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Abstract

We study nega-cyclic +1 matrices. We obtain preliminary re-
sults which are then used to decrease the search space. We find
that there are 2, 4, 9, 23, 63, and 187 ip-equivalence classes for
lengths 3, 5, 7, 9, 11, and 13 respectively. The matrices we find
are used in a variant given here of the Goethals-Seidel array to
form Hadamard matrices, the aim being to later check them
for suitability for CDMA schemes.
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1 Introduction

An Hadamard matriz H of order n is a square (1, —1) matrix having
inner product of distinct rows zero. Hence HHT = nlI,. We note
that n =1,2 or n =0 (mod 4).
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Circulant matrices of order n are polynomials in the shift matrix

010 ---0
0 01 0
T=|: :
000 1
100 0

Nega-cyclic matrices of order n are polynomials in the nega-shift
matrix

0 10 ---0
0 01 0
N=| : :
0 00 1
-1 00 0

If A is a circulant matrix of odd order, then XAX, where X =
diag(1,-1,1,-1,...,1), will be a nega-cyclic matriz.

The back-diagonal matriz R of order n is the matrix whose ele-
ments 7;; are given by

[ ifitj=n+y,
77 ] 0 otherwise

where ¢,5 =1,...,n.

We note some properties of the nega-cyclic matrix N given above:
Lemma 1

(NY)T = —N™"* and N'R=-RN"%

Hence we have
Lemma 2 N!(NR)T = (NIR)(N¥)T.
Proof. N*(N'R)T = N'R(N4)T = —-N*‘RN"~J = N'N’R= N'N‘R =
—NIRN™* = —NIR(N))T = (N7R)(N*)T. ]
Furthermore

Theorem 1 Let R;, R; be two rows of a nega-cyclic matriz of di-
mension n, where 1 <1 < j <n. Then R.-Rf = RIR{H_,-.
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Proof. Leti=1+sand j = 1+s+t. If we write Ry = (1,...,%x),
we have

Riys = (=Tn—stlr---r=Zn,T1,.-. yTn—sg)
R1+t = (_xn—t+11 sy Ty L1y - az‘n—t)
Rl+s+t - (—zn—s—t+11 SRR Rt 11PR 5 PR xn—s—t)
We note that
3 t
Ryys = (_zn—s+1, ceey —Z, T, e s Ty Tt1y- - - Tn—s)
R1+s+t = (:xn—s—t+17 crey _mn—ga :xn—t+11 ERK] —CB,E, Tlye-- axn—s—t)
s t
Then
RR] = Ri,Rl,
= Tp—s+1Pn—s—t+1 t '+ TnTn—t — T1Tp—t41 — *°* — TtTp
+ 24121 + 00+ Tp—sTn—s—t
= =Z1Tptyl — " — TtTn + Tg4p1T1 + o + Tp—sTp—s—t
+ Tn—s+1Tn—s—t+1 t* + TnTn-t
—T1Tp—t41 = *°° — TtTn + Tt41%1 + - + TpTn—t
= RIR:IT+t
RlR’ir+j—z'-

O

Theorem 2 Let Ry be the first row of a nega-cyclic matriz of di-
mension n. Let Ry be other rows of the 2n x n matriz obtained by
taking all the 2n — 1 nega-cyclic shifts of Ry. Then the inner prod-
ucts, kg, of Ry and Ry, 1 < £ < 2n are :l:kz,:!:k3,...,:l:knz;1,:l:n.
Specifically, the sequence of inner products of the nega-cyclic shifts
is of the form
k2a k3y ot ak.ﬂ_}h "k"Tfl, R _k31 —k2, -n, _k27 _k31
"'1—k“_;11k1‘%11"'7k37k2-
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Proof. Considering that

Rl+‘n = (—.’B]_, —Z2;.-4y _xn) =-R

we have the inner products

Rl . Rl+‘n = -n,
Ry Ripnte = —Ri-Riy, £ =0,...,n-1
We note that
3 2zl
R1+&'2£ = (’_x“%:*q.p cee —xr:am)
and
R1+nT—l = ("zp_%i_}_l, sy~ TpyTlyses ,x%)

Hence, straightforwardly, the inner product
Ry ‘RnT-l =—-R 'R%l.
Similarly

n—295
R]‘Rn_;__l._e:—R]_'Rﬂéi_*ﬂe, £=0,..., '2—.

Remark 1 In other words we observe that

1. the n + 1st nega-cyclic shift of the first row is the negative of
the first row.

2. the inner product of the ith row with the first, i = 1, 2,---, 251

is minus the inner product of the n 4+ 2 —ith row with the first.

3. the sequence of inner products of the nega-cyclic shifts is of the
form

k27 k3) 0y kta -kt, Tty _k37 _k21 -n, _k21 —k3a
cvey—kyykty -+ ks, ky where £ = 251,
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Lemma 3 Suppose A, B are polynomial in T or N then A(BR)T =
(BR)AT.

Proof. The result for 7', circulant, can be found in Seberry Wallis
[6]. For N, nega-cyclic, we note A and B are polynomials in N so
by repeated applications of lemma 2 we have the result. m|

We note from Seberry Wallis and Whiteman [7] that circulant
can be replaced by group-type or type 1 in abelian groups so that
all results that follow for circulant also follow for group-type or type
1. Similarly we observe that group-type or type 1 nega-cyclic can be
used instead of nega-cyclic and the corresponding results hold. So
we have, modifying Goethals-Seidel construction [6]:

Theorem 3 Suppose there exist four nega-cyclic (1,—1) matrices
A, B,C, D of order n. Further, suppose
AAT + BBT + CCT + DDT = 4nI,. (1)
Then
A BR CR DR
—-BR A DTR -CTR

$=| _cr -D'R A BTR (2)

-DR CTR -BTR A

is an Hadamard matriz of order 4n of S type. (Here R is the back
diagonal matriz.) If A is skew-type, then § is skew-Hadamard.

A later section will be devoted to Hadamard matrices constructed
using this theorem.

2 Desired Characteristics of CDMA Spread-
ing Codes

This section motivates our search strategy by highlighting the desir-
able characteristics of spreading codes.
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For bipolar (that is two value or +1) spreading codes {sg )} and

{ssf )} of length N, the normalized discrete aperiodic correlation func-
tion is defined as [1]:

LS00 0<r <N -1
Ci’l(T) = -1%/- 2112’;01-*-7 ss:)—‘rsﬁll)v 1-N S 7<0

0, L

When {sSf )} equals {sg )}, the above equation defines the normal-
ized discrete aperiodic auto-correlation function.

In order to evaluate the performance of a whole set of M spread-
ing codes, the average mean square value of cross-correlation for all
codes in the set, denoted by R, was introduced by Oppermann and
Vucetic [3] as a measure of the set cross-correlation performance:

1 M M N-1 0
Rec= =3 3 3 lenlr

k#1

A similar measure, denoted by Rsc was introduced there for
comparing the auto-correlation performance:

L M N-l ,
Rac = HZ > el
=l 7 =1-N
T#0

The Ryc allows for comparison of the auto-correlation proper-
ties of the set of spreading codes on the same basis as their cross-
correlation properties.

It is highly desirable to have both Rcc and Ryc as low as pos-
sible, as the higher value of Rcc results in stronger multi-access
interference (MAI), and an increase in the value of R4c impedes the
code acquisition process. Unfortunately, decreasing the value of R
causes increase in the value of Rjc, and vice versa.

Both Rcc and R4c are very useful for large code sets and large
number of active users, when the constellation of interferers (i.e. rel-
ative delays among the active users and the spreading codes used)
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changes randomly for every transmitted information symbol. How-
ever, for a more static situation, when the constellation of interfer-
ers stays constant for the duration of many information symbols,
it is also important to consider the worst-case scenarios. This can
be accounted for by analyzing the maximum value of peaks in the
aperiodic cross-correlation functions over the whole set of sequences
and in the aperiodic autocorrelation function for 7 # 0. Hence, one
needs to consider two additional measures to compare the spreading
sequence sets:

Maximum value of the aperiodic cross-correlation functions Crqz:

Cmaz(T) = maz  |cix(7)l; T=(-N+1)-(N-1)
i=1l--M
k=1---M
i#k

Maximum value of the off-peak aperiodic autocorrelation func-
tions Apmaer

Umaz(T) = maz |ek,k (7)l;
k=1.--M

Amaz = maz{Gmaz(7)}
7#0
The known relationships between Ci,,; and Ay, are due to
Welch [8] and Levenshtein [2].
The Welch bound and states that for any set of M bipolar se-
quences of length N

M-1
ma%{ Omos: Amac} 2 \/ aNM — M~ 1

A tighter Levenshtein bound is expressed by:

(2N2 +1)M — 3N?
max{Cmaz, Amaz} 2 \/ SNZ(MN 1)

It must be noted here that both Welch and Levenshtein bounds
are derived for sets of bipolar sequences where the condition of or-
thogonality for perfect synchronization is not imposed. Hence, one
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can expect that by introducing the orthogonality condition, the lower
bound for the aperiodic cross-correlation and aperiodic out-of-phase
auto-correlation magnitudes must be significantly lifted. This is fur-
ther discussed in [4].

3 Ip-equivalence and Nega-cyclic Matrices

We define two nega-cyclic £1 matrices as ip-equivalent if they yield
the same ordered set of inner products between their first rows and
the nega-cyclic shifts of the first row.

Example 1 Consider the eight possible first rows of a nega-cyclic
matrix +1 of row length 3 and create their nega-cyclic shifts. We
have

Sl T B IR T I O O I 1-1] 11-] 111
1- S I T B AR O NS U B B U BRSO BE B R U
11-| 1--| -1-| ---[111] 1-1 11| --1
111 11~} 1-1|1--| -11| -1-|--1| ---
-1t 111 ~1-| 11- -1] 1-1 == 1--
-1 -1t 11| 111 - - 1= 11~

Table 1: List of first rows and their negacyclic shifts, for length 3

If we examine the inner product of the first row with the second,
third, and so on rows, we find that the ordered set of inner products
are either:

{+1,-1,-3,-1,+1}, or {-3,+3,-3,+3,-3}.

Hence we can group these matrices into two sets of ip-equivalent
nega-cyclic matrices, according to their ordered set of inner products.
We say there are two ip-equivalence classes for length 3. ]

Observing the matrices in Example 1, we note that many matrices
are simply a “shifted” version of other matrices. That is, cycling the
bottom rows onto the top of the matrix, we can generate one matrix
from another.

Lemma 4 If A and B are nega-cyclic matrices of row length n shar-
ing a common row, then B can be generated from A using nega-cyclic
shifts on all rows of A.
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Proof. Firstly, we note that given a row of length n, after enough
nega-cyclic shifts, it will repeat itself. (At most 2n shifts are required
until a repeat occurs, but it can occur earlier). In other words, the
sequence of rows produced by nega-cyclic shifts of a given row, is
finite and fixed.

Let A and B be nega-cyclic matrices sharing a common row R.
Let a; and b be the first rows of A and B respectively. Since A
and B have a common row R, R must be within the sequence of
rows produced by both a; and b; through nega-cyclic shifts. Further
more, this implies that a; and b; are in the same sequence, and hence
a1 can be generated by b; and vice versa.

Finally, we note that nega-cyclic matrices remain nega-cyclic if
we perform a nega-cyclic shift on every row of the matrix. Hence, we
conclude that we can construct B from A, by performing nega-cyclic
shifts on A until a; = b;. The result is a nega-cyclic matrix with
first row equal to the first row of B. 0O

Lemma 5 If A and B are nega-cyclic matrices sharing a common
row, then A and B have the same ordered set of inner products be-
tween the first and second row, first and third row, and so on.

Proof. Proof follows from observing that given any two rows, if we
perform a nega-cyclic shift on both rows, the dot product between
the two rows is the same. Hence given matrices A and B which share
a common row, perform nega-cyclic shifts on B until it is equal to A.
Hence A must have the same ordered set of inner products as B. O

These two lemmas allow us to generate the sets of ip-equivalent
matrices without having to examine each first row explicitly. Once
one matrix is examined, we in fact discover a set of matrices which
are ip-equivalent.

Example 2 As an illustration, observe the sets of matrices gener-
ated for a row of size three in Example 1. Notice how performing
a nega-cyclic shift on all rows of the first matrix results in the fifth
matrix being generated. Also notice how matrices 1, 2, 4, 5, 7, and
8 have the same inner product sequence, and 3 and 6 have the same
inner product sequence. O
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We note that if we treat — as 0, each row has a unique binary
number representation. Performing a nega-cyclic shift on the row,
we observe that if the row is:

1. An odd row (where the rightmost element is a 1), it results in
a division by two (rightshift) to that binary number.

2. An even row (where the rightmost element is a —), it results in
a division by two, and an addition of 2"~!, where n is the row
length.

We also note that each nega-cyclic matrix has both odd and even
rows. (Examine the generator: if it only contains 1, the next row will
have a 0 upon a negacyclic shift, which will then travel rightwards
until it is the rightmost element, and hence the matrix contains an
even number, hence becoming even. The same idea applies for odd.)

Hence all local (and hence the global) minima occur on an even
number, and all local (and hence global) maxima occur on an odd
number. Since each nega-cyclic matrix contains both even and odd
binary numbers we know that the minimum binary number (row) in
each matrix is even. (]
Summarizing, we have:

Lemma 6 To search the space of all nega-cyclic £1 matrices we only
need to consider those rows, which when the row is written in binary
(by replacing —1 as 0) the binary number is even.

Now,

Lemma 7 There are 4 ip-equivalence classes for nega-cyclic =1 ma-
trices of length 5. They have first rows listed in Table 2

Binary ip-equivalent | First Row Inner Product Sequence

o | ----- {3, 1, -1, -3, -5, -3, -1, 1,3}
2 --=-1-]{11,-1,1,-51,-1,1,-1}
4 --1--]4{1,-33,1,-51,3,-3,-1}
10 -1-1-|{5,5,-5,5,-5,5,-5, 5, -5}

Table 2: Lowest generators for rows of length 3
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We know that if two matrices share a common row, then they share
the same ordered set of dot products. However, the reverse is not
true. This can be observed for matrices of row size 7.

Lemma 8 There are 9 ip-equivalence classes for nega-cyclic +1 ma-
trices of length 7. They have first rows listed in Table 3.

Binary ip-equivalent First Row Inner Product Sequence
6o | ---=-=-=-- {5,3,1,-1,-3,-5,-7,-5,-3,-1,1,3,5}
N 1-1{13,1,-1-3,-1-7,-1,-3-1,1,3,1}
4 and 6 ----1--({1,11-11-1,-7,-1,1,-11,-1,1}

- - - -1 1 - | {1,1,1,0,1,1,7,-1,1,-1,1,-1,1)
8 - - -1 - - - | {1,1,3,3,1,1,-7,-1,1,3,3,-1,1}
10 --=-1-1- {'3133'3’3!'373s'7)3)'313)'3)3a‘3}
12 ---11--|{1,5335:-1,7,153,3,5,1}
18 - -1 --1-|{3-1,5-513-731,55-1-3}
20 - -1 -1--|{3-1,11,1,3/7,3,1,-1,1,-1,-3}
42 S1-1-1- 1

Table 3: Lowest generators for rows of length 5

Remark 2 In Lemma 8 note that two disjoint sets of nega-cyclic
rows (identified by the least binary ip-equivalent numbers 4 and 6)
share the same ordered set of inner products. a

The motive behind grouping matrices according to their ordered set
of dot products, is that it then makes it very easy for use in gener-
ating Hadamard Matrices using the construction of theorem 3. This
results in a huge explosion of possible number of generated Hadamard
matrices, as n increases.

4 Construction of Hadamard Matrices

Construction of Hadamard matrices using our variant in theorem 3 of
the Goethals-Seidel array is simplified by grouping matrices accord-
ing to their inner product of the first rows with the corresponding
rows.

Let A, B, C, and D be four square nega-cyclic matrices. If the
sum of the inner products of all distinct rows of A, B, C, and D is 0,
then these matrices satisfy: :
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AAT + BBT + ¢CT + DDY = 4nl,.

Because of our grouping of matrices according to their ordered
set of dot products, we now have a efficient method of produc-
ing Hadamard matrices. That is, take one matrix from each ip-
equivalence class of matrices A, B, C, and D, where the ordered set
of dot products for A, B, C, and D satisfy the above condition. If a,
b, ¢, and d are the number of matrices in the sets A, B, C, and D,
then we have a * b * ¢ * d possible Hadamard matrices.

Example 3 For rows of length three, there are two ip-equivalence
classes, which have lowest generators 0 (— — —) and 2 (—1—). These
ip-equivalence classes have the inner product sequence {+1,-1,-3,-
1,+1} and {-3,+3,-3,4+3,-3} respectively. Because we are working
with rows of length 3, it is only necessary to sum the first two ele-
ments of the inner product sequence. Upon observation, it is found
that a combination of 3 matrices from the first class, and 1 matrix
from the second class will satisfy Equation 1. Hence, we can use
(- =-—-,— ==, ———, and —1-) as the first rows of A, B, C, and
D in order to generate a Hadamard matrix.

Example 4 As another example, consider nega-cyclic matrices of
row size 5 given in Lemma 7. If we let A, B, C, and D be the nega-
cyclic matrices identified by first rows (binary ip-equivalent) 0, 2, 2,
and 4 respectively, then the ordered sum of the dot products for A,
B, C, and D will equal 0, and hence A, B, C, and D will satisfy:

AAT + BBT + ¢CT + DDT = 4nI,.

Because A, B, C, and D belong to ip-equivalence classes consist-
ing of 10 matrices each, each matrix can be interchanged with an
ip-equivalent matrix from it’s ip-equivalence class. Hence, we have
10* possible Hadamard matrices which can be constructed using our
variant, in Theorem 3 of the Goethals-Seidel construction. Further
more, it is possible to permute the order of A, B, C, and D, producing
even more matrices.

In a separate paper we will discuss how altering the orders of A,
B, C, and D can give significantly different results in CDMA codes
constructed using these methods. m]
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It turns out that this combination of matrices are the only ones
which satisfy the above condition for size 5. However, for larger
n, the number of possible matrices generated in this fashion grows
rapidly.

For example, for nega-cyclic matrices of row size 7, there are not
1 but 6 combinations of numbers which satisfy the above condition.
These are listed in Table 4.

Lowest Generators | Number of Matrices
{o, 8, 20, 20} 38416
{0, 10, 12, 18} 38416
{2, 2, 12, 20} 38416
{2, 4/6, 8, 20} 76832
{2, 8, 8, 18} 38416
{4/6, 4/6, 4/6, 10} 307328

Table 4: Ip-equivalence sets which satisfy modified GS condition

The last entry in Table 4 especially notable, as the three sets
which are repeated actually consist of two different generators which
produce disjoint sets of rows, and hence the last entry produces an
extremely large number of matrices.

This is to be investigated [5]with regard to the significance to in
CDMA codes constructed using these methods.

5 Table of Results

Given below are some of the results obtained for various row lengths.
These include the ip-equivalence classes of matrices, as well as the
combinations of ip-equivalence classes can produce Hadamard Ma-
trices using the Goethals-Seidel variant construction.

For rows of length 9, 23 ip-equivalence classes were found. These
sets are listed in Table 5, identified by the lowest binary number
which can generate the class. In cases where multiple binary numbers
are generators for the ip-equivalence class, these are included as well.
For example, 4 and 6 produce the same dot product sequence, but
generate disjoint sets of rows. Hence both are noted in the same row.

Using the above table, a list of combinations of classes which
satisfy Equation 1 was generated. This list can be found in Table 6
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Num | Generators Dot product sequence
1 0 7531-1-3-5-7-9-7-5-3-11357
2 2 3531-1-3-5-3-9-3-5-3-11353
3 46 3131-1-3-1-3-9-3-1-3-11313
4 814 31-11-11-1-3-9-3-11-11-113
5 10 -15-11-11-51-91-51-11-15-1
6 12 3-3-11-113-3-9-331-11-1-33
7 16 31-1-331-1-3-9-3-113-3-113
8 18 22 -113-33-3-11-91-1-33-331-1
9 20 26 -11-1-331-11-91-113-3-11-1
10 24 28 3-3-5-3353-3-9-3353-3-5-33
11 34 -11-15-51-11-91-11-55-11-1
12 36 54 -1-331-1-331-913-3-113-3-1
13 38 -1-335-5-331-913-3-553-3-1
14 40 -11-51-15-11-91-15-11-51-1
15 42 55-55-55-55-95-55-55-55-5
16 44 50 -1-3-11-1131-9131-11-1-3-1
17 52 -1-3-1-33131-91313-3-1-3-1
18 56 3-3-9-3393-3-9-3393-3-9-33
19 74 -513-33-3-15-95-1-33-331-5
20 76 -1-735-56-371-917-3-5563-7-1
21 82 -513-77-3-15-95-1-37-731-5
22 84 $51-11-11-15-95-11-11-11-5
23 170 99-99-99-99-99-99-99-99-9

Table 5: List of ip-equivalence classes for rows of length 9

For rows of length 11, 63 ip-equivalence classes were found. In Ta-
ble 7 the generators of these ip-equivalence classes are given. Where
multiple generators produce disjoint sets of rows, one generator from
each set is given. The combinations of classes found to satisfy Equa-
tion 1 were also calculated. There were found to be 240 combinations.

For larger row lengths, the number of sets of ip-equivalent ma-
trices, as well as the combinations of sets which produce Hadamard
matrices grows rapidly, and it becomes impractical to list them all
here. However, we provide a summary of the results for larger row
lengths.
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