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Abstract

For a connected graph G of order n > 3 and an ordered factor-
ization F = {G1, Gq, - -+, G} of G into k spanning subgraphs
Gi (1 < i < k), the color code of a vertex v of G with re-
spect to F is the ordered k-tuple ¢(v) = (@1,a2,---,ax) where
a; = degg, v. If distinct vertices have distinct color codes, then
the factorization F is called a detectable factorization of G;
while the detection number det(G) of G is the minimum pos-
itive integer k for which G has a detectable factorization into
k factors. We study detectable factorizations of cubic graphs.
It is shown that there is a unique graph F for which the Pe-
tersen graph has a detectable F-factorization into three factors.
Furthermore, if G is a connected cubic graph of order (*}?)
with det(G) = k, then k& = 2 (mod4) or k¥ = 3 (mod4). We
investigate the largest order of a connected cubic graph with
prescribed detection number.

Key Words:detectable coloring, detectable factorization, detection num-
ber.
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1 Introduction

We refer to the book [6] for graph theory notation and terminology not
described in this paper. Let G be a connected graph of order n > 3 and let
c: E(G) — {1,2,...,k} be a coloring of the edges of G for some positive
integer k (where adjacent edges may be colored the same). The color code
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of a vertex v of G with respect to a k-coloring c of the edges of G is the
ordered k-tuple

c(v) = (ay,aq, - -,ax) (or simply, c(v) = a1az---ax),

where a; is the number of edges incident with v that are colored i for
1 < i < k. Therefore,

k
Z a; = degg v.
i=1

The coloring c is called detectable if distinct vertices have distinct color
codes; that is, for every two vertices of G, there exists a color such that the
number of incident edges with that color is different for these two vertices.
The detection number det(G) of G is the minimum positive integer k for
which G has a detectable k-coloring . A detectable coloring of a graph G
with det(G) colors is called a minimum detectable coloring. Since every
nontrivial graph contains at least two vertices having the same degree, the
vertices of a nontrivial connected graph cannot be distinguished by their
degrees alone. Therefore, every connected graph of order 3 or more has
detection number at least 2. The concept of detectable coloring was studied
in [1, 2, 3, 4, 5], inspired by the basic problem in graph theory that concerns
finding means to distinguish the vertices of a connected graph.

To illustrate these concepts, consider the graph G shown in Figure 1(a).
A coloring of the edges of G is shown in Figure 1(b). For this 3-coloring
¢, the color codes of its vertices are c(u) = 110, ¢(v) = 021, c(w) = 210,
c(z) = 201, c(y) = 101, ¢(z) = 001. Since the vertices of G have distinct
color codes, c is a detectable coloring.

(b)

Figure 1: A detectable coloring of a graph

Figure 1(c) shows yet another detectable coloring ¢’ of the graph G
of Figure 1(a). For this coloring, ¢'(u) = 20, ¢'(v) = 30, ¢'(w) = 21,
c'(z) = 12, d(y) = 02, '(z) = 01. The coloring ¢' uses only two colors.
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Since G has a detectable 2-coloring, we can immediately conclude that
det(G) = 2.

Figure 2 shows minimum detectable colorings of all connected graphs
of orders 3 and 4. Two of the graphs in Figure 2 illustrate a feature of
detectable colorings that does not hold for standard edge colorings. The
graph G5 of Figure 2 is a subgraph of the graph Gg, while det(G3) = 3 and
det(Gs) = 2. Hence the fact that G is a subgraph of H does not imply in
general that det(G) < det(H). Furthermore, if H, F, and G are graphs
with F < G < H, then the fact that det(F) = det(H) does not imply
in general that det(F) = det(G) = det(H). For example, the graph G
of Figure 2 is a subgraph of Gg, the graph Gg is a subgraph of Gg, and

det(G3) = det(Gs) = 3 but det(Gs) = 2.
Figure 2: Minimum detectable colorings of connected graphs of small orders

As described in [5], detectable colorings can be looked at from a different
point of view. For a connected graph G of order n > 3 and a factorization

~7:= {Glycz"”;Gk}

of G into k subgraphs G; (1 < i < k), the color code of a vertex v of G
with respect to F is the ordered k-tuple

c(v) = (a1,0as,- -+, az)

where a; = degg, v and so Zf=l degg, v = degg v. If distinct vertices have
distinct color codes, then the factorization F is called a detectable factor-
ization of G. A detectable factorization of G with k factors is called a
detectable k-tuple factorization. Each ordered detectable k-tuple factoriza-
tion F = {G1,Ga, -, G} of a graph G gives rise to a detectable k-coloring
of the edges of G by assigning color i to the edges of G; for 1 <i < k. On
the other hand, let ¢ be a k-coloring of the edges of a connected graph G.
For each integer ¢ with 1 < i < k, let G; be the spanning subgraph of G
whose edges are colored ¢. This produces a k-tuple factorization F = {G},
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G2, +++, Gk} of G. Then a coloring c of the edges of G is detectable if and
only if for each vertex v of G, there exist two distinct factors G, and G; in
F such that degg, v # degg, v. A factorization of G resulting from some
detectable coloring of G is a detectable factorization of G. For example,
the detectable factorization that results from the detectable 3-coloring of
the graph G of Figure 1 is shown in Figure 3.

u u

v 0 w(é—o

G‘1 . Gz H G3 :

Figure 3: A detectable factorization of a graph

2 Some Known Results on Detection Num-
bers

If c is a coloring of the edges of a graph G and u and v are two vertices of G
with degg u # degg v, then c(u) # c(v). Consequently, when investigating
whether a given coloring c is detectable, we need only be concerned with
sets of vertices of the same degree. Therefore, it is most challenging and
most interesting to find minimum detectable colorings of graphs having
many vertices of the same degree. The following results were stated in
(2, 5]

Theorem 2.1  For every integer n > 3, det(K,) = 3.

Theorem 2.2  If G is a regular connected graph of order n > 3, then
det(G) > 3.

Theorem 2.3  If G is an r-regular connected graph of order n > 3, then
det(G) < (5e(r + 1)ln)*.

Theorem 2.4 Let n > 3 be an integer and let £ = I-\/n/2 ] Then

det(Cp) = {2‘1 if 22 —0+1<n<20

26-1  if 20-1)2+1<n<22 ¢
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Theorem 2.5 For integers s and t with1 < s < ¢,

3 if s=t>2
t if l=s8<t
det(K,:) = ¢ 2 if t=s+1
k if 2<s<t—1 andk is the unique integer

for which (**57%) <t < (*+¢-1)

Theorem 2.6 A pair k,n of positive integers is realizable as the detec-
tion number and the order of some nontrivial connected graph if and only
tfk=n=30r2<k<n-1.

Theorem 2.7  Let c be a k-coloring of the edges of a graph G. There
are ot most ("**=1) different color codes for the vertices of degree r in G.

The following result is an immediate consequence of Theorem 2.7 (see
[5))-

Theorem 2.8  For each detectable k-coloring of a connected graph G of
order at least 3, there are at most ("**~1) vertices of degree .

This theorem implies the following result.

Theorem 2.9 If G is a connected r-regular graph of order n having
detection number k, then
n< (‘r +k— 1) _
r

The contrapositive of Theorem 2.9 gives the following.

Theorem 2.10  Let G be a connected r-regular graph of order n. If
n> ("H571) for some positive integer k, then det(G) > k.

It therefore follows that the maximum order of a connected r-regular
graph with detection number k is (""’: l) Suppose that G is a connected
r-regular graph of order ("**~!) having detection number k. Then there
exists a k-coloring of the edges of G such that for each of the ("+5~!)
possible color codes, there is exactly one vertex having that color code.
Each such coloring gives rise to a k-tuple factorization F of G, where each
of the k factors has a degree sequence containing (¥;%}*) terms equal to
r—t+1lfort=1,2,...,7 + 1. Note that

() (o) (R = (2E0) - (),

Since the size of G is £ ("+*~1), it follows that k | Z(THE-1).
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3 Cubic Graphs

In this section we turn to the main topic of this paper, namely detectable
factorizations (or colorings) of cubic (3-regular) graphs. The cubic graph
of smallest order is K4 and det(K4) = 3 by Theorem 2.1. There are two
cubic graphs of order 6 namely K33 and K3 x K>. We have seen that
det(K33) = 3 by Theorem 2.5. A detectable 3-coloring of K3 x K3 in
Figure 4 shows that det(K3; x K3) = 3.

201 1 210
012 102
1 0 d 2
3
120 2 021

Figure 4: A minimum detectable 3-coloring K3 X K,

Not only is the detection number of K3 x K = C3 X K, equal to 3,
so too is the detection number of Cy x K2 = Q3 equal to 3. Furthermore,
det(Cs x K3) = 3. Detectable 3-colorings of these two cubic graphs are
shown in Figure 3.

300 1 201

Figure 5: Detectable 3-colorings of Q3 and Cs x K>

Another interesting feature of the 3-coloring of the edges of Cs x Ko
shown in Figure 5 is that each factor whose edges are colored the same is
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isomorphic to the forest F' shown in Figure 6. For graphs F and G, an
F-factorization of G is a factorization F of G in which every factor in F is
isomorphic F. Such a factorization of G is also called an isomorphic fac-
torization of G. Thus the detectable 3-coloring of C5 x K in Figure 5 gives
rise to an isomorphic factorization of Cs x K into the forest in Figure 6.

O O O O O
F: l
o] (o] (o] o

Figure 6: A factor in a detectable 3-tuple factorization of Cs x K,

In the case of cubic graphs with detection number 3, we have the fol-
lowing useful observations.

Observation 3.1  If a cubic graph G contains a detectable 3-coloring,
then the order of G is at most 10. '

Observation 3.2  IfG is a connected cubic graph of order 10 with det(G)
= 3 and F is a detectable 3-tuple factorization of G, then every factor in
F has degree sequence

$:3,2,2,1,1,1,0,0,0,0.

Furthermore, every factor in F is isomorphic to one of the graphs in Fig-
ure 7.

o o

Hlt Hz:

o O o
(o]
&

[ .

Figure 7: The possible factors in a detectable 3-tuple factorization
of connected cubic graph of order 10

Undoubtedly, the best known cubic graph of order 10 is the Petersen
graph P. Necessarily, det(P) > 3. That det(P) = 3 is verified in Figure 8,
where two detectable 3-colorings of P are given. The first factorization of P
(into Gy, G2, and G3) is not an isomorphic factorization; while the second
one is an H-factorization, where Hj is shown in Figure 7. In fact, H, is
the only graph for which the Petersen graph has a detectable isomorphic
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O O O O O O— O O0——oO
o] o I (o} (¢] o] l

o) (0] O
G1=G3=H3 G2 = H,

Figure 8: Two minimum detectable 3-colorings of the Petersen
graph and the resulting factorizations

factorization into three factors. In order to show that, we first present two
lemmas.

Lemma 3.3  There exist ezactly two F-factorizations of the Petersen
graph P, where F is the forest of Figure 9.

Proof. Label the vertices of P as shown in Figure 9. Let F be an F-
factorization of the Petersen graph P, where F is the forest of Figure 9.
Since P is vertex-transitive, we may assume that 7 is the vertex of degree
3 in the first factor F} of F. We consider two cases.

Case 1. The vertices r,u,v,w,t and s are the nonisolated vertices of F,.
Since = and y are adjacent, not both z and y can be vertices of degree 3 in
factors in F. Therefore, at least one of ¢ and z has degree 3 in a factor of
F. Assume, without loss of generality, that z has degree 3 in the factor F,
of F.

We claim that y must have degree 1 in F; for assume, to the contrary,
that y has degree 2 in F;. Then F; contains either zy or uy. If zy € E(F),
then F3 contains a component isomorphic to K> with the edge uy and so
F3 # F, producing a contradiction. Thus F» contains uy. Necessarily then,
z is the vertex of degree 3 in F3, which implies that qw € E(F,). However
then, F3 contains the path z,q,¢,s and so F3 2 F, again a contradiction.
Thus, as claimed, y has degree 1 in F5.
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O O O— O 0]
F: l
(o] (o]

Figure 9: The Petersen graph P and a factor of P

Since y has degree 1 in F3, the vertices w and s have degree 2 in F>. How-
ever then, the factor Fj is isomorphic to F, resulting in the F-factorization
shown in Figure 10(a).

g0 .

(b)

Figure 10: Two F-factorizations of the Petersen graph

Case 2. The vertices r,u,v,w,y and s are the nonisolated vertices of
Fy. Observe first that if either z or ¢ is a vertex of degree 3 in a factor in
F, then ¢ has degree 2 in that factor and ¢ cannot be the vertex of degree
3 in a factor of F. Furthermore, this says that not both z and ¢ can be the
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vertex of degree 3 in a factor in F. However, if ¢ is a vertex of degree 3
in a factor in F, then z and ¢ have degree 1 or 2 in that factor, implying
that neither z not ¢ is a vertex of degree 3 in a factor in . Consequently,
z must be a vertex of degree 3 in a factor, say Fs, in F. Since degp, v =1
and degp, y < 1, it follows that z cannot be the vertex of degree 3 in F3.
Furthermore, since degp, u = 1 and degp, s < 1, it follows that ¢ cannot be
the vertex of degree 3 in F3. This implies that g is the vertex of degree 3 in
F;. Thus the F-factorization F is uniquely determined (see Figure 10(b)).

Since the vertex w is adjacent to the three vertices of degree 3 in the
F-factorization shown in Figure 10(b) and there is no such vertex for the F'-
factorization shown in Figure 10(a), these two factorizations are distinct. m

We are now prepared to show that the Petersen graph P has a unique
" detectable isomorphic factorization into three factors.

Theorem 3.4  The only graph F for which the Petersen graph has o
detectable F-factorization into three factors is when F is isomorphic to the
graph Hy of Figure 7.

Proof. By Observation 3.2, the only graphs F' for which the Petersen
graph P could have a detectable F-factorization into three factors are
the three graphs of Figure 7. Since P is triangle-free, P cannot have
an H,-factorization. We have seen in Figure 8 that there is a detectable
H,-factorization of P. By Lemma 3.3, there are exactly two distinct H3-
factorizations F; and F; of the Petersen graph, where F; is the F-factorization
described in Figure 10(a) and F; is the F-factorization described in in Fig-
ure 10(b). In F}, u and v have the same color codes; while in F, y and
s have the same color codes. Therefore, neither F; nor F» is detectable
and so the graph H, of Figure 7 is the only graph F for which P has a
detectable F-factorization into three factors. m

The graphs G and H in Figure 11 are also cubic graphs of order 10. The
detection numbers of both G and H are also 3, as is shown in Figure 11.
The resulting detectable 3-tuple factorization of G is an Hj-factorization,
where Hj is the forest in Figure 7; while the resulting detectable 3-tuple
factorization of H is an H;-factorization, where H is the graph in Figure 7.

Another cubic graph G of order 10 is shown in Figure 12. That det(G) =
3 is shown by the factorization F' of G, where F' = {F}, F3, F3}. There is
no detectable isomorphic factorization of G into three factors, however.

Proposition 3.5  There is no detectable isomorphic factorization of the
connected cubic graph G of Figure 12 into three factors.

Proof. Suppose that there is such a detectable F-factoriza.tion F.IfFis
a forest, then either F' =& Hj or F = Hj of Figure 7. Then the bridge e of
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111 O O— 120
1
G 3 » < 2
012 030

3 003 3 102 3 21 2

111

Figure 11: Detectable 3-colorings of two
cubic graphs of order 10

G belongs to one factor. Since the nontrivial component T of F' has order
6, T is not a subgraph of G —e. If F = H, of Figure 7, then the bridge e
of G must be the component of some factor in F that is isomorphic to Ko.
However, if G denotes the component of order 4 and size 4 in F, then one
of the components of G — e must contain two edge-disjoint copies of G;.
However, each such component has size 7 and so this is impossible. u

By Proposition 3.5, the connected cubic graph G of Figure 12 has no
detectable isomorphic factorization into three factors. On the other hand,
every factor F' of G is isomorphic to one of the graphs in Figure 7. Thus
exactly two factors in every detectable 3-tuple factorization of the graph
G in Figure 12 are isomorphic. This is not the case for the connected
cubic graph H of Figure 13. The detectable 3-coloring of the the graph H
shown Figure 13 results in three factors, no two of which are are isomorphic.
Necessarily, these three factors are the three graphs in Figure 7. Such a
factorization is called a irregular factorization of a graph. Therefore, the
graph H of Figure 13 has an irregular 3-tuple detectable factorization;
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o) O
(o]

F1=F3: F2:
o (o]

Figure 12: Another cubic bipartite graph of order 10
having detection number 3

while the Petersen graph and the graph G of Figure 12 do not have such a
factorization.

201

9\00 1 L20 2 221 9 012

1

20 2 0% 2 11 ! 102 3 003

Figure 13: A cubic graph of order 10
with an irregular detectable 3-tuple factorization

We have now seen that some cubic graphs of order 10 do not have a de-
tectable 3-tuple H;-factorization for some graph H; (1 < i < 3) in Figure 7
and some cubic graphs of order 10 do not have a detectable irregular 3-tuple
factorization. For example, the Petersen graph has neither a detectable 3-
tuple H3-factorization nor a detectable irregular 3-tuple factorization since
P is triangle -free. On the other hand, Figure 14 shows four detectable 3-
tuple factorizations Fi, F2, F3, and Fy of a cubic graph of order 10, where
F; is an H;- factorization for 1 < ¢ < 3, while F, is an irregular factoriza-
tion with factors H;, Hy, and H3 and where the bold edges are colored 1,
the dashed edges are colored 2, and the remaining edges are colored 3.
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201 210

(a) H,-factorization (b) H,-factorization
030 210 300 210
.Q e e o

(c) Hsz-factorization (d) irregular factorization

Figure 14: Four detectable 3-tuple factorizations
of a cubic graph of order 10

We have seen that if G is a connected graph of order n with det(G) = k,
then G contains at most ("%~ vertices of degree r. Therefore, in the case
of cubic graphs, we have the following observation.

Observation 3.6 IfG is a connected cubic graph of order n with det(G) =
k, then
k+2
< .
"= ( 3 )

Not all connected cubic graphs with detection number & can have order
('“;2), however.
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Theorem 3.7 IfG is a connected cubic graph of order (k-:;-2) with det(G) =
k, then

k =2 (mod4) or k =3 (mod 4).

Proof. Assume, to the contrary, that there exists a connected cubic graph
of order n = (*}?) with det(G) = k such that k = 1 (mod4) or k =
0 (mod 4). We consider these two cases.

Case 1. k =1 (mod4). Then k = 4¢g + 1 for some integer g. Observe
that the order of G is

n =

(4q+3) _ (49 +3)(4g+2)(4¢+ 1)
3 ) 6
(4¢+3)(29+1)(4g+ 1)

3 )

which is odd. This is impossible.

Case 2. k =0 (mod4). Then k = 4q for some integer g. Then the order

of Gis
n= (4‘1 + 2) _ (49+2)(4g +1)(49)
3 6

and the size of G is

3 <4q + 2) _ (29 + 1)(49 + 1)(4q)

=3\ 3 2

Then G has a detectable k-tuple factorization F = {Fy, F,..., Fr}. The
size of each factor F; (1 < ¢ < k) is therefore,

m _ (2g+1)(4g+1)
ko 2 '

which is not an integer, producing a contradiction. n

We have mentioned that the greatest possible order of a connected cubic
graph with detection number 3 is 10. Furthermore, we have given several
examples of such graphs. We summarize this below.

Theorem 3.8 The largest order of a connected cubic graph with detection
number 3 is 10.

In fact, we know of no connected cubic graph of order 10 that has
detection number different from 3, which leads to the following problem.

Problem 3.9 Is the detection number of every cubic graph of order 10
equal to 37
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In fact, there is a more general question.

Problem 3.10 Do there ezist connected cubic graphs of the same order
having distinct detection numbers?

By Observation 3.6 , if G is a connected cubic graph of order n with
detection number 4, then n < 20. By Theorem 3.7, however, there is no a
-connected cubic graph of order 20 having detection number 4.

Theorem 3.11 The largest order of a connected cubic graph with detec-
tion number 4 is 18.

Proof. It suffices to give an example of a connected cubic graph of order
18 with detection number 4. Let G = Cy x K,. Since det(G) > 4, we need
only show that there is a detectable 4-coloring of G. One such coloring is
shown in Figure 15. ' .

21
0210 2 0300

Figure 15: A detectable 4-coloring of Cy x K>

We now turn to the problem of finding the largest order of a connected
cubic graph with detection number 5. By Observation 3.6 and Theorem 3.7,
the largest order cannot exceed 34.

Theorem 3.12 The largest order of a connected cubic graph with detec-
tion number 5 is 32.

Proof. In a detectable 5-coloring of a connected cubic graph of order n,
exactly n of the following 35 color codes must occur:
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30000 21000 10020 11100
03000 20100 01020 11010
00300 20010 00120 11001
00030 20001 00021 10101
00003 12000 10002 10110
02100 01002 10011
02010 00102 01110
02001 00012 01101

10200 01011
01200 go111
00210
00201

At most 34 of these can be used. Assume, to the contrary, that exactly
34 of these are used in a detectable 5-coloring of a connected cubic graph
G. Hence there is one color code that is not used. Since every color code
contains at least two Os, we may assume, without loss of generality, that
the color code that is not used has 0 in its first coordinate. In the resulting
detectable factorization F = {Fy, F3, F3, Fy, F5} of G, the degree sequence
of Fj is

$:3,2,2,2,2,1,1,1,1,1,1,1,1,1,1,...

followed by 19 0s. However, this says that F; contains an odd number of
odd vertices, which is impossible. Consequently, the maximum order of a
connected cubic graph of with detection number 5 is at most 32.

It remains to show that there exists a connected cubic graph of order
32 with detection number 5. Let G = C1g X K3. Since 32 > 18, it follows
that det(G) > 5. Therefore, we need only show that there is a detectable 5-
coloring of G. One such coloring is shown in Figure 16. Therefore, det(G) =
5. ]

We closed with a final question.

Problem 3.13  For each integer k > 6, what is the largest integer f(k)
for which there exists a connected cubic graph of order f(k) with detection
number k?
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Figure 16: A detectable 5-coloring of C1s X K3
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