0, 6_0\}, \{5_0, 6_0\}\}, \{\{7_0, 8_0\}, \{7_0, 8_0\}\}, \dots, \{\{(2k-1)_0, (2k)_0\}, \{(2k-1)_0, (2k)_0\}\}$. These leaves plus all edges of $2(x_0, y_0, z_0)$ for each $(x, y, z) \in T$ is a copy of $2K_{2k}$ with a hole of size 4, $\{1_0, 2_0, 3_0, 4_0\}$. Replace these deleted edges with a packing of $2(K_{2k} \setminus K_4)$ with triangles with leave $L = \emptyset$ (see [1]).
- (c) The case of s = 3, $k \equiv 0, 1 \pmod{3}$ (and so $4k + s \equiv 3, 1 \pmod{6}$). $L_{g_1} = \emptyset$ (see Example 5.4) and $L_g = \emptyset$ for each group in $\mathcal{G} \setminus \{g_1\}$ (see Example 5.8) and so $L = \emptyset$.
- (d) The case of s=3, $k\equiv 2 \pmod 3$ (and so $4k+s\equiv 5 \pmod 6$). $L_g=\emptyset$ for each group in $\mathcal{G}\setminus\{g_1\}$ (see Example 5.8) and so $L=L_{g_1}$ (C_4 or D_i , $i\in\{2,3,4\}$; see Example 5.6).

Then $(X, T_1(K) \cup T_2(K), L)$ is a maximum packing of $4K_{4k+s}$ with triangles. Remark. Note that in the above construction in the case when s = 2 and

 $k \equiv 0 \pmod{3}$, we constructed a 4-fold kite system having a metamorphosis into a maximum packing with triangles with leave a 4-cycle. In this case there are other three possible leaves. In order to give a solution for the remaining leaves, we need the following example.

Example 5.9. (n=14, with all possible leaves). For a 4-cycle see previous remark. In order to obtain a solution for the remaining possible leaves we need the following partial kite systems.

- (a) A partial kite system of order 14 with leave a 1-factor, having a metamorphosis into a partial triple system. Let (X_1, K_1) be the partial kite system where $K_1 = \{(9, 11, 1)-2, (10, 14, 1)-4\}, (12, 13, 1)-3, (8, 11, 2)-3, (10, 12, 2)-5, (13, 14, 2)-4, (8, 14, 3)-4, (9, 12, 3)-6, (11, 13, 3)-5, (8, 9, 4)-5, (10, 13, 4)-7, (12, 14, 4)-6, (8, 13, 5)-6, (9, 10, 5)-1, (11, 14, 5)-7, (8, 12, 6)-7, (9, 14, 6)-2, (10, 11, 6)-1, (8, 10, 7)-1, (9, 13, 7)-3, (11, 12, 7)-2\}. <math>K_1$ is a decomposition of $K_{14} \setminus L_1$ into kites, where $L_1 = \{\{1, 8\}, \{2, 9\}, \{3, 10\}, \{4, 11\}, \{5, 12\}, \{6, 13\}, \{7, 14\}\}$. Then $(X, T_1(K_1) \cup T_2(K_1))$ is a decomposition of $K_{14} \setminus L_1$ into triangles, where $T_2(K_1) = \{(1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7), (5, 6, 1), (6, 7, 2), (7, 1, 3)\}$.
- (b) A partial kite system (Z_{13}, K_2) with leave two triangles with one vertex in common, having a metamorphosis into a triple system. Let $K_2 = \{(4+i, 1+i, i)-(6+i), (10+i, 7+i, 6+i)-(8+i), (7+i, 2+i, i)-(8+i) | 0 \le i \le 5\}$. K_2 is a decomposition of $K_{13} \setminus L_2$ with

vertex set Z_{13} into kites, where $L_2 = \{(6,1,12),(0,3,12)\}$. Then $(X,T_1(K_2) \cup T_2(K_2))$ is a decomposition of $K_{13} \setminus L_2$ into triangles, where $T_2(K_2) = \{(i,6+i,8+i) | 0 \le i \le 5\}$.

Set $X = {\infty} \cup Z_{13}$ and define a collection K of kites as follows.

- (1) Let $(\{\infty\} \cup Z_{13}, K'_1)$ be a partial kite system of order 14 with leave $L'_1 = \{\{2i, 1+2i\} \mid 0 \le i \le 5\} \cup \{12, \infty\}$, having a metamorphosis into a partial triple system (see (a)); put $K'_1 \subseteq K$.
- (2) Let (Z_{13}, K'_2) be a partial kite system of order 13 with leave $L_2 = \{(0, 2, 12), (1, 3, 12)\}$, having a metamorphosis into a triple system (see (b)); put $K'_1 \subseteq K$.
- (3) Put $K_3' = \{(4+2i, 5+2i, \infty)-i \mid 0 \le i \le 3\} \cup \{(2, 12, 0)-1, (1, 12, 3)-2\} \subseteq K$.

Then (X,K) is a 2-fold partial kite system of order 14 having a metamorphosis into a packing of $2K_{14}$ with triangles with leave $\{\{12,\infty\},\{12,\infty\}\}$. The metamorphosis is the following: use the metamorphoses in (1) and (2); delete the tail from each kite in K_3' and reasseble them into the triangles $(0,1,\infty),\ (2,3,\infty)$. In order to obtain a 4-fold kite system of order 14 with metamorphosis, let (X,K') be a 2-fold partial kite system of order 14 having a metamorphosis into a packing of $2K_{14}$ with triangles with leave a double edge $\{\{a,b\},\{a,b\}\}$. Then $(X,K\cup K')$ is a 4-fold kite system of order 14 having a metamorphosis into a maximum packing of $4K_{14}$ with triangles with leave $L=\{\{12,\infty\},\{12,\infty\},\{a,b\}\}$. L is isomorphic to D_2, D_3, D_4 , if $|\{12,\infty\}\cap \{a,b\}|=2$, $|\{12,\infty\}\cap \{a,b\}|=1$, and $|\{12,\infty\}\cap \{a,b\}|=0$, respectively.

With Example 5.9 in hand we can give a construction which completes the case n = 4k + 2 for $k \equiv 0 \pmod{3}$, $k \geq 3$. The main ingredient we will need in this construction is a $\{3\}$ -GDD of the type $2^{3(k-1)}6^1$. Since such a $\{3\}$ -GDD exists if and only if $k \geq 3$ (see [1]), we will give a direct construction for n = 26. The 12k + 2 Construction. Let $S = \{1, 2, ..., 6k\}$,

 $k \geq 3$, R a set of size 2, and (S, \mathcal{G}, T) a $\{3\}$ -GDD of the type $6^1 2^{3(k-1)}$, with groups $g_1, g_2, \ldots, g_{3(k-1)}, g_1 = \{1_0, 2_0, 3_0, 4_0, 5_0, 6_0\}$. Set $X = R \cup (S \times Z_2)$ and define a collection K of kites as follows.

- (1) Let $(R \cup (g_1 \times Z_2), K_{g_1})$ be a 4-fold kite system of order 14 having a metamorphosis into a maximum packing with triangles with leave L (see Example 5.9); put $K_{g_1} \subseteq K$.
- (2) The same as (2) in the 4k + s Construction for s = 2.

(3) The same as (3) in the 4k + s Construction.

Then (X,K) is a 4-fold kite system of order 12k+2. The metamorphosis is the following: for the group g_1 use the metamorphosis in (1): for each group in $\mathcal{G}\setminus\{g_1\}$ use the metamorphosis in (2) with leaves $\{\{7_0,8_0\},\{7_0,8_0\}\},\ldots,\{\{(6k-1)_0,(6k)_0\},\{(6k-1)_0,(6k)_0\}\}$; for each triple in T use the metamorphosis in (3). The leaves in (2) plus all edges of $2(x_0,y_0,z_0)$ for each $(x,y,z)\in T$ is a copy of $2K_{6k}$ with a hole of size 6, $\{1_0,2_0,3_0,4_0,5_0,6_0\}$. Replace these edges with a packing of $2(K_{6k}\setminus K_6)$ with triangles with leave the empty set (see [1]). Then $(X,T_1(K)\cup T_2(K),L)$ is a maximum packing of $4K_{12k+2}$ with triangles with all possible leaves. In order to handle the

case n = 26, we need the following example.

Example 5.10. (A 4-fold kite system of order 6 with two holes of size 2, H_1 , H_2 , having a metamorphosis into a packing of $4(K_6 \setminus (H_1 \cup H_2))$ with triangles with D_i , $i \in \{2,3,4\}$, as leave). Let $S_{\alpha} = t_{\alpha} \times Z_2$, where $t_{\alpha} = (\alpha, y, z)$. Set $K = \{(\alpha_0, y_0, z_0) - \alpha_1, (y_0, z_1, \alpha_1) - y_1, (\alpha_1, z_1, y_1) - z_0\}$ and $K' = \{(\alpha_0, y_0, z_0) - \alpha_1, (y_0, z_1, \alpha_1) - \alpha_0, (y_0, z_0, \alpha_1) - \alpha_0, (y_0, z_1, \alpha_0) - z_0, (\alpha_0, z_1, y_1) - \alpha_1\}$ and define three collections of kites with vertices in S_{α} as follows.

- (1) $K_1 = 2K \cup \{(\alpha_1, y_0, z_0) \alpha_0, (y_0, z_1, \alpha_0) y_1, (\alpha_0, z_1, y_1) z_0, (y_0, z_0, \alpha_1) \alpha_0, (y_0, z_1, \alpha_0) \alpha_1, (y_1, z_1, \alpha_0) \alpha_1, (y_1, z_0, \alpha_0) \alpha_1\}.$
- (2) $K_2 = K' \cup \{(y_0, z_0, \alpha_0) \alpha_1, (y_0, z_1, \alpha_1) \alpha_0, (\alpha_1, z_1, y_1) z_0, (y_0, \alpha_1, z_0) y_1, (y_0, z_1, \alpha_0) y_1, (\alpha_0, z_1, y_1) z_0, (\alpha_1, y_1, z_0) \alpha_0\}.$
- (3) $K_3 = K' \cup \{(y_0, z_0, \alpha_0) \alpha_1, (y_0, \alpha_1, z_1) y_1, (z_0, y_1, \alpha_1) z_1, (y_0, \alpha_1, z_0) y_1, (y_0, \alpha_0, z_1) y_1, (z_0, y_1, \alpha_0) z_1, (\alpha_1, \alpha_0, y_1) z_0\}.$

For every i = 1, 2, 3, K_i is a partition of $4(K_6 \setminus (H_1 \cup H_2))$, where K_6 is the complete graph with vertex set S_{α} , $H_1 = \{y_0, y_1\}$, and $H_2 = \{z_0, z_1\}$.

For $i \in \{1,2,3\}$, delete the tail from each of the kites of K_i and reassemble them into a collection of triangles with leave L_i as the case may be. Note that the tails of the kites in K and K' can be reassembled into $T = \{(\alpha_1, y_1, z_0)\}$ and $T' = \{(\alpha_1, \alpha_0, y_1), (\alpha_1, \alpha_0, z_0)\}$, respectively.

- (1) (S_{α}, K_1) admits the metamorphosis $(S_{\alpha}, T_1(K_1) \cup T_2(K_1), L_1)$, where $T_2(K_1) = 2T \cup \{(\alpha_0, y_1, z_0)\}$ and $L_1 = 4\{\{\alpha_0, \alpha_1\}\}$.
- (2) (S_{α}, K_2) admits the metamorphosis $(S_{\alpha}, T_1(K_2) \cup T_2(K_2), L_2)$, where $T_2(K_2) = T' \cup \{(\alpha_0, y_1, z_0)\}$ and $L_2 = 2\{\{\alpha_0, \alpha_1\}, \{z_0, y_1\}\}$.
- (2) (S_{α}, K_3) admits the metamorphosis $(S_{\alpha}, T_1(K_3) \cup T_2(K_3), L_3)$, where $T_2(K_3) = T' \cup \{(\alpha_0, \alpha_1, z_1)\}$ and $L_3 = 2\{\{y_1, z_0\}, \{y_1, z_1\}\}$.

n = 26, with all possible leaves. For leave a 4-cycle see the 4k + s Construction. Let (S,T) be a STS(13) having an almost parallel class C which partitions $S \setminus \{\alpha\}$. Set $X = S \times Z_2$ and define a collection K of kites as follows.

λ (mod 12)	order n
0,4,8	any $n \ge 4$
1,3,5,7,9,11	0,1 (mod 8)
2,6,10	0,1 (mod 4)

Table 1: necessary and sufficient conditions for the existence of a λ -fold kite system.

- (1) Fix a triple $t_{\alpha} = (\alpha, y, z) \in T$. Let (S_{α}, K_i) be one of the three 4-fold partial kite systems of Example 5.10 with leave L_i , $i \in \{1, 2, 3\}$; put $K_i \subseteq K$.
- (2) For every $t \in T \setminus C$, $t \neq t_{\alpha}$, let $(t \times Z_2, K_t)$ be a $K_{2,2,2}$ kite system of order 6 having a metamorphosis into a packing of $K_{2,2,2}$ with triangles with leave the empty set (see Example 3.5); put $4K_t \subseteq K$.
- (3) For every $t \in C$, let $(t \times Z_2, K_t)$ be a 4-fold kite system of order 6 having a metamorphosis into a packing of $4K_6$ with triangles with leave the empty set (see Example 5.3); put $K_t \subseteq K$.

Then (X, K) is a 4-fold kite system of order 26. Use the metamorphoses in (1), (2), and (3). The result is maximum packing of $4K_{26}$ with triangles with leave L_i , $i \in \{1, 2, 3\}$.

Lemma 5.2. There exists a 4-fold kite system of every order $n \ge 4$ having a metamorphosis into a maximum packing of $4K_n$ with triangles with all possible leaves.

6 λ -fold kite systems, $5 \le \lambda \le 12$

Table 1 gives the necessary and sufficient conditions for the existence of a λ -fold kite system (see [3]), while Table 2 shows the leaves of maximum packings of λK_n with triangles (see [1]).

In order to give a solution for $5 \le \lambda \le 11$ we need the following definition. Two collections of graphs H_1 and H_2 are said to be balanced provided they contain exactly the same edges.

Let F_n be a 1-factor of K_n containing the edges $\{a,d\}, \{b,c\}, T_n = \{\{a,b\}, \{a,c\}, \{a,d\}\} \cup (F_n \setminus \{\{a,d\}, \{b,c\}\}), D_3 = \{\{a,b\}, \{a,b\}, \{a,c\}, \{a,c\}\},$ and $E = \{\{b,c\}, \{b,c\}\}.$ The following collections of graphs are balanced: $A_1 = D_3 \cup F_n$ and $A_2 = \{(a,b,c)\} \cup T_n$; $B_1 = E \cup D_3$ and $B_2 = \{(a,b,c), (a,b,c)\}$; $C_1 = D_3 \cup 2E$ and $C_2 = \{(a,b,c), (a,b,c)\} \cup E$.

		n (mod 6)								
	0	1	2	3	4	5				
$\lambda = 1$		1-factor	Ø	1-factor	Ø	tripole	4-cycle			
$\lambda > 1 \pmod{6}$	0	Ø	Ø	Ø	Ø	Ø	Ø			
	1	1-factor	Ø	1-factor	Ø	tripole	D			
	2	Ø	Ø	double edge	Ø	Ø	double edge			
	3	1-factor	Ø	G	Ø	tripole	Ø			
	4	Ø	Ø	D	Ø	Ø	D			
	5	1-factor	Ø	tripole	Ø	tripole	double edge			

Table 2: leaves of maximum packings of λK_n with triangles. (G is a graph on n vertices with (n+4)/2 edges and odd vertex degrees; D is a graph with 4 edges and even vertex degrees.)

To obtain solutions for $5 \le \lambda \le 11$ it is sufficient to combine a λ_1 -fold kite system having a metamorphosis with leave L_1 and a λ_2 -fold kite system having a metamorphosis with leave L_2 (for suitable values of λ_1 and λ_2) and replace L_1 and L_2 with a balanced collection of graphs where it is necessary (see Table 3).

To obtain solutions for $\lambda = 12$ combine three copies of a 4-fold kite system with leaves $\{\{a,b\},\{a,b\},\{a,b\},\{a,b\}\},\{\{a,c\},\{a,c\},\{a,c\},\{a,c\}\},$ and $\{\{b,c\},\{b,c\},\{b,c\},\{b,c\}\},$ respectively, and replace these leaves with $\{(a,b,c),(a,b,c),(a,b,c),(a,b,c)\}.$

7 Concluding remarks

Let $\lambda \equiv 1 \pmod{6}$, $\lambda \geq 13$. Write $\lambda = 6k + 7$ and combine k copies of a 6-fold kite system having a metamorphosis with a 7-fold kite system having a metamorphosis. For any value of $\lambda = 12k + h$ where $0 \leq h \leq 11$, $h \neq 1, 7$, combine k copies of a 12-fold kite system having a metamorphosis with a h-fold kite system having a metamorphosis.

Theorem 7.1. For every λ and for every admissible value of n there exists a λ -fold kite system of order n having a metamorphosis into a maximum packing of λK_n with triangles with all possible leaves.

		λ_1	λ_2	L_1	L_2	$L_1 \cup L_2$	leave
$\lambda = 5$	$n \equiv 0 \pmod{6}$	1	4	F_n	Ø	F_n	F_n
	$n \equiv 1, 3 \pmod{6}$	1	4	Ø	Ø	Ø	Ø
	$n \equiv 4 \pmod{6}$	1	4	T_n	Ø	T_n	T_n
	$n \equiv 2 \pmod{6}$	1	4	F_n	D_3	$A_1 \rightarrow A_2$	T_n
	$n \equiv 5 \pmod{6}$	2	3	E	Ø	E	\overline{E}
$\lambda = 6$		2	4	Ø	Ø	Ø	Ø
	$n \equiv 2, 5 \pmod{6}$	2	4	\overline{E}	D_3	$B_1 \rightarrow B_2$	Ø
$\lambda = 7$	$n \equiv 5 \pmod{6}$	3	4	Ø	D	D	D
	$n \equiv 0, 1, 2, 3, 4 \pmod{6}$	1	6	L	Ø	L	L
$\lambda = 8$	$n \equiv 0, 1, 3, 4 \pmod{6}$	4	4	0	Ø	Ø	Ø
	$n \equiv 2, 5 \pmod{6}$	4	4	D_3	2E	$C_1 \rightarrow C_2$	E
$\lambda = 9$		3	6	L	Ø	L	L
$\lambda = 10$		4	6	L	Ø	L	L
$\lambda = 11$		5	6	L	Ø	L	L

Table 3: $\lambda = 5, 6, 7, 8, 9, 10, 11$.

References

- [1] C. J. Colbourn and A. Rosa, *Triple Systems* (Clarendon Press, Oxford, 1999).
- [2] E. J. Billington and C. C. Lindner, The metamorphosis of λ -fold 4-wheel systems into λ -fold 4-cycle systems, *Utilitas Math.* **59** (2001), 215–235.
- [3] S. Küçükçifçi and C. C. Lindner, The metamorphosis of λ -fold block designs with block size four into λ -fold kite systems, J. Combin. Math. Combin. Comput. 40 (2002), 241-252.
- [4] C. C. Lindner and C. A. Rodger, Design Theory (CRC Press, 1997).
- [5] C. C. Lindner and A. Rosa, The metamorphosis of λ -fold block designs with block size four into λ -fold triple systems, J. Statist. Plann. Inf. 106 (2002), 69-76.
- [6] C. C. Lindner and Anne Street, The metamorphosis of λ -fold block designs with block size four into λ -fold 4-cycle systems, *Bull. ICA* 28 (2000), 7–18.
- [7] C. C. Lindner and A. Rosa, The metamorphosis of block designs with block size four into $K_4 \setminus e$ systems, *Utilitas Math.* 61 (2002), 33-46.