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Abstract

An L(2,1) coloring of a graph G = (V,E) is a vertex coloring f :
V(G) — {0,1,2,...,k} such that |f(u) — f(v)] > 2 for all wv € E(G)
and |f(u) — f(v)] = 1 if d(u,v) = 2. The span A(G) is the smallest k
for which G has an L(2,1) coloring. A span coloring is an L(2,1) color-
ing whose greatest color is A(G). An L(2,1)-coloring f is a full-coloring if
f:V(G)—{0,1,2,...,\(G)} is onto and f is an irreducible no-hole color-
ing (inh-coloring) if f : V(G) — {0,1,2,...,k} is onto for some & and there
does not exist an L(2,1)-coloring g such that g(u) < f(u) for all u € V(G)
and g(v) < f(v) for some v € V(G). The Assignment sum of f on G is the
sum of all the labels assigned to the vertices of G by the L(2,1) coloring
f- The Sum coloring number of G, introduced in this paper, Y (G), is the
minimum assignment sum over all the possible L(2,1) colorings of G. f is a
Sum coloring on G, if its assignment sum equals the Sum coloring number.
In this paper, we investigate the Sum coloring numbers of certain classes
of graphs. It is shown that, Y (P,) = 2(n — 1) and ¥ (C,) = 2n for all
n. We also give an exact value for the Sum coloring number of a star and
conjecture a bound for the Sum coloring number of an arbitrary graph G,
with span A(G).

Keywords: L(2,1) colorings; inh-coloring; Sum coloring, Sum Coloring
Number; Channel assignment problems.

1 Introduction

The channel assignment problem is the problem of assigning frequencies to
radio or TV transmitters subject to imposed restrictions by the distance
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between transmitters in such a way that communications do not inter-
fere. We note that two transmitters may interfere with each other if they
share similar frequencies and are at short distances from each other. In
1988 F. S. Roberts proposed (in a private communication with Griggs) the
problem of efficiently assigning radio channels to transmitters at several
locations, using non negative integers to represent channels, so that close
locations receive different channels, and channels for very close locations
are at least two apart. This evolved into the study of L(2,1)-colorings of a
graph which was first studied by Griggs and Yeh [1].

More rigorously, an L(2,1)-coloring of a Graph G = (V, E) is a vertex
coloring f : V(G) — {0,1,2,...,k} such that |f(u) — f(v)] > 2 for all
uwv € E(G) and |f(u) — f(v)| > 1 if d(u,v) = 2.

The span A(G) is the smallest k for which G has an L(2,1) coloring.
That is,
MG) = min{maz f(u) : u€ V(G), f an {L(2,1)-coloring}.
A span coloring is an L(2,1) coloring whose greatest color is A(G).

An L(2,1) coloring f is a full-coloring, introduced by Fishburn and
Roberts [8], if f: V(G) — {0,1,2,...,X(G)} is onto .

An L(2,1) coloring f is an irreducible no-hole coloring (inh-coloring) if
f:V(G) — {0,1,2,...,k} is onto for some k and there does not exist an
L(2,1) coloring g such that g(u) < f(u) for allu € V(G) and g(v) < f(v) for
some v € V(G). G is said to be inh — colorable if there is an inh — coloring
on G. The inh-coloring concept is due to Laskar and Villalpando [9].

Suppose G is inh — colorable, then define the inh — span Af(G) of G to
be the smallest & for which G has an inh-coloring. That is,

Af(G) = min{maz f(u) : u € V(G),f an inh-coloring}
In this papar we introduce the concept of sum-coloring and show the
exact sum-coloring number of certain classes of graphs.
2 Background

The following Propositions and Theorems are due to Griggs and Yeh {1].
Proposition 1. ( [1]) Let P, be a path on n > 2 vertices. Then,

2 ifn=2
AMP)=¢ 3 ifn=3,4
4 ifn>5.
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Proposition 2. (f1]) Let C,, be a cycle onn > 3 vertices. Then \(Cy,) = 4.
Theorem 1. (/1)) If T is a tree with mazimum degree A > 1, then
A+1<XNT)<A+2.

Theorem 2. ({1]) Let G be a graph with mazimum degree A.
Then A(G) < A% +2A.

Theorem 3. ([1]) The L(2,1) Problem is NP - complete.
Conjecture 1. ([1]) For any graph G with mazimum degree A > 2, A\(G) <
A2,

Laskar and Villalpando [9], showed the following results.

Theorem 4. ([9]) Let T be a tree that is not a star, then there exists an
inh-coloring on T. :

Theorem 5. ([9]) For any tree T with mazimum degree A , that is not a

star,
A+1<A(T) <A+ 2

Conjecture 2. ([9]) Let T be a tree that is not a star, then A(T)=A;(T).
The following Theorem is due to Chang and Lu [4].

Theorem 6. ([{]) If G is a graph with mazimum degree A and A(G) =
A+1, then for any span coloring of G, a vertex of degree A , must be labeled
0 ( or A+1) and its neighbors must be labeled 2+i (ori),i=0,1,...,A~1.

2.1 Background of Chromatic Sum

Schwenk and Kubicka introduced the concept of Chromatic Sum [11]. The
chromatic sum of a graph is the smallest sum of colors among all proper
colorings with natural numbers. The strength of a graph is the minimum
number of colors necessary to obtain its chromatic sum. If 5~ (G) and 5+ (G)
denote respectively the minimum and maximum number of colors to acheive
the chromatic sum, I'(G) is the Grundy coloring number and ¥(G), the
achromatic number of a graph, then for any graph G, the following string
of inequality holds {10].

x(G) £ 77(G) < 7*(G) <T(G) < ¥(G)

We extend this concept naturally to L(2.1) coloring.
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3 Sum Coloring and Sum Coloring Number

3.1 Definitions

In this paper we introduce the Sum coloring number of a graph G, 3 (G),
which is the minimum assignment sum over all the possible L(2,1)-colorings
of G. That is,

Y (GY=ming{ D f(v).ISsw) : v € V(G) and f is an L(2,1)-coloring}
St

where Sj(,) is a set of vertices on V(G) all labeled f(v). An L(2,1) coloring

f is a Sum coloring on G, if its assignment sum equals the Sum coloring

number.

Define the inh-sum coloring number as the minimum assignment sum over

all the possible inh-colorings of G. That is,

Z(G) = mins{ Z f(v).|S¢w)| : v € V(G) and f is an inh — coloring)}
f St
where Sy(,) is a set of vertices on V(G) all labeled f(v).

(1] 2 4 [s) 2
@ @ @ @ L J
Assignment Sum = 8
0 3 1 4 2
@ @ @ L 4 @
Assignment Sum = 10
2 o 3 1 4
@ @ @ @ @

Assignment Sum = 10

Figure 1: Example of Assignment Sums

It is easy to verify that } (Ps) = 8 but 3 .(Ps) = 10. A natural
question would be to ask for what n would these two sums be equal, if at
all? We shall answer this question later in the paper.

3.2 Paths

Lemma 1. Let P, be a path on n vertices with u,v € V(P,), u # v. If
f(u) = 0 = f(v), then there exists a vertex w between u and v such that
f(w) = 4. (Here we are working with the closest zeros on the labeling).
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Proof. Here we consider 2 cases, based on the distance between u and v.

case i.) Suppose d(u,v) = 3.
Then we have the subpath, u,v1,v2,v with f(u) = 0 = f(v). We see
that f(v,) =2 or 3 ( 4 or above proves the lemma) and so, f(v;) > 4.
Hence the Lemma. is true for this case.

case .) Suppose d(u,v) > 4.
Then the subpath u-v is a path of length > 5. Since A(P,) = 4 for
n > 5, there must be a vertex in this u-v subpath with label > 4.

a

Observation 1. Let P, be a path on n vertices. If v € V(P,) and f(v) =1
and u is a neighbor of v, then f(u) >3 .

Theorem 7. Let P, be a path on n vertices. Then Y (Pp) =2(n—1) for
all positive integers n.

Proof. The result is easily verified for P,,, n < 5. We shall prove it true for
n > 5. Order the vertices of P, as v1, Vs, ..., v, Where v, is the first vertex,
v, the last vertex and for every m, m = 1,2,...,n— 1, UpUm+1 € E(FPy).
We develop three cases in proving this part;

case i.) n = 0(mod3)
Consider the coloring f on V(G) defined by, f(v) = 0, f(v2) = 3,
f(vs)=1and

4 ifk =1(mod3)
f('vk)={ 2 if k =2(mod3),k >4
0 if k =0(mod3)

f defined as above is an L(2,1)-coloring on P,.

Assignment Sum = 44 G(nT_?’)
4+2(n-3)
2n -2
2(n—1).

case i.) n = 1(mod3)
Redefine the coloring f on V(G) at n—3,n—2,n—1, and n as

3 if k=n-3
if k=n-2
if k=n-1
if k=n

flu) =

(=
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f defined as above is an L(2,1)-coloring on P,.

Assignment Sum = 4+ G(nT_'?) +8
4+2n—T)+8
2n —2

2(n —1).

It

case iii.) n = 2(mod3)
Redefine the coloring f on V(G) in casel above at n —4,n — 3,n —
2,n — 1 and n as follows,

if k=n-4
if k=n-3
if k=n-2
if k=n-1
if k=n

f defined as above is an L(2,1)-coloring on P,.

flvk) =

O =W

Assignment Sum

4+6(n—;§)+10
4+2(n—8)+10
2n—2

= 2(n-1).

I

So, in all cases we have that Assignment Sum = 2(n — 1). Thus
3" (P,) = minimum assignment sum < 2(n — 1).

Conversely,

a) From Observation 1, any vertex labeled 1, must have a neighbor labeled
3 or more. Pair each vertex labeled 1 with its neighbor labeled > 3 and
take the average of the two labels. Then average > 2.
b) From Lemma 1, if f(u) = 0 = f(v) (closest 0’s) with u,v € V(B,), then
there is a vertex w in the uv-path such that f(w) > 4. Pair the leftmost
vertex labeled 0 with a vertex w such that f(w) > 4 in the uv-path. The
average of these two vertices again is > 2.
¢) The leftmost vertex labeled 0 without a corresponding vertex labeled 0 on
the right of it on the path is not paired and is not considered in averaging.
Since its value is 0, it does not affect the assignment sum.
In conclusion then, the average on the labels on the n — 1 vertices of P, is
> 2 not counting the vertex with situation as in (c) above.
Thus, Y (P,) = 2(n — 1). This proves the Theorem.

]
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Theorem 8. Let P, be a path on n vertices, n > 4. Then Y !(P,,) =
> (Pn) for all positive integers n except for n = 5.

Proof. Clearly, 3°((Pn) > 3 (Pa) since every inh-coloring is an L(2,1)-
coloring.

To prove the reverse inequality, we shall construct an inh-coloring whose
assignment sum is 2(n — 1). Trivial for n = 4. For n = 5 Example 2
shows that 3 ((Py) # 3 (Pa) . Now for n > 6, order the vertices of P, as

,vs,...,U, Where v, is the first vertex, v, the last vertex and for every
m,m=12,...,n—1, UpUns1 € E(P,). We develop three cases in proving
this part;

case i.) n = 0(mod3)
Consider the coloring f on V(P,) defined by, f(v1) = 1, f(v2) = 3,
f(vs) =0 and

4 ifk=2(mod3),k > 6

2 if k = 1(mod3)
flve) = {
0 if k = 0(mod3).

Then f defined as above is an inh-coloring on P,.

Assignment Sum = 4+ 6( 17';—3)
4+2(n-3)
2n—2
2(n—1).

case it.) n = 1(mod3)
Redefine the coloring f on V(P,) above at n as f(v,) = 2. This is
clearly an inh-coloring on P, and

Assignment Sum = 4+ 6(2;—4) +2
4+2(n—4)+2
2n -2

= 2(n-1).

]

case iii.) n = 2(mod3)
Redefine the coloring f on V(P,) in casel above at » — 1 and n as
follows,
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3 ifk=nl
f (”“)‘_‘{ 1 ifk=n.

Again f defined as above is an inh-coloring on P, and

Assignment Sum = 4+ 6(n—;—§) +4
= 442(n-5)+4
= 2n-2

2(n - 1).

Thus Zf(Pn) < 2(n —1) = Y (P,) and we have that Zf(Pn) <
3"(Pr) and hence the equality holds.

O

3.3 Circles

Theorem 9. Let C, be a cycle on n vertices. Then, 3 (C,) = 2n for all
positive inlegers n > 3.

Proof. Order the vertices of C,, as v,,vs,...,v, Where v; is any vertex ,
vaty € E(C,) and for every m, m = 1,2,...,n — 1, U, U1 € E(Cy). We
develop three cases in proving this part,
case i.) n = 0(mod3)

Consider the coloring f on V(C,,) defined by,

0 if k = 1(mod3)
fue) =< 2 ifk=2(mod3),k>3
4 if k = 0(mod3).

f defined as above is an L(2,1)-coloring on C,.

Assignment Sum = 6(%)

= 2n.

case ii.) n = 1(mod3)
Redefine the coloring f on V(Cy,) at n —3,n —2,n — 1, and n as

if k=n-3
if k=n-2
if k=n-1
if k=n.

flw) =

WO
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[ defined as above is an L(2,1)-coloring on C,,.

Assignment Sum = 6(%1) +38

= 2(n-4)+8
= 2n.

case iéi.) n = 2(mod3)
Redefine the coloring f on V(C,) in casel above at n — 1 and n as
follows,

1 if k=n-1
f(”k)“{ 3 ifk=n

f defined as above is an L(2,1)-coloring on C,.

Assignment Sum = 6(n ; 2) +4
= 2(n-2)+4
= 2n.

So, in all cases we have that Assignment Sum= 2n. Thus
Y(C») = minimum assignment sum < 2n.

Conversely,

a) From Observation 1, any vertex labeled 1, must have a neighbor labeled
3 or more. Pair each vertex labeled 1 with its neighbor labeled > 3 and
take the average of the two labels. Then average > 2.

b) From Lemma 1, if f(u) = 0 = f(v) (closest 0’s) with u,v € V(P,),
not necessarily distinct, then there is a vertex w in the uv-path such that
f(w) > 4. Pair the leftmost vertex labeled 0 with a vertex w such that
f(w) > 4 in the uv-path. We observe that, there will be no leftmost vertex
labeled 0 without a corresponding rightmost vertex labeled 0 as in the case
of paths. The average of these two vertices again is > 2.

In conclusion then, the average on the labels on the n vertices of C, is
> 2.
Thus, }°(Cr) > 2n. This proves the Theorem.
O

Theorem 10. Let C, be a cycle on n vertices. Then 3 £(Cn) = X (Cr)
for all positive integers n > 5 ezcept for n = 6.
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Proof. Clearly, 3°(Cn) > Y2(Cy) since every inh-coloring is an L(2,1)-
coloring.

To prove the reverse inequality, we shall construct an inh-coloring whose
assignment sum is 2n. Trivial for n = 5. For n = 6, > :(Cs) = 15 #
3>(Ce) = 12 . Now for n > 7, order the vertices of Cy, as v1,v2,...,vn
where v; is any vertex, v,v; € E(C,), and for every m, m =1,2,...,n~-1,
YmUm+1 € E(Cy). We develop three cases in proving this part;

case i.) n = 0(mod3)
Consider the coloring f on V(FP,) defined by,

( if k=1
if k=2
if k=3
if k=4
if k=5
if k=6
if k=7
if k=8
if k=9

flve) = 3

N = WO = WO

and for k& > 9,
0 ifk = 1(mod3)
flug) =4 4 ifk =2(mod3)
2 if k = 0(mod3).

Then f defined as above is an inh-coloring on C,,.

n—9
G(T)+18

= 2(n-9)+18
= 2n.

Assignment Sum

case ii.) n = 1(mod3)
Consider the coloring f on V(C,) defined as follows,

0 if k= 1(mod3)
flue)=1¢ 2 ifk=2(mod3),k>6
4 if k = 0(mod3)

fork#n—-3,n—2,n—1,nand

if k=n-3
if k=n-2
if k=n-1
if k=n.

flve) =

o= Wwo
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6(”7"4) +8
2(n-4)+8
2n

Assignment Sum

case iit.) n = 2(mod3)
Consider the coloring f on V(C,) defined as follows,

0 if k =0(mod3)
flug) =< 2 ifk=1(mod3),k>"7
4 if k = 2(mod3)

for k # n-1, n and

1 if k=n-1
f (”k)={ 3 ifken.

n—2
3 )+4

= 2(n-2)+4
= 2n

Assignment Sum = 6(

Thus 3 ;(Cp) < 2n = }(C,) and we have that 3°.(C,) < 3(Cr)
and hence equality holds.

a

3.4 Stars

Lemma 2. Let T be a star with mazimum degree A. Then

A4+ A+2
Yy =202

Proof. By Theorem 6, the following labeling in Figure 2, will give the sum
coloring for a star, T. Adding the labels gives the required result.
0O
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A+1

0 1 2 3 4

Figure 2: Sum Coloring for a Star

3.5 Arbitrary Graph G

From the examples given so far, it is tempting to think that all sum colorings
will be span coloring. We make this clear with the following observation.

Observation 2. A sum coloring is not necessarily e span coloring. The
ezample in Figure 8 illustrates this fact.

Not a span coloring: Assignment Sum = 16

Figure 3: Example of sum coloring which is not a span coloring



Lemma 3. Let K,, be a complete graph on n vertices. Then,
nA(K.
Z(Kn) = '_——(2 n)

Proof. 1t is obvious to see that A\(Ky) = 2(n—1) and Y (K,) = X[, 2(n—
). The proof follows directly from these equations. O

Corollary 1. Let G be a graph on n vertices. Then

Proof. The proof is straight forward since G C K. O

Conjecture 3. If G is a graph on n vertices with span A\(G), then

nA(G)
Z(G) < —

4 Open Problems

o Find the bounds for the Sum Coloring number for several other classes
of graphs.

e Find a bound relating the Sum Coloring Number and the Chromatic
Sum of a graph G.

e Complexity issues regarding the Sum Coloring Number
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