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Abstract

In 1966, Wagner used computational search methods to construct
a [23,14,5] code. This code has been examined with much interest
since that time, in hopes of finding a geometric construction and
possible code extensions. In this article, we give a simple geomet-
ric construction for Wagner’s code and consider extensions of this
construction.

1 Introduction

In the early 1960’s, T.J. Wagner [14] developed a search mechanism which
produced several new, sporadic codes. One of these codes had parameters
[23, 14, 5], and it is the subject of the current paper. Since Wagner’s work
appeared, a number of questions have been raised about this particular
code: can a simple construction be given?; is it unique?; does it belong to
a family of codes?

MacWilliams and Sloane first [12] formally studied the [23, 14, 5] code
and in their Research Problem 18.3 asked for a simple construction. As far
as we know, this problem has been open until the present article. In [3),
Brouwer et al. give the weight distribution of certain cosets of the code.
Simonis, in 2000 [13] proved that the code is unique as a consequence of his
proof that the [24, 14, 6] code is unique.

In section 2 of this paper, we introduce the concept of a skew arc and
give some examples. In section 3, we describe the relationships between
skew arcs in PG(m,2) and binary linear codes. In section 4, we present
several recursive constructions for skew arcs. Two of these constructions
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(Theorem 3 and Corollary 4) are similar to those given by Chen in [8];
Chen’s construction was analyzed in [1]. Finally, in section 5, we use the
constructions from section 4 along with information concerning BCH codes
(12] to construct Wagner’s [23, 14, 5] code.

2 Skew arcs

Let PG(m,2) denote the projective geometry of dimension m over a finite
field with 2 elements [11]. An arc in PG(m,2) is a set of points which
contains no line. The connection between arcs and binary linear codes of
minimum distance 4 has been studied by several authors [10] [4] etc. Our
approach to the problem of codes with minimum distance 5 is similar.

Definition 1 We define a skew arc S to be a set of points in PG(m,2)
such that:

1. S contains no lines.

2. Given any four distinct points of S, say s;, 59,53 and s4, the third
point on the line containing s; and s; is not on the line containing s3
and sq4.

These two conditions also ensure that there are no more than 3 points
of a skew arc on any plane. All lines in PG(m,2) have 3 points and all sub-
spaces of dimension two are Fano planes. In the Fano plane, the maximum
number of points that can satisfy the conditions of a skew arc is 3. We call
4 points that satisfy condition 1 but not condition 2 of the above definition
a planar quadrangle.

Definition 2 Given a skew arc S, we define the set § = {s| 3 51, 52 € S,
{s, s1, 82} is a line }.

We note that by the definition of a skew arc there must be a unique
point in S for each pair of distinct points in S. So if S is a skew arc with
k points, then the size of S will be &2_—12 and SU S will have

ﬂ"—;—u elements. This last is a necessary and sufficient condition for S
to be a skew arc.

We can coordinatize the points of PG(m,2) with the nonzero (m + 1)-
tuples of zeros and ones using the induced vector space structure. Using
these coordinates, the third point on a line containing points a; and as is
ay + as.
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We can then rewrite the definition of S as {81+ s2|s1, 82 € S, 81 # s2}.
We use this coordinatization to draw the correspondence between skew arcs
and codes of minimum distance 5.

For an example, we can look at the following 8 points in PG(5, 2) which
form a skew arc: (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1), (1,1,1,1,0,0),
(0,0,1,1,1,1).

If S is the skew arc given above then S will be: (1,1,0,0,0,0),
(1,9,1,0,0,0), (1,0,0,1,0,0), (1,0,0,0,1,0), (1,0,0,0,0, 1), (0,1,1,0,0,0),
(0,1,0,1,0,0), (0,1,0,0,1,0), (0,1,0,0, 0,1), (0,0,1,1,0,0), (0,0,1,0,1,0),
(0,0,1,0,0,1), (0,0,0,1,1,0), (0,0,0,1,0,1), (0,0,0,0,1, 1), (0,1,1,1,0,0),
(1,0,1,1,0,0), (1,1,0,1,0,0), (1,1,1,0,0,0), (1,1,1,1,1,0), (1,1,1,1,0,1),
(1, 0, 1’ 1, 1) 1)’ (Ol l) 11 11 1‘ 1)’ (0) 0’ 0’ l’ 1, 1)‘ (0’ 0’ 1’ 07 1) 1)7 (01 0’ 1) 1’ 07 l)i
(0,0,1,1,1,0), (1 1,0,0,1,1).

We see that S has 28 points, all of which are distinct from the 8 points
of S. So SU S has 36 points, as expected.

3 Codes

We now show the relation between skew arcs and binary linear codes.

Definition 83 A codeword is a tuple (in this case binary) of some fixed
length, say n. We say the distance between two codewords (of the same
length) is the number of positions in which the two words differ. A code is
a collection of codewords and the distance of a code is the minimum of the
distances taken over all pairs of codewords.

A [n, k,d] binary linear code is a code having distance d with 2% code-
words, which are binary n-tuples, such that the sum of any two codewords
is also a codeword. This means the code is a subspace of dimension k of
the n dimensional vector space over GF(2).

We can associate with a linear code a parily check matrix H of size
(n—k) x n. This matrix will have rows that are a basis of the dual space of
the code. If H is the parity check matrix of the code C then C = {z|Hz' =

0}.

Lemma 1 If H is the parily check matriz of a code C then C is a code of
distance at least d if any d — 1 columns of H are linearly independent [12].

Lemma 2 Let S be a skew arc in PG(m,2) with ns points. Let H be
the matriz whose columns are the elements of S (using their binary coordi-
nates). Then H will be the parity check matriz of an [ns,ns — (m + 1), 5]
code.
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Proof:
No three columns are dependant by part 1 of Definition 1. No four
columns are dependant by part 2 of Definition 1.
This follows from Definition 1.
0

We note that the converse of Lemma 2 is also true. The columns of a
parity check matrix of a code with distance at least 5 will form a skew arc.

For an example, we can look at the skew arc given in the previous
section. So

1 0000010
01 000O0T10
00100011
00010011
00001001
0 00001 0 1}

is the parity check matrix of an [8,2,5] code whose 4 codewords are

[9,0,0,0,0,0,0,0], [1,1,1,1,0,0,1,0), [0,0,1,1,1,1,0,1}, [1,1,0,0,1,1,1, 1].

4 Some skew arc constructions

There are several known recursive constructions for arcs [4] [5] [6] [7] [9]
[10]. For example, given an arc of size k in PG(m, 2), an arc of size 2k can
be constructed in PG(m + 1,2). With this in mind, we attempted to find
something similar for skew arcs, leading us to the following result which
requires two separate skew arcs to start with.

Theorem 3 If we have in PG(m,2) two skew arcs Sy and S of sizes k;
and ko respectively such that (S; U S;) N (S2U S3) = O then there exists in
PG(m+ 1,2) a skew arc of size ky + ko + 1.

Proof: We embed the copy of PG(m,2) into II = PG(m+1, 2) as follows
via an isomorphism with a hyperplane of I1, which we will call H. Pick a
point p in I\ H. .

Define S5 as {s; + p|s;: € Sz}. Now let § = S; U S U {p}. We claim
that S is the desired skew arc.

To see that it is a skew arc, we first show that S contains no lines. Since
SN H contains only elements of S;, which is itself a skew arc, there are no
lines of H in S. We consider lines that will have one point in H and two

in II\H. The point p will not be on a line with a point of .S:;’ and a point
of S; since S N S2 = 0. Two points of S§ will not be on a line with a
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point of S; since Sy N S = 0. Since all lines of IT meet H , we have shown
S satisfies condition 1 of Definintion 1.

Now to see that there are no planar quadrangles we check that all sums
of two elements of S are distinct. We note that the sum of any two elements
in H will be in H, and also the sum of two elements in II\H will be in H.
Hence the only possibility for an element of § to be in H is for it to be
either the sum of two elements that are both from S; or the sum of two
elements both from SE U {p}.

Two elements from S have their sum in 5, and two elements of 5’ have

their sum in $,. Also, p and any element from S” will have the sum in S5.
Hence all the elements of SN H are distinct.

For sums in IT\H, we look at the sum of two elements, one in H, the
other in II\H. There are two types, a + p and a + b where a € S; and

be ,S:;p . A point of type a 4+ p and a point of type a + b are distinct since
S§1N S = 0. Two points of type a + b, where the a’s and b’s are distinct
will be distinct since $; NS, = 0 (If the a’s are not distinct, then two sums
of type a + b will be distinct simply because the b’s are distinct. The case
where the b’s are not distinct as well as the case of two points of type a+p
are similar). Hence S satisfies condition 2 of Definition 1.

a

Example 1 Let S be (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0), (0,0,0,0,1,0), (0,0,0,0,0,1), (1,1,1,1,0,0),
(0,0,1,1,1,1), and let S; = {(1,0,1,0,1,1),(0,1,1,1,0,1)}. Since
Sy is (1,1,0,1,1,0), ($1US1) N (S2U S) = 0. We embed PG(5,2)
into PG(6, 2) by identifying each element of PG(5, 2) with an element
having its last coordinate zero. (i.e. (1,0,0,0,0,0) in PG(5,2) be-
comes identified with (1,0,0,0,0,0,0) in PG(6,2)) Now using
(0,0,0,0,0,0,1) as p we get a skew arc with 11 points in PG(6,2),
namely (1,0,0,0,0,0,0), (0,1,0,0,0,0,0), (0,0,1,0,0,0,0),
(0,0,0,1,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0, 1,0),

(1,1,1,1,0,0,0), (0,0,1,1,1,1,0), (0,0,0,0,0,0,1),
1,0,1,0,1,1,1), (0,1,1,1,0,1,1).

This result can easily be generalized to a case where we start with several
skew arcs:

Corollary 4 If we have in PG(m,2) n+1 skew arcs Sp, S1, -+ Sp of
sizes ko, k1, --- kn respectively such that (S; U S;)N(S; US;) = 0 for
i# 3; 4,5 = 0...n then we can find in PG(m + n,2) a skew arc of size
ko+ki+: +kn+n.
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Proof:

We can embed PG(m,2) into a PG(m +1,2) as above and use Sp with
S to construct a new skew arc S using Theorem 3. From the proof, we
can see that since all_points of S that intersect the original PG(m,2) are
either in Sy, S1, or Sy, hence (Su S)n (S: uUS)=0fori=2...n. We
continue in this manner n times. a

(0,0.1,0,0,0,0,0), (0,0,0,1,0,0,0,0), (0,0,0,0,1,0,0,0),
(0,0,0,0,0,1,0,0), (1,1,1,1,0,0,0,0), (0,0,1,1,1,1,0,0),
(0,0,0,0,0,0,1,0), (1,0,1,0,1,1,1,0), (0,1,1,1,0,1,1,0),
(1,1,0,1,1,1,0,1), (0,1,1,1,1,0,0,1), (0,0,0,0,0,0,0,1) as a skew

arc in PG(7,2) with 14 points.

This generalization raises the question of how large the dimension needs
to be in order to build the new skew arc. We show below that, with addi-
tional conditions, we can obtain a construction requiring fewer dimensions
than used in Corollary 4.

For this, we introduce some new notation. If A and B are disjoint sub-
sets of PG(m, 2) then A+B = {z|3a € A,3b € B such that{a, b, x}is a line}.
Alternately, if we are considering points according to their coordinitization,
then this is simply {a + bla € A,b € B}

Theorem 5 If we have in PG(m,2) four skew arcs Sp, S1, So and S3 of
sizes ko, k1, ko and k3 respectively such that (S; U g,-) n(S;u 5";) =0 for
i# 3;1,5=0,1,2,3 and if there is a point d in PG(m,2) such thatd ¢ S;,
d¢ S;+8S;,i# 3, d¢ Si+ S; + Sk for distincet 1,5,k € {0,1,2,3} and
d & So+ S1 + So + Ss, then there exists in PG(m +2,2) a skew arc of size
ko 4+ ky + ka2 + k3 + 3.

Proof:

We embed PG(m,2) into II = PG(m + 2, 2) as follows via an isomor-
phism with a subspace H of I1. Let M), M, and M3 be the hyperplanes of
I1 containing H. We pick p; € M)\H, p; € M2\ H and let p3 be the point
p1 + p2 + d. Note that p; € M3\ H.

Now S = SpU S_{"‘ U{p}u S:f’ U{p2}U s§= U {p3} is the required skew
arc, which we now show.

For i = 1,2,3, §N M; is constructed in exactly the same way as in
Theorem 3. So when we check to ensure S has no lines, we already know
that there are no lines in H, nor any in each M;. All that is left to check
is that there are no lines that have one point in each of the M;’s.
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A line intersecting all of the M;’s would have one point in each M;\H.
Without loss of generality, let these three points be denoted a + py, b+ pa,
and c+ p3, where a € S; U {0}, b € S U {0}, and c € S3 U {0} (where
0 + p; is simply the point p;). We see that we would get a+b+c+d =0,
so d=a+ b+ c. If all three of a,b, and ¢ were 0 then we would conclude
that d = 0, which is a contradiction, since 0 does not represent any point
in the geometry. All other cases would imply that d € S;, S3, S3, S, + Sa,
81+ S3, So + 83, or S; + 52 + Ss.

When checking S for planar quadrangles, we again know that there are
none that are contained in a single M; from the proof of Theorem 3. All
that is left to check is that the sum of two elements from M;\H is disjoint
from the sum of two elements of H or two elements of M;\H (for i # j,
1,7 € {1,2,3}) and that the sum of an element from M;\ H with an element
of M3\H is disjoint from the sum of an element in M3\ H and an element
of H.

As in the proof of Theorem 3, we notice that the sum of two elements of
SNH isin SpUS, and the sum of two elements of SN M;\H for i € {1,2, 3}
is in S; U ;. These sums must be distinct.

For the last part, let us consider a + p; to be an element of SN M;\H
where a € S; U {0}, similarly with b+ po and c + p3 as before, and let
z € SNH. If the sum of a+p; and b+ p; were not distinct from the sum of
c+p3 and z, then we would have a+b+c+d+2 =0, hence d = a+b+c+ 2.
This would imply that d € Sy, So + Si, So + S2, So + S3, So + S1 + Ss,
So + 81+ 53, So + Sz + 53, or So + 51 + S2 4+ S3 + So.

O

Example 3 This example is to show that it is possible to have 4 skew
arcs that satisfy the conditions of Theorem 5, but exclude the pos-
sibility of a suitable d. Consider the following skew arcs. Let Sy be
{(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,9,0,0,1,0), (0,0,0,0,0,1), (1,1,1,1,0,0)}, let S; be {(1,0,1,0,1,0),
(0,1,0,1,0,1), (1,1,0,0,1,1)}, let52be{(l 0,0,0,1,1),(0,1,1,0,1,0),
(1,1,0, 1,0,1)}, and let S3 be {(1,0,0,1,0,1),

(0,1,0,0,1,1). Now we have four skew arcs such that (S; U §;) N

(S;US;) =0 for i # j but we cannot build an 18 point skew arc in
PG(7,2) [3], and so no point d with the required properties can exist.

Example 4 We can start with the skew arc given in Section 2 (Also S
from Example 1), and let that be Sp. We let S; be {(1,0,1,0,1,1),
(0,1,1,1,0,1)}, Sz be {(1,1,0,1,1,1),(0,1,1,1,1,0)} and let S be
{(0,1,0,1,0,1),(1,0,1,0,1,0)}. If d = (1,0,1,1,0,0), we see it sat-
isfies the conditions of Theorem 5. This gives us a skew arc with 17
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points in PG(7,2). The skew arc will have the following points if we
choose p, to be (0,0,0,0,0,0,1,0), and p, to be (0,0,0,0,0,0,0,1) :
(1,9,0,0,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0, 0),

(0,09,0,1,0,0,0,0), (0,0,0,0,1,0,0,0), (0,0,0,0,0,1,0,0),
(1,1,1,1,0,0,0,0), (0,0,1,1,1,1,0,0), (0,0,0,0,0,0,1,0),
(1,0,1,0,1,1,1,0), (0,1,1,1,0,1,1,0), (1,1,0,1,1,1,0,1),
(0,1,1,1,1,0,0,1), (0,0,0,0,0,0,0,1), (1,0,1,1,0,0,1,1),
1,1,1,0,0,1,1,1), (0,0,0,1,1,0,1,1).

5 A geometric construction of Wagner’s [23,
14,5] code

We turn our attention now to a known class of codes, BCH codes. For
this we view each element of GF(2") as its length n binary expansion,
represented as a column. If « is primitive in GF(2"), it is known that the
parity check matrix of the BCH code with d > 5 is the following 2n x (2" —1)
matrix [12].

1 a 02 e ai e a(2"—-2)
1 a3 aG e aSi . a3(2" -2)

We can view these columns as points of PG(2n - 1,2) and we will refer
to the set of these points (which is a skew arc - see comment following
Lemma 2) as B,,. Also, we can view all points in PG(2n — 1,2} as 2-tuples
over GF(2") as well as 2n-tuples over GF(2).

Expecting to use skew arcs of type B, in the construction, we discovered
the following theorem which shows what B,,U B, looks like in PG(2n—1,2).

Theorem 6
The set M = {23 +a®+b3la+b = z} for z # 0 is a (additive) subgroup
of GF(2™) and [GF(2™) : M) =2.

Proof:

Suppose a+b=zand c+d=z. Thenz® + a3+ b3 + 23 + S +d3
=G-3+b3+63+d3
=a®+8° + 2%+ Pd+cd?

=22+ + 03+ cPa+b+c)+cla®+b%+c?)
=z° + (a® + ca® + Pa+ ) + (b® + b2 + b+ &)
=22+ (a+ )3+ (b+0)>
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Since (a +¢) + (b+¢c) = a + b = z, we see that this is in M,. Hence
M is closed under addition. Since there are exactly 2"~! pairs of elements
that sum to z, we see that [GF(2") : M| = 2.

O

Let Mz+2° = N; = {a®+b3|a+b = z}. Ifniseven welet t = (2" —1)/3.
Recall that « is a primitive element in GF(2"). Since n is even, we know
that GF(2") contains a subfield of order 2 which will contain the elements
0,1,a%,a*. Hence 1+ a*+a? = 0. So for z € GF(2") z = za' + zat.
Since z3 = (za*)? = (za®)?, we can see that 0 € N, and hence N, = M,.
If n is odd, 3 and 2" — 1 are relatively prime, so a® # b% if a # b for
a,b€ GF(2"). So0 ¢ N, hence N, must be the other coset of M,. So now
we see that for any element y in GF(2"), all points in B, U B,, which have
y in the first coordinate have either y3 or a® + b3, where a + b = Y, in the
second. Hence B, U B, = {(y, 2)|z € Ny }.

We introduce now a small skew arc that we will use along with the BCH
codes in constructions.

For z;, ¥, zz € GF(2"), i = 1,2, we have the following skew arc of
seven points: (01 T2+ y2+ 22)1 (317::2)! (21,502 + 22)’ (yli y?): (yl» Y2+ 252),
(21, 22), (21, 22+y2) where the triples {z1,y, 21} and {z2, y2, 22} generate 8
element additive subgroups (not necessarily different) of GF(2") for n > 3.
We call this skew arc As, since the code it gives via Lemma 2 is isomorphic
to that given by Bj (i.e., the BCH code of length 7).

We see that AzU A3 takes the following form, which is similar to the form
of B, U B,. Elements that have a first element of 0 have as their second
element one of [z + y2 + 22, z2, y2, 22) (which is a coset of a 4 element
subgroup of the group generated by z3,y2, 22). Elements that have z; as
their first element have as second element one of [z, 72 + 22, Y2 + 29, 9]
(again a coset), etc.

Let a be a primitive element in GF(2%), where a* + a+ 1 is the gener-
ating polynomial. We let {z1,31,21} be {a!?,0% a8} and {z2,32, 22} be
{a?, a8, al%}. We can see that this skew arc would intersect with By, so we
change it by adding a!3 to the second element of each column that has a
first element &' or af. We then get the following skew arc in PG(7, 2) with
7 points: (0,a%), (a!%,a'), (a0, all), (af,1), (a®,a?), (af, af), (af,al?)

Now A3 as given above along with By fullfill the conditions of Theorem
3. Since A3 has 7 points and B, has15 points,and are both in PG(7, 2), we
can construct a skew arc of size 23 in PG(8,2), giving rise to a [23,14, 5]
code.

Research Problem 18.3 of [12] asks to find a simple construction of
Wagner’s (23,14, 5] code. This gives one, which unfortunately does not
extend well. If we were to construct skew arcs with A3 and B, for n > 5,
the associated codes would have parameters 2" 4 7,2" — 2n 4 6,5]. If we
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compare these to shortened BCH codes with the same redundency we see
that the shortened BCH is as good or better.

In this paper, we showed that A3 is a skew arc with the same size as Bs
whose stucture is similar to that of B in the sense that A3U A3 in PG(7,2)
can be described in terms of cosets of additive subgroups of GF(2%). It
may be possible to extend this idea by finding larger variations of As, eg.
a skew arc A,, where A,, U A, has a similar description in PG(2m +1,2)
(for m 2 n).
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