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Abstract

Consider a lottery scheme consisting of randomly selecting a win-
ning t-set from a universal m-set, while a player participates in the
scheme by purchasing a playing set of any number of n-sets from
the universal set prior to the draw, and is awarded a prize if k or
more elements in the winning ¢-set match those of at least one of the
player’s n-sets in his playing set (1 < k < {n,t} < m). This is called
a k-prize. The player may wish to design a smallest playing set which
guarantees the player a k-prize, no matter which winning t-set is cho-
sen from the universal set. In this paper we consider the optimality of
the 302 cardinality 7 (or less) lottery design listings in BELIC R: Lotto
Systems and Toto Systems to win Wheel Game, [online], [cited 2003,
October 31], available from: http://www.xs4all.nl/~rbelic/, for
which m > 20. It is shown, by means of a computerised search
technique, that 192 of these designs are optimal, whilst 78 are not,
in which case we provide optimal designs. Then an additional 429
upper bounds in the tables of Belic (not necessarily of cardinality 7
or less) are improved; 126 of which are optimal. Thus, apart from
the 192 designs that we show to be optimal, 204 new lottery num-
bers are established in this paper, and a further 304 upper bounds
are improved. Finally, the optimality of 54 designs of cardinality 7
or less could not be established; however, in each of these cases a
hitherto best known lower bound is provided.
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1 Introduction

Suppose the lottery scheme {m, n, t; k) consists of randomly selecting a win-
ning ¢-set w from the universal set U, = {1,2,...,m}, while a player par-
ticipates in the scheme by purchasing a playing set P of any number of
n-sets from U,,, prior to the draw, and is awarded a prize, called a k-prize,
if at least k elements of w match those of at least one of the player’s n—sets
in P. Here we assume that 1 < k < {n,t} < m.

Let ®(A, s) denote the set of all (unordered) s-sets from a finite set A,
so that |®(4, s)] = (M), and denote the neighbourhood set in (m,n,t; k)
of any element v of ®(Up,,n) by

N[v] = {$ € ®Usm,n) : B(¢, k) N B(v, k) # 0} .

In a previous paper [3] we considered procedures for finding upper and lower
bounds on solutions to the following combinatorial optimisation problem.

Definition 1 (The lottery problem) Define alottery set for (m,n,t; k)
as a subset L(Upm,n,t;k) C ®(U,,n) with the property that, for any ele-
ment ¢y € ®(Um,t), there erists an element | € L(Up,n,t; k) such that
&(ds, k) N B(1,k) # 0. Then the lottery problem is: what is the smallest
possible cardinality of a lottery set L(Um,n,t;k)? Denote the answer to
this question by the lottery number L(m,n,t;k). We refer to a lottery set
of cardinality L(m,n,t;k) as an L(m,n,t; k)-set for (m,n,t; k). u

Note that when ¢t = k the lottery number L(m,n,t; k) reduces to the
well-studied covering number C(m, n;k), and that this covering number is
an upper bound for the lottery number when ¢ # k. The following growth
properties of the lottery number L(m,n,t; k) are due to Li [7].

Theorem 1 (Growth properties of L(m,n,t;k))
(a) L(m,n,t;k) < L(m + 1,n,t;k)

(6) L(m,n,t;k) > L(m,n,t +1;k)

(¢) L(m,n,t;k) > L(m+1,n+1,tk)

(d) Lim,n,t;k) > Lim+1,n+1,t+1;k)

(e) L{m,n,t;k) > L(m,n+1,t;k)

(f) L(m,n,t;k) < L(m,n,t;k+1)

(9) Lim,n,t;k) < L(m+1,n+1,t+1;k+1)

(h) L(m,n,t;k) < L(m+1,n+1,5;k+1)

(i) L(m,n,t;k) < L(m+1,n,t;k+1)

G) L(m,n,t;k) < L(m,n+1,t;k+1)

(k) L(m,n,t;k) < L(m,n,t+1;k+1)

(1) L(m,n,t;k) < L(m+1,n,t+1;k+1)

(m) L(m,n,t;k) > L(m+ 1,n,t + 1;k)

(n) L(m,n,t;k) > L(m,n+1,t+1;k) | |
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Small values of lottery numbers are also known, such as the numbers
L(m,6,6;2) for all 6 < m < 54, which are due to Bate & Van Rees [1].
Furthermore, listings of best known upper and lower bounds on yet un-
determined values of L(m,n,t;k) appear on the Internet for various com-
binations of the parameters m, n, ¢ and k. For example, listings for all
1<k < {n,t} <m < 20 appear in [8], whilst listings for certain values in
the ranges m < 100 and {n,t,k} < 25 appear in [2]. In this paper we focus
on 302 small upper bounds on L(m,n,t; k) not exceeding 7 in [2], which
were derived via computerised heuristic search techniques, and we consider
the question: “Are these bounds optimal?” We answer this question in the
affirmative in 192 of these cases, and in the negative in 78 cases, and then
go on to establish the true lottery number values in the latter cases. The
technique that we employ in order to arrive at these answers is an exhaus-
tive search technique, which we employed in 3] to find new, small lottery
numbers and to characterise L(m, n,¢; k)-set structures within the ranges
of Li & Van Rees [8, 9]. However, in this paper we consider the optimality
of bounds of the form L(m,n,t;k) < € for all £ < 7! within the ranges of
the tables in [2], but outside the ranges considered by Li & Van Rees [8, 9]
(i.e., for m > 20), so as to avoid duplicating results.

The reader may wonder about the practical significance of small lottery
numbers, since real lotteries in operation around the world [6] involve large
lottery numbers, which are notoriously difficult to compute. The relevance
of small lottery numbers lies in decomposition results, such as the following
well-known theorem.

Theorem 2 (Upper bound decomposition)
For all1 <k < {n,t} <m,

L(m1n1 tyk) S. L(ml,nitl;k) +L(m2!nl t?ak)! (1)
wheremy +me=mand t; +1—1=1.

Proof: When lottery sets for {m,,n,t; k) and (mq,n,ts; k), from the
universal sets U, = {1,...,m} and Um, = {m1+1,...,m; +ms} respec-
tively, are conjoined, then a lottery set for (m,n,t;k) is created. This is
true, because if w € &(Upm, Ulm,,t) is the winning t-set for (m,n, ¢; k) and
[, Nw| < ty, then [Unm, Nw]| > t2 and vice versa, wheret =t; +t2—1. B

We use the newly established lottery numbers described above in con-
junction with Theorem 2 to improve upon additional upper bounds in [2}.
We also improve upper bounds by means of lottery sets that contain a dis-
joint n-set, by using Theorem 2 in the following way: L(m + n,n,t + k —

!We avoid covering numbers, which have been studied extensively, by considering
only lottery numbers L(m,n, t; k) for which ¢ # k.

85



1;k) < L(m,n,t; k) + L(n,n,k; k) = L(m,n,{;k) + 1. In cases where these
improved upper bounds are 7 or less, we also test for optimality. This leads
to the establishment of an additional 126 new lottery numbers, and 304
improved upper bounds. There are 54 cases of upper bounds not exceeding
7 in [2], where we were not able to answer the above optimality question,
in which cases we provide best known lower bounds.

2 Characterisation procedure

In [3] a search method was derived that is capable of determining lot-
tery number lower bounds, by characterising the possible n-set overlap-
ping structures that may be attained by lottery sets of cardinality £ <
L(m,n,t; k) for (m,n,t;k).

This procedure was used in [3] to establish 28 new lottery numbers and
to improve upon then best~known bounds for a further 29 lottery numbers.
We also used the procedure in [3] to characterise all L(m,n,t;k)-sets for
cases where L(m,n,t;k) < 5, where the parameters m, n, t and k vary
within the ranges considered by Li & Van Rees [9] (i.e., for m < 20).
Finally, we employed the same procedure in [5] to characterise solution sets
to a new incomplete version of the lottery problem, formulated in [4].

This characterisation method will be used in §3-5 to answer the opti-
mality question posed in §1 with respect to small upper bounds in [2].

We use the same notation to capture the overlapping structure of an
L(m,n,t;k)-set L = {T1,Ts,...,TL} as in [3], by defining the function

ﬁ T, ift;=1
Ti, ift; =0

i=1

(L)

Pleptr_1taty)s = ’

where (£1tr,-1 - --tat1)2 denotes the binary representation of an integer in
the range {0,..., 2 — 1} and where T} denotes the complement U;,;\T:.
This function induces the 2X-integer vector

2Ly _ (L) (L) (L)
XM = (z(OOO---OO)z’w(UOO'-'Ol)z’ e ”'(111"‘11)2) ’

which represents all the information needed to describe the n-set overlap-
ping structure of any lottery set of minimum cardinality for {m, n,t; k). The
entries of the vector X(£) add up to m and may be interpreted as follows:

¢ there are "’((I;o)omoo)g elements of Uy, contained in no n-set of £.

o there are z\-) elements of U,, contained in only the n—set T3.
000---01);

e there are 2\2) elements of U, contained in only the n—set T5.
000---10)2 Y

e there are !X elements of U, contained in both T; and T3, etc.
(000---11)5
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Sometimes it is more convenient to write the subscripts of the z(E) entries
in decimal form. We illustrate the above method of lottery set structure
encoding by means of a simple example.

Uz
1 2345678 910111213141516 1718 1920 21 22 23 24 25 26
T XXX XXX X
T XIX| XX XXX
T3 XX XX XXX
Ty XXX X|X]|X]|X
! — e — L = !
1 7 1 4 3 7

Figure 2.1: Tabular representation of the L(26,7,14;4)-set in Example 1.

Example 1 Consider the loitery set structure X4 = (1,7,4,0,4,0,3,0,7,
0,0,0,0,0,0,0) for (26,7, 14;4), for which it can be shown that L(26,7,14;4)
= 4. An instance adhering to this lottery set structure may be found by fo-
cusing on the non-zero entries in the vector X (4); :z;“) =1, a:(q) =17, a:“)

4, 2,(4) =4, :z:g‘) =3 and a:gd) = 7. In binary form these are 1:33’00)2 =1,

(4) (4) _ (4) __ (4) . (4) _
Tooo1): = 1» Tgor): = 4 Tiowo0), = 4 T(or10), = 3 @nd T(ypqqy, = 7,

which yield the structure of all corresponding L(26,7,14;4)-sets, in terms
of the number of elements from the universal set U in each term of the
inclusion—ezclusion counting principle. The set L = {{2,3,4,5,6,7,8},
{9,10,11,12,17,18, 19}, {13, 14, 15, 16, 17,18, 19}, {20, 21, 22, 23, 24, 25, 26} }
emerges as an example of an L(26, 7,14;4)-set, which is represented in tab-
ular form in Figure 2.1. ]

We now summarise the method described in [3] to characterise lottery
set structures of cardinality L(m,n,%;k) for (m,n,t;k). One method of
enumerating all L(m,n, t; k)-set structures for {(m,n,t; k), consists of con-
structing a rooted tree (referred to as the lottery tree) of evolving over-
lapping structures, whose nodes resemble overlap specifications similar to
that of Figure 2.2. Level i of the lottery tree contains all possible (non-
isomorphic) overlapping n-set structures of cardinality  and is constructed
from the nodes on level i — 1 of the lottery tree by appending 2¢-1 inte-
gers to (i.e., doubling) each of the existing vectors X (-1). These integer
appendices represent all possible (new) n-set overlappings with the exist-
ing overlappings {T},T>,...,T;—1} (represented by nodes on level i — 1 of
the lottery tree) when adding the i-th n-set T; (in such a manner that
|T; NT;| < n for any two n-sets T; and Tj for all j < i — 1).
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Figure 2.2: Part of the tree construction to determine all L(15,6, 6;3)-set
overlapping structures for the lottery (15,6, 6;3).

The lottery tree has £ + 1 levels in total. The first level of the tree
consists of the node X(1) = (m — n,n) only (the root), while the nodes
X on level ¢ of the tree represent potential L(m, n,¢; k)-set structures of
cardinality £ for (m,n,t;k). An (£ + 1)-st level of nodes is added to the
tree (in such a manner that [Ty NT;| <t for all j < €) in order to carry
out a so-called domination test (i.e., to test which of the nodes on level ¢
actually represent valid L(m,n, t; k)-sets). This domination test is achieved
by testing whether all nodes on level £+1 overlap in at least k positions with
at least one n-set of the existing £ n-set overlapping structure (represented
by its parent node X(9) in the tree. If this were the case, then the n—set
overlapping structure represented by the parent node X would constitute
a lottery set for (m,n,t; k) (and hence L(m,n, {; k) < €). However, if there
exists at least one node on level £ + 1 of the tree whose corresponding final
t-set overlaps in fewer than k positions with all n—sets of the parent node
overlapping structure, the parent node does not represent a lottery set. If
no parent node represents a valid lottery set, the bound L(m,n,t; k) > £ is
established.

The number of nodes on level 7 of the tree typically grows very rapidly
as ¢ increases, even when permutations of node structures are avoided. See
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(6] for examples of the growth in the number of nodes per level and the re-
sulting execution time required to construct the lottery tree. In the absence
of pruning rules to limit the growth of the lottery tree, this complexity pro-
hibits characterisation of most playing sets of cardinality 6 and virtually all
playing sets of cardinality 7. However, with the use of a number of pruning
rules, we are now able to characterise many playing sets of cardinality 6 and
some playing sets of cardinality 7. However, even with these pruning rules
in place, characterisation of playing sets of cardinality 8 by means of the
above search technique is impossible with current computing technology.
The pruning rules (implemented just after level £ of the tree, before the
domination test) were:

(1) I L(m - 1,n,t — 1;k) > L(m,n,t;k) = € and z{ > 0, then the
structure corresponding to the vector X9 is not a lottery set, and
may hence be omitted from the tree.

(2) It min{zgzmwo)z,k -1} +---+ mi“{""gau--.l)z’ k-1}+ :c((,t) >t, then

the structure corresponding to the vector X® is not a lottery set,
and may hence be omitted from the tree.

Rule (1) follows from the fact that if a specific element of U,, is not
utilised in a lottery set of cardinality £ for {m,n,t; k), then L(m —1,n,t —
1;k) < ¢. In rule (2) we add up the number of elements (not exceeding
k — 1 per set) that are in at most one n-set of the structure corresponding
to X(®. If there are ¢t or more such elements, there exists a ¢-set having no
k-intersection with any of the n-sets in the structure X(9, and hence the
structure does not represent a lottery set.

Furthermore, the following two rules were implemented just after level
£ — 1 of the tree, and are based on the same idea as rule (2) above, in an
obvious manner.

(3) If z:l(,e_l) >t+mn—k+ 1, then all possible structures corresponding
to the vector X(¢=1) are not a lottery set, and may hence be omitted
from the tree.

. -1 . e-1 -1
(4) If mm{"’}mo.).-ow k-1}+---+ mm{"’{ooo-)-.l)y k-1}+ a:((, ) >n+t,
then all possible structures corresponding to the vector X(€-1) are

not not a lottery set, and may hence be omitted from the tree.

We do not give the full implementation details here of the characterisa-
tion procedure described above, but rather demonstrate the tree construc-
tion by means of the simple schematic representation in I'igure 2.2.
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3 Design bounds found to be optimal

L(21,6,7;2) =3 L(21,7,7;3) =3 L(21,7,11;4) = 3* | L(21,7,13;4) = 3
L(21,8,4;2) =3* | L(21,8,5;2)=3 L(22,7,11;4) = 3 | L{22,7,13;4) =3
L(22,8,4;2) =3* | L(22,8,5;2)=3 L(23,7,13;4) =3 | L(23,8,5;2) =3
L(24,7,13;4) =3 | L(24,8,5;2) =3

L(21,5,10;3) =4 | L(21,6,5;2) =4 | L(21,6,6;2) =47 | L(21,6,9;3) =4
L(22,6,5;2) =4° | L(22,6,6;2) = 4t | L(22,6,7;2)=4 L(23,6,5;2) = 4*
L(23,6,6;2) =4t | L(23,6,7;2) =4 L(23,10,6;3) =4 | L(24,6,5;2) = 4°
L(24,6,6;2) =4t | L(24,6,7;2) =4 L(24,10,6;3) =4 | L(25,6,6;2) =41
L(25,6,7;2) = 4 L(25,10,6;3) =4 | L(26,6,7;2) =4 L(26,7,13;4) =4
L(26,8,5;2) = 4 L(27,7,13;4) =4* | L(27,7,15;4) =4 | L(27,8,5;2) = 4
L(28,7,13;4) = 4* | L(28,7,15;4) =4 | L(28,8,5;2) =4 L(29,7,15;4) = 4*
L(29,7,17;4) =4 | L(29,8,5;2) = 4 L(30,7,15;4) = 4" | L(30,7,17;4) = 4
L(30,8,5;2) = 4 L(31,7,17;4) =4 | L(31,8,5;2) =4 L(31,8,9;3) =4
L(32,7,17;4) =4 | L(32,8,5;2) = 4} L(32,8,9;3) = 4!

Table 3.1: Lotteries (m,n,t;k), (m > 20, ¢t # k) for which the optimality
of the design bound L(m,n,t;k) < € in [2] was established (¢ = 3,4). tDue
to Bate & Van Rees [1]. By Theorem 1(a). *By Theorem 1(b).

The characterisation technique described in §2 was employed to verify
the optimality of 192 of the 302 design bounds of the form L(m,n,t; k) < €,
with £ < 7, m > 20 and ¢ # k, listed in [2). In each case the search technique
was used to seek lottery sets of cardinality £ — 1. If no such sets were found,
the optimality of the bound L(m,n,t; k) < € was verified, in the sense that
a new lottery number L(m,n,t; k) = { was established. The corresponding
(new) lottery numbers are listed in Tables 3.1 and 3.2 for the cases £ = 3,4
and £ = 5,6, 7 respectively. For the cases { = 3, 4 all implementations of the
characterisation tree required an execution time of less than one second on
an AMD 1.8GHz processor with 256Mb of memory. The execution times
(in seconds) for the cases € = 5,6, 7 are listed in Table 3.2.

4 Design bounds found to be suboptimal

The characterisation technique described in §2 also resulted in the improve-
ment of a further 78 of the 302 design bounds of the form L(m,n,t;k) < ¢,
with £ < 7, m > 20 and ¢ # k, listed in [2]. These improved bounds were,
in turn, used in conjunction with Theorem 2 to improve additional upper
bounds listed in [2], not exceeding 7. We also improved upper bounds by
means of lottery sets that contain a disjoint n-set, by using Theorem 2 in
the following way: L(m +n,n,t +k —1;k) < L(m,n,t;k) + L(n,n, k; k) =
L(m,n,t; k) + 1. In cases where the improved upper bound did not exceed
7, the search technique was used to seek lottery sets of cardinality i, for
i =3,4,...,£~1 until the first value of i was reached for which a lottery set
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Lottery number Time | Lottery number Time | Lottery number  Time
L(21,4,7;2) = 5* - | L(21,4,9;2) = 1 | L(21,6,4;2) =5 1
L(22,4,9;2) = 1| L(22,10,5;3) =5 14 | L(23,4,9;2) =5 1
L(23,7,8;3) =5 4| L(23,7,11;4) =5 5 | L(23,10,5;3) =5 16
L(24,7,11;4) = 5° - | L(24,7,12;4) =5 6 | L(25,7,12;4) =5 6
L(25,8,4;2) =5 6 | L(26,6,6;2) =5t - | L(26,8,4;2) =5 6
L(26,10,3;2) = 5 17 | L(27,6,6;2) = 51 - | L(27,6,7;2) =5 2
L(27,8,4;2) =5 6 | L(28,6,6;2) =5t - | L(28,6,7;2) = 5° -
L(28,6,8;2) =5 2 | L(28,8,4;2) =5 6 | L(29,6,6;2) = 5t -
L(29,6,7;2) = 5* - | L(29,6,8;2) =5 2 | L(30,6,6;2) = 5% -
L(30,6,7;2) = 5* - | L(30,6,8;2) =5 2 | L(31,6,7;2) = 5* -
L(31,6,8;2) =5 2 | L(34,8,6;2) =5 25 | L(35,8,6;2) = 5! -
L(35,8,7;2) =5 36 | L(36,8,6;2) =5} - | L(36,8,7;2) = 5¢ -
L(37,8,6;2) = 5¢ - | L(37,8,7;2) =5¢ - | L(38,8,6;2) = 5! -
L(38,8,7;2) = 5¢ - | L(39,8,7;2) = - | L(40,8,7;2) = 5t -
L(45,9,6;2) =5 114

L(22,4,7;2) = 6 1| L(22,5,10;3) =6 88 | L(22,6,4;2) =6 137
L(22,7,7;3) =6 916 | L(22,8,3;2) =6 4650 | L(23,4,7;2) =6} -
L(23,4,8;2) =6 2 | L(23,5,10;3) = - { L(23,8,3;2) = 6} -
L(24,4,7;2) = 6} - | L(24,4,8;2) = 6* - | L(24,4,9;2) =6 8
L(24,8,3;2) = 6! - | L(25,4,8;2) = 6! - | L(25,4,9;2) = 6! -
L(25,6,5;2) = 6 149 | L(25,9,3;2) =6 397 | L(26,4,9;2) = 6¢ -
L(26,6,5;2) = 6} - | L(26,7,12;4) =6 19 | L(26,8,7;3) =6 470
L(26,9,3;2) = 6t - | (27,6,5;2) = 6} ~ | L{(29,8,4;2) =6 17
L(31,7,15;4) = 6 48 | L(32,6,7;2) =6 142 | L(32,7,15;4) = 6} -
L(33,6,7;2) = 6* - | L(33,6,8;2) =6 143 | L(33,8,5;2) =6 5
L(34,6,7;2) = 6} - | L(34,6,8;2) =6} - | L(34,8,5;2) = 6t -
L(35,6,7;2) = 6} - | L{(35,6,8;2) = 6} -] L(35,8,5;2) = 6} -
L(36,6,7;2) = 6! - | L(36,6,8;2) =6} - | L(36,8,5;2) = 6! -
L(37,6,8;2) = 6! - | L{42,8,7;2) =6 1| L(43,8,7;2) = 6} -
L(43,8,8;2) =6 1| L(44,8,7;2) =61 - | L(44,8,8;2) = 6! -
L(44,8,9;2) =6 1| L(45,8,7;2) = - | L(45,8,8;2) = 6! -
L(45,8,9;2) = 6! - | L{46,8,7;2) = 6} - | L(46,8,8;2) = 6} -
L(46,8,9;2) = 6! - | L(47,8,7;2) = 6} - | L(47,8,9;2) = 6} -
L(48,8,7;2) = 6} - | L(48,8,9;2) = 6 -

L(21,3,8;2) = 7" - | L(21,3,9;2) = 7 L(21,4,6;2) = 7 8
L(21,5,9;3) =7 196 | L(22,3,9;2) =7} -1 L(22,4,6;2) = 7! -
1(23,6,4;2) =7 3285 | L(24,6,4;2) = 7! - | L(26,4,8;2) =7 1
L(27,4,8;2) = 7¢ -] L(27,4,9;2) = 7¢ - | L(28,4,8;2) = 7} -
L(28,4,9;2) =74 - | L(28,6,5;2) =7 5021 | L(29,4,9;2) =7} -
L(31,6,6;2) =7t - | L(32,6,6;2) =7t - | L(33,6,6;2) = 7t -
L(37,7,6;2) =7 44 | L(38,6,8;2) =7 8 | L(38,7,6;2) =7} -
L(39,6,8;2) =7} - | L(40,6,8;2) =7} -] L(41,6,8;2) = 7} -
L(41,8,6;2) =7 495 | L(42,6,8;2) = 7} - | L(42,8,6;2) = T} -
L(43,8,6;2) =71 - | L(44,8,6;2) = 7! - | L(50,8,8;2) =7 262
L(51,8,8;2) =7} - | L(51,8,9;2) =7 262 | L(52,8,8;2) = 7! -
L(52,8,9;2) = 7} - | L(53,8,8;2) =7} - | L(53,8,9;2) = 7} -
L(54,8,8;2) = 7} - | L(54,8,9;2) =7} - | L(55,8,9;2) = 7} -
L(56,8,9;2) = 7! -

Table 3.2: Lotteries (m,n,t; k), (m > 20, t # k) for which the optimality of
the design bound L(m,n, t; k) < € in [2] was established (£ = 5,6,7). 'Due
to Bate & Van Rees [1]. By Theorem 1(a). *By Theorem 1(b).
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was found, thereby establishing the new lottery number L(m,n, {; k) = 4; if
no lottery set was found, L(m,n, t; k) = £. These (new) lottery numbers are
listed in Table 4.3. In each case the structure of one valid L(m,n, t; k)-set
is given, using the X-vector notation of §2 (but omitting brackets and com-
mas) or by giving two sets of lottery parameters for which lottery sets may
be conjoined, as described by Theorem 2. The time (in seconds) required to
implement the search technique described in §2 on an AMD 1.8GHz proces-
sor with 256Mb of memory, so as to verify the lower bound, are also given
in Table 4.3 where applicable. (Implementations of the search technique for
the upper bound were aborted the moment when minimal lottery designs
were found; therefore execution times are not given for the upper bounds.)

5 Improved design upper bounds

In addition to the results reported above, a number of further upper bounds
could be improved, using Theorem 2 in conjunction with the results of §3
and §4. These 304 additional bound improvements appear in Table 5.4,
for which lottery sets may be constructed by conjoining smaller lottery
sets corresponding to the lottery numbers on the right hand side of (1), as
described in the proof of Theorem 2.

6 Inconclusive design bounds

Finally, the question of optimality of 54 design bounds in [2] with cardinality
not exceeding 7 could not be resolved, due to unreasonably long execution
times required to run the tree search procedure to optimality. In such cases
the best lower bounds for which the procedure could, in fact, be run within
a reasonable time span, are given in Table 6.5.

7 Conclusion

In this paper we considered the optimality of the 302 cardinality 7 (or less)
lottery design listings in (2], for which m > 20 and which are not coverings
(t # k). It was shown, by means of a computerised search technique, that
192 of these design bounds are optimal, as suminarised in Tables 3.1-3.2. A
further 204 design bounds were improved by providing alternative, optimal
designs, as listed in Table 4.3. In this way, apart from the 192 bounds
that we confirmed to be optimal, a total of 204 new lottery numbers were
established. The optimality of 54 design bounds not exceeding 7 could
not be established; however, in each of these cases a hitherto best known
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(m,n,t;k)  [2],L One solution {m,n,t;k) [2],L One solution
{21,6,8;3) 6,5° (15,6,6;3) + 1 {21,7,10;4) 6,3® 07707000
(21,8,3;2) 6,5° (13,8,2;2) +1 (21,9,3;2) 6,4 0906003000303030
(22,6,8;3) 8,6 (16,6,6;3) +1 (22,6,9;3)  5,4% 0640402060000000
(22,7,9;3)  6,3° 27606010 (22,7,10;4) 7,6 (15,7,7;4) +1
(22,7,12;4) 7,3° 27606010 (22,9,3;2) 6,4 0800004000404010
(22,9,4;2)  7,3° 09404050 (23,6,9;3)  6,4° 0650501060000000
(28,7,4;2) 7,5° (16,7,3;2) +1 (23,7,7;3) 7,60 (16,7,5;3) +1
(23,7,9;3) 5,3° 27707000 (23,7,12;4) 5,3% 27707000
{23,8,4;2) 5,32 08707010 (23,9,3;2) 6,5 (14,9,2;2)+1
(23,9,4;2)  7,3° 09505040 (24,6,9;3) 7,4° 0660600060000000
{24,7,4;2) 1,5t (17,7,3;2) +1 (24,7,8;3) 6,50 (17,7,6;3) +1
(24,7,9;3)  5,4° 0730304070000000 | (24,7,14;4) 5,3° 47606010
(24,8,4;2) 5,3° 08808000 (24,9,3;2) 6,5 (15,9,2;2) +1
(24,9,4;2)  7,3° 09606030 (24,9,5;2)  8,3% 09606030
(24,10,8;4) 8,4 (14,10,5;4) + 1 (25,6,8;2) 5,4% 3640402060000000
(25,6,14;4) 11,4% (19,6,11;4) +1 (25,7,4;2) 7,69 (18,7,3;2) +1
(25,7,8;3) 8,5 (18,7,6;3) +1 (25,7,9;3) 5,4 0740403070000000
(25,7,13;4) 5,4% 0740403070000000 | (25,7,14;4) 45,32 47707000
(25,8,5;2)  4,3° 18808000 (25,9,4;2)  7,3! 09707020
(25,9,5;2) 10,3% 09707020 (25,10,8;4) 8,4® (15,10,5;4) + 1
(26,6,8;2)  5,4° 3650501060000000 | (26,6,14;4) 11,6° (20,6,11;4) +1
(26,7,8;3) 8,6/ (19,7,6;3)+1 (26,7,9;3)  5,4¢ 0750502070006000
(26,7,14;4) 5,4% 1740403070000000 | (26,9,4;2) 8,3! 09808010
(26,9,5;2) 12,3t 09808010 (26,9,7;3) 6,3 09808010
{26,10,6;3) 6,59 (16,10,4;3) + 1 (26,10,9;4) 6,4° (16,10,6;4) +1
(27,6,8;2) 5,4 3660600060000000 | (27,7,9;3) 6,4 0760601070000000
(27,7,14;4) 5,4 1750502070000000 | (27,9,4;2)  8,3! 09909000
(27,9,5;2) 14,3 09909000 {27,9,7;3)  6,3* 09909000
(28,6,11;3) 14,5° (22,6,9;3) +1 {28,7,9;3)  7,4° 0770700070000000
(28,7,14;4) 6,4 1760601070000000 | (28,7,17;4) 4,3% 77707000
(28,9,4;2) 9,59 (19,9,3;2) +1 (28,9,52) 15,3! 19909000
(29,7,14;4) 7,4% 1770700070000000 | (29,8,6;2) 5,4° 1840404080000000
(29,9,4;2) 10,5! (20,9,3;2) +1 (29,9,5;2) 17,4° 0920207030000000
(30,6,12;3) 7,5 (24,6,10;3) + 1 (30,7,5;2)  8,6® (23,7,4;2)+1
(30,7,14;4) 8,6% (21,7,10;4) (30,8,6;2) 5,4 1850503086000000
(30,8,7;2)  5,4° 2840404080000000 | (30,9,4;2) 9,50 (21,9,3;2) +1
(30,9,5;2) 19,4} 0930306090000000 | (31,6,12;3) 8,5t (25,6,10;3) +1
{(31,7,5;2) 8,6} (24,7,4;2) +1 (31,7,14;4) 9,6t (21,7,10;4)
{31,8,6;2) 5,4 1860602080000000 | (31,8,7;2) 5,4 2850503080000000
(31,9,4;2) 9,5! (22,9,3;2) +1 (31,9,5;2)  21,4! 0940405090000000

Table 4.3: Lotteries (m,n, k), (m > 20, t # k) for which the optimality
of the design upper bounds in [2] were found to be suboptimal. Where
Theorem 2 was invoked, only one lottery of the decomposition is given, and
a disjoint set is indicated with a “+1”. The upper bounds listed in [2] and
exact values of the lottery numbers appear in the column labelled “[2], L”.
Lower bound by Theorem 1(a). Execution times (in seconds) to establish
lower bounds are given by the following superscripts: ®less than 1,
977, 92, °130, /6, 93, h22.
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(m,n,t; k) |12}, L One solution {m,n, t; k) {2],L  One solution
(32,6,8;2) 6,5° (26,6,7;2) +1 {32,6,12;3) 9,7 (23,6,9;3)
(32,7,5;2) 8,7 (25,7,4;2) +1 {32,8,6;2)  5,4° 1870701080000000
{32,8,7;2) 5,4 2860602080000000 | (32,9,4;2) 9,6 (23,9,3;2) +1
(32,9,5;2)  10,4° 0950504090000000 | (33,6,12;3) 10,7!  (24,6,9;3)
{(33,7,15;4)  8,7% (21,7,10;4) {33,7,16;4) 11,5% (26,7,13;4) + 1
(33,7,17;4)  6,5% (26,7,14;4) + 1 (33,8,6;2)  5,4° 1880800080000000
{33,8,7;2) 5,42 2870701080000000 | (33,9,4;2)  9,6! (24,9,3;2) +1
{33,9,5;2) 9,49 (0960603090000000 | (34,7,16;4) 11,5} (21,7,10;4)
(34,7,17;4) 6,5} (27,7,14;4) + 1 (34,8,7;2)  5,4* 2880800080000000
(34,9,5;2)  10,4' 0970702080000000 | (34,9,6;2)  11,4° 0970702090000000
(34,10,8;3) 11,57 (24,10,6;3) + 1 (35,7,16;4) 11,5! (21,7,10;4)
(35,7,17;4)  8,5° (28,7,14;4) + 1 {35,9,5;2) 10,4t (26,9,4;2) +1
(35,9,6;2)  11,4% (26,9,52)+ 1 (35,10,4;2) 7,5/ (25,10,3;2) +1
(35,10,8;3) 11,5} (25,10,6;3) +1 (36,7,17;4) 8,5 (29,7,14;4) +1
(36,9,5;2) 10,4} (27,9,4;2) + 1 (36,9,6;2) 11,41 (27,9,5;2) +1
(36,10,4;2) 7,6} (26,10,3;2) +1 (36,10,8;3) 11,69 (26,10,6;3) +1
(37,8,5;2) 8, 7" (21,8,3;2) (37,9,5;2)  10,6' (24,9,4;2)
(37,9,6;2) 11,4} (28,9,5;2) +1 (38,9,5;2) 10,6 (25,9,4;2)
(38,9,6;2) 12,57 {29,9,5;2)+1 (39,8,6;2)  7,5° (31,8,5;2) + 1
(39,8,8;2) 6,5° (31,8,7;2) +1 (39,9,5;2) 11,6t (30,9,4;2) + 1
(39,9,6;2)  12,5¢ (30,9,5;2) +1 (40,8,6;2) 7,5 (32,8,5;2) + 1
(40,8,8;2) 6,5! (32,8,7;2)+1 (40,8,9;2) 6,5 (32,8,8;2) +1
(40,9,5;2)  11,6% (31,9,4;2) +1 (40,9,6;2) 13,5} (31,9,5;2) +1
(41,8,7;2) 6,5 (33,8,6;2)+1 (41,8,8;2) 6,5} (31,8,7;2) +1
(41,8,9;2) 6,5! (31,8,8;2)+1 (41,9,6;2)  14,5! (32,9,5;2) +1
(42,8,8;2) 6,5 (34,8,7;2)+1 (42,8,9;2) 8,5 (34,8,8;2) +1
(42,9,6;2)  13,5¢ (33,9,5:2)+1 (43,8,9;2)  6,5! (35,8,8;2) +1
(43,9,6;2)  13,5! (34,9,5;2) + 1 (44,9,6;2) 13,5t (35,9,5;2) +1
(44,9,7;2) 14,57 (35,9,6;2) + 1 (45,9,7;2)  14,5¢ (36,9,6;2) + 1
(45,10,10;3) 15,6 (35,10,8;3) +1 (46,9,6;2) 13,70 (25,9,4;2)
(46,9,7;2)  14,5! (37,9,6;2) + 1 (46,9,8;2)  15,5! (37,9,7;2) + 1
(46,10,11;3) 14,5™ (36,10,9;3) + 1 (47,8,8;2)  7,6! (39,8,7;2) + 1
(47,9,6;2) 13,7 (25,9,4;2) (47,9,7;2) 14,6 (25,9,4;2)
(47,9,8;2) 15,5t (38,9,7;2) + 1 (47,10,11;3) 14,5! (37,10,9;3) + 1
(48,8,8;2) 7,61 (40,8,7;2) +1 (48,9,6;2) 13,7 (39,9,5;2) + 1
(48,9,7;2) 14,6} (25,9,4;2) (48,9,8;2)  15,6° (39,9,7;2) +1
(48,9,9;2) 16,57 (39,9,8;2) +1 (48,10,11;3) 14,5! (38,10,9;3) + 1
{49,8,8;2) 7,61 (41,8, 7;2) +1 (49,8,9;2)  7,6% (41,8,8;2) +1
(49,9,6;2) 13,7t (40,9,5;2) + 1 (49,9,7;2) 14,6} (25,9,4;2)
(49,9, 8:2) 15,6%  (25,9,4;2) (49,9,9;2) 18,61 (25,9,5;2)

Table 4.3: (continued) Lotteries (m,n, t;k), (m > 20, t # k) for which the
optimality of the design upper bounds in [2] were found to be suboptimal.
Where Theorem 2 was invoked, only one lottery of the decomposition is
given, and a disjoint set is indicated with a “ 4 1”. The upper bounds
listed in [2] and exact values of the lottery numbers appear in the column
labelled “[2],L”. *Lower bound by Theorem 1(a). Execution times (in
seconds) to establish lower bounds are given by the following superscripts:
®less than 1, ®1, €20, 4770, 104, /3, 9700, "5668, 13, 72, *8, '3201,

™4,

94



(m,n,t; k) 2], L One solution (m,n, t; k) |2],L One solution
(49,10,11;3) 14,57 (39,10,9;3) +1 | (50,8,9;2)  7,6% (42,8,82) + 1

(50,9,7;2) 14,6 (25,9,4;2) (50,9,8;2)  16,6% (25,9,4;2)
(50,9,9;2)  20,6% (25,9,5;2) {50,10,11;3) 14,5! (40,10,9;3) +1
(51,9,7;2) 15,68 (27,9,4;2) {51,9,8;2) 16,6! (27,9,4;2)
(51,9,9;2) 22,6} (27,9,5;2) {52,9,7;2) 15,6t (27,9,4;2)
(52,9,8;2) 17,61 (27,9,4;2) {52,9,9;2) 23,6f (27,9,5;2)

(53,9,7;2) 16,6¢ (44,9,6;2) +1 {53,9,8;2) 18,6} (44,9,7;2) +1
(53,9,9;2)  25,6% (44,9,8;2) +1 (54,9,7;2)  16,6% (45,9,6;2) +1
(54,9,8;2) 17,6} (45,9,7;2) +1 (54,9,9;2) 27,6 (45,9,8;2) +1

(55,8,8;2) 9,7 (32,8,5;2) (55,9,8;2) 17,6% (46,9,7;2) +1
(55,9,9;2) 29,6! (46,9,8;2) +1 (56,8,8;2) 9,7t (48,8,7;2)+1
(56,9,8;2) 17,7 (34,9,5;2) (56,9,9;2) 18,6t (34,9,6;2)
(57,8,9;2) 8,7t (33,8,6;2) (57,9,8;2) 17,7t (35,9,5;2)
{57,9,9;2) 18,7° (35,9,6;2) (57,10,13;3) 18,65 (47,10,11;3) + 1
{58,9,8;2) 17,7t (36,9,5;2) (58,9,9;2) 18,7' (36,9,6;2)
{58,10,13;3) 18,6 (48,10,11;3)+1 | (59,9,8;2) 17,78 (50,9,7;2) +1
{59,9,9;2) 18,71 (37,9,6;2) {59,10,13;3) 18,6% (49,10,11;3)+1

(60,9,8;2) 17,7 (51,9,7;2)+1 {60,9,9;2) 18,7t (37,9,6;2)

(60,10,13;3) 18,6! (50,10,11;3) +1 | (61,9,82) 17,7t (52,9,7;2) +1

(61,9,9;2) 18,7 (37,9,6;2) {62,9,8;2) 17,7F (53,9,7;2) +1

(62,9,9;2) 18,7t (37,9,6;2) (63,9,8;2) 17,7 (54,9,7;2) +1

(63,9,9;2) 19,78 (54,9,82) +1 (64,9,9;2) 19,7 (55,9,82) +1
Table 4.3: (continued) Lotteries (m,n,t; k), (m > 20, t # k) for which the
optimality of the design upper bounds in [2] were found to be suboptimal.
Where Theorem 2 was invoked, only one lottery of the decomposition is
given, and a disjoint set is indicated with a “ + 1”. The upper bounds
listed in [2] and exact values of the lottery numbers appear in the column
labelled “[2],L”. *Lower bound by Theorem 1(a). Execution times (in
seconds) to establish lower bounds are given by the following superscripts:
1466, %1486, °1.

lower bound was provided in Table 6.5. The bounds in Table 6.5 seem
tantalisingly close, and certainly present an opportunity for further work.
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(m,n,t; k) Old  m,t New]| (mn,n,t; k) Old m,t New
(21,4,9;3) 16 17,7 15 | (21,6,7;3) 9 15,5 8
(21,6,10;4) 12 157 11 | (21,7,6;3) 8 14,4 7
(21,8,8;4) 8 13,5 7 | (22,7,11;5) 31 157 25
(22,10,7;4) 10 12,4 6 | (23,6,8;3) 8 17,6 7
(23,7,10;4) 8 16,7 7 | (23,10,7;4) 10 13,4 8
(24,6,8;3) 9 186 8 | (256,9;3) 8 197 7
(25,9,6;3) 7 164 6 | (26,6,9;3) 9 20,7 7
(26,6,13;4) 15 20,10 8 | (26,10,8;4) 8 16,5 6
(27,6,9;3) 10 21,7 9 (27,6,13;4) 15 21,10 12
(27,6,14;4) 11 21,11 9 (27,8,6;3) 20 19,4 15
(27,9,6; 3) 8 184 7 | (28,6,14;4) 13 22,11 10
(28,6,15;4) 13 -  10°| (28,7,8;3) 9 21,6 8
(28,8,6;3) 24 20,4 15 | (29,6,13;4) 18 23,10 17
(29,6,14;4) 14 23,11 12 | (29,6,15;4) 13 -  12°
(30,6,14;4) 16 24,11 13 | (30,7,13;4) 9 23,10 8
(32,7,14;4) 10 11,5 8 | (32,8,7;3) 14 24,5 13
(33,10,6;3) 15 23,4 12 | (33,10,7;3) 12 23,5 6
(34,6,12;3) 10 10,4 8 | (34,9,4;2) 9 13,2 7
(34,10,6;3) 16 24,4 13 | (34,10,7;3) 12 24,5 7
{(35,6,12; 3) 11 11,4 9 (35,7,5;2) 10 11,2 9
(35,7,9;3) 14 28,7 13 | (35,9,4;2) 9 13,2 7
(35,10,6;3) 16 254 15 | (3510,7;3) 12 255 9
(36,6,12;3) 13 12,4 10 | (36,7,9;3) 16 29,7 15
(36,7,16;4) 13 157 8 | (36,9,4;2) 9 152 8
(36,10,7;3) 12 26,5 9 | (37,7,16;4) 13 16,7 9
(37,7,17;4) 10 16,8 7 | (37,9,4;2) 9 152 8
(37,10,7;3) 12 27,5 10 | (37,10,8;3) 11 27,6 8
(38,7,16;4) 15 17,7 12 (38,7,17;4) 10 17,8 7
(38,9,9;3) 10 12,3 7 | (38,10,7;3) 12 28,5 11
(38,10,8;3) 11 28,6 8 | (39,7,16;4) 15 32,13 14
(39,7,17;4) 12 32,14 9 | (39,9,9;3) 10 13,3 9
(39,10,8;3) 11 13,3 9 | (40,6,13;3) 16 16,5 12
(40,7,16;4) 17 33,13 16 | (40,10,83) 11 14,3 10
(41,9,5;2) 12 32,4 7 | (42,9,5;2) 12 334 7
(43,9,5;2) 12 22,3 8 | (44,9,52) 12 22,3 8
(44,10,8;3) 15 34,6 14 | (45,7,7;2) 12 38,6 8
(45,9,5;2) 12 24,3 9 | (46,7,7:2) 12 39,6 9
(46,9,5;2) 12 24,3 9 | (46,10,8;3) 18 36,6 17
(46,10,10;3) 15 36,8 7 {47,7,7;2) 12 40,6 10
(47,9,5;2) 12 26,3 10 | (47,10,8;3) 19 37,6 17
(47,10,9;3) 16 37,7 11 | (47,10,10;3) 15 37,8 9
(48,7,7;2) 12 41,6 10 | (48,9,52) 12 26,3 10
(48,10,8;3) 20 38,6 18 | (48,10,9;3) 16 38,7 12
(48,10,10;3) 15 38,8 9 (49, 5,6;2) 29 44,5 28
(49,7,7;2) 12 42,6 11 | (49,9,5;2) 12 28,3 11

Table 5.4: Lotteries (m,n,t; k), (m > 20, t # k) for which upper bounds
were improved using Theorem 2. The values of m and ¢ of only one compo-
nent of the decomposition are given. No conclusion could be reached about
the optimality of these improved upper bounds. The upper bounds listed in
[2] appear in the column labelled “Old”, whilst our improved upper bounds
appear in the column labelled “New”. *By Theorem 1(e).
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~{m,n,t; k) Old m,t New]| (m,n,t;k) Old m,t New
(49,10,5,2) 12 14,2 8 | (49,10,9;3) 16 39,7 13
(49,10,10;3) 15 23,5 10 | (50,9,5;2) 12 28,3 11
(50,9, 6;2) 13 41,5 8 | (50,10,52) 9 152 8
(50,10, 9; 3) 16 40,7 14 | (50,10,10;3) 15 24,5 11
(51,9,6;2) 13 42,5 8 {(51,10,5;2) 10 16,2 9

(51,10,9;3) 16 41,7 15 | (51,10,10;3) 15 41,8 12
(51,10,11;3) 14 25,6 9 | (52,7,7;2) 14 28,4 13
(52,9,6;2) 14 43,5 9 | (52,10,10;3) 15 26,5 13
(52,10,11;3) 14 26,6 10 | (53,7,8;2) 15 46,7 10
(53,8,7;2) 10 32,5 9 | (53,9,6;2) 4 44,5 9
(53,10,10;3) 15 27,5 14 | (53,10,11;3) 14 27,6 12
(54,5,7;2) 30 49,6 29 | (54,7,8;2) 15 47,7 11
(54,9,6;2) 15 45,5 10 | {(54,10,11;3) 14 28,6 12
(55,7,8;2) 15 48,7 11 | {55,9,6;2) 15 46,5 10
(55,9,7;2) 16 10,2 8 | (55,10,5;2) 11 454 10
(55,10,11;3) 14 29,6 13 | (56,7,8;2) 15 49,7 12
(56,9,6;2) 15 47,5 11 | (56,9,7;2) 6 11,2 8
(56,10,12;3) 19 46,10 8 | {57,7,8;2) 15 34,5 13
(57,9,6;2) 15 48,5 11 | (57,9,7;2) 6 12,2 8
(57,10,11;3) 15 47,9 12 | (57,10,12;3) 19 47,10 10
(58,7,8;2) 15 34,5 13 | (58,9,6;2) 15 37,4 12
(58,9,7;2) 16 13,2 8 | (58,10,6;2) 13 485 9
(58,10,11;3) 16 48,9 13 | (58,10,12;3) 19 48,10 10
(59,5,8;2) 31 54,7 30 | (59,7,8;2) 15 52,7 14
(59,9, 6;2) 15 50,5 12 | (59,9,7;2) 16 14,2 9
(59,10,6;2) 11 49,5 9 | (59,10,11;3) 18 49,9 14
(59,10,12;3) 19 49,10 11 | (60,9,6;2) 15 39,4 13
(60,9,7;2) 16 152 9 | (60,10,6;2) 11 50,5 9
(60,10,10;3) 23 50,8 21 | (60,10,11;3) 19 50,9 15
(60,10,12;3) 19 50,10 12 | (61,5,8;2) 33 56,7 32
(61,9,6;2) 15 39,4 13 | (61,9,7;2) 16 16,2 10
(61,10,6;2) 11 26,3 10 | {(61,10,10;3) 24 51,8 22
(61,10,11;3) 20 51,9 16 | (61,10,12;3) 19 51,10 13
(61,10,13;3) 18 51,11 10 | {62,9,6;2) 15 41,4 14
(62,9,7;2) 16 53,6 10 | (62,10,10;3) 24 52,8 23
(62,10,11;3) 20 52,9 17 [ (62,10,12;3) 19 52,10 14
(62,10,13;3) 18 52,11 11 | (63,9,6;2) 15 41,4 14
(63,9,7;2) 16 18,2 11 | {(63,10,11;3) 20 53,9 18
(63,10,12;3) 19 53,10 15 | (63,10,13;3) 18 53,11 13
(64,5,9;2) 32 59,8 31 | (64,9,7;2) 16 556 11
(64,9,8;2) 18 55,7 9 | (64,10,6;2) 12 54,5 11
(64,10,11;3) 20 54,9 19 | (64,10,12;3) 19 54,10 16
(64,10,13;3) 18 54,11 13 | (65,9,7;2) 17 20,2 12
(65,9,8;2) 18 20,3 9 | (659,92) 20 43,6 8
(65,10,6;2) 12 55,5 11 | {6510,12;3) 19 39,7 17

Table 5.4: (continued) Lotteries (m,n,t;k), (m > 20, ¢ # k) for which
upper bounds were improved using Theorem 2. The values of m and ¢ of
only one component of the decomposition are given. No conclusion could
be reached about the optimality of these improved upper bounds. The
upper bounds listed in [2] appear in the column labelled “Old”, whilst our
improved upper bounds appear in the column labelled “New”.
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_{m,n,t; k) Old  m,t New| (m,n,t;k) Old m,t New
(65,10,13;3) 18 39,8 14 | (66,5,9;2) 34 61,8 33
(66,9,7;2) 17 21,2 12 | (66,9,8;2) 19 456 9
(66,9,9;2) 20 44,6 8 | (66,10,6;2) 13 56,5 12
(66,10,12;3) 19 40,7 18 | (66,10,13;3) 18 40,8 15
(67,5,9;2) 35 62,8 34| (67,9,7;2) 18 58,6 13
(67,9,8;2) 19 58,7 9 | (67,9,9;2) 20 58,8 8
(67,10,13;3) 18 57,11 13 | (67,10,14;3) 18 57,12 11
(68,9,7;2) 18 59,6 13 | (68,9,8;2) 19 456 10
(68,9,9;2) 20 456 8 | (68,10,7;2) 16 58,6 10
(68,10,13;3) 18 58,11 14 | (68,10,14;3) 18 58,12 11
(68,10,15;3) 22 58,13 7 (69,8,9;2) 12 45,6 11
(69,9,7;2) 18 60,6 14 | (69,9,8;2) 19 456 10
(69,9,9;2) 20 45,6 8 (69,10, 7;2) 16 59,6 10
(69,10,13;3) 18 59,11 15 | (69,10,14;3) 18 59,12 12
(69,10,15;3) 22 59,13 7 | (70,9,7;2) 18 61,6 14
(70,9,8;2) 19 253 11| (70,9,9;2) 20 456 8
(70,10,6;2) 14 60,5 13| (70,10,7;2) 14 354 10
(70,10,13;3) 19 60,11 16 | (70,10,14;3) 18 60,12 13
(70,10,15;3) 22 60,13 7 (71,9,7;2) 18 50,5 15
(71,9,8;2) 19 26,3 11 | (71,9,9;2) 20 26,4 8
(71,10,7;2) 14 61,6 11 | (71,10,13;3) 20 61,11 17
(71,10,14;3) 18 61,12 14 | (71,10,153) 22 61,13 11
(72,9,7;2) 18 63,6 15 | (72,9,8;2) 19 27,3 12
(72,9,9;2) 20 27,4 8 | (72,10,1%3) 25 62,10 24
(72,10,13;3) 21 62,11 18 | (72,10,14;3) 18 62,12 15
(72,10,15;3) 22 62,13 12 (73,9,7;2) 18 52,5 16
(73,9,8;2) 19 28,3 12 | (73,9,9;2) 20 28,4 10
(73,10,7;2) 14 38,4 12 | (73,10,12;3) 26 63,10 25
(73,10,13;3) 23 63,11 19 | (73,10,14;3) 19 63,12 16
(73,10,15;3) 22 63,13 14 | (74,9,7;2) 18 52,5 16
(74,9, 8;2) 19 29,3 13 | (74,9,9;2) 20 29,4 10
(74,10,7;2) 13 39,4 12 | (74,10,12;3) 28 64,10 26
(74,10,13;3) 24 64,11 20 | (74,10,14;3) 21 64,12 17
(74,10,15;3) 22 64,13 14 | (75,9,7;2) 18 54,5 17
(75,9,8;2) 19 30,3 13 | (75,9,9;2) 20 30,4 10
(75,10,7;2) 14 65,6 12 | (75,10,12;3) 28 65,10 27
(75,10,13;3) 24 65,11 21 | (75,10,14;3) 22 6512 18
(75,10,15;3) 22 49,10 15 (76,9,7;2) 18 54,5 17
(76,9,8;2) 19 31,3 14| (76,9,9;2) 20 31,4 10
(76,10,7;2) 14 41,4 13 | (76,10,13;3) 24 66,11 22
(76,10,14;3) 23 66,12 19 | {76,10,153) 22 50,10 16
(77,9,8;2) 19 68,7 14 | (77,9,9;2) 21 68,8 11
(77,10,13;3) 24 67,11 23 | (77,10,14;3) 23 67,12 20
(77,10,15;3) 22 67,13 14 | (78,9,8;2) 20 33,3 15
{78,9,9; 2) 21 69,8 11 | (78,10,14;3) 23 52,9 21

Table 5.4: (continued) Lotteries (m,n,t;k), (m > 20, t # k) for which
upper bounds were improved using Theorem 2. The values of m and ¢ of
only one component of the decomposition are given. No conclusion could
be reached about the optimality of these improved upper bounds. The
upper bounds listed in [2] appear in the column labelled “Old”, whilst our
improved upper bounds appear in the column labelled “New”.
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(m,n,t;k Old m,t New| (m,n,t; k) Old m,t New
(78,10,15;3) 22 68,13 15 | (78,10,16;3) 22 68,14 12
(79,9,8;2) 20 34,3 15| (79,9,9;2) 2 34,4 12
(79,10,7;2) 15 44,4 14 | (79,10,14;3) 23 53,9 22
(79,10,15;3) 22 69,13 16 (79,10,16;3) 22 69,14 13
(80,9,8;2) 21 353 16 | (80,9,9;2) 22 354 12
(80,10,7;2) 15 45,4 14 | (80,10,15;3) 22 70,13 17
(80,10,16;3) 22 70,14 14 (81,9,8;2) 21 36,3 16
(81,9,9;2) 22 36,4 13| (81,10,7;2) 16 46,4 15
(82,9,8;2) 21 37,3 17 | (82,9,9;2) 22 37,4 13
(83,9,8;2) 21 74,7 17 | (83,9,9;2) 22 38,4 14
(84,9,8;2) 21 39,3 18 | (84,9,9;2) 2 39,4 M
(85,9,8,2) 21 76,7 18| (859,9;2) 22 40,4 15
(85,10,7;2) 17 75,6 16 | (86,9,8;2) 21 656 19
(86,9,9;2) 22 41,4 15| (87,9,8;2) 21 656 19
(87,9,9;2) 22 42,4 16 | (88,9,8;2) 21 67,6 20
(88,9,9;2) 22 43,4 16 | (89,9,8;2) 21 67,6 20
(89,9,9;2) 22 44,4 17 | {90,9,9;2) 22 454 17

Table 5.4: (continued) Lotteries (m,n,t;k), (m > 20, ¢t # k) for which
upper bounds were improved using Theorem 2. The values of m and ¢ of
only one component of the decomposition are given. No conclusion could
be reached about the optimality of these improved upper bounds. The
upper bounds listed in [2] appear in the column labelled “Old”, whilst our
improved upper bounds appear in the column labelled “New”.
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67 < L(21,7,%2) < 7
5° < L(22,10,7;4) < 6"
5% < [(24,8,9;4) < 6
6t < L(25,7,11;4) <7
5% < L(25,9,6;3) < 6"
5* < 1(26,9,6;3) < 7
6t < L(27,7,12;4) < 7
5°t < [(27,9,6;3) < 7°
6”51,(28932)57
5% < 1(28,10,9;4) < 6
5% < L(29,9,7;3)< 7
61t < L(30,8,4;2) < 7
6™ < 1(32,8,4;2)< 7
6%t < 1(34,9,4;2)< 7°
6t <L(37,7,17;4) < 7"
5° < L(38,9,9;3) < 7*
6tt < L(41,9,5;2) < 7"
6t < L(68,10,15;3) < 7°

61 < L(21,7,6;3) < 7°
6t! < 1,(23,6,8;3) < 7°
5% < L(24,10,5;3) <6
61t < L(25,8,3;2) <7
61t < L(26,6,9;3) < 7°
5° < L(26,10,8;4) < 6°
6t < L(27,8,7;3) < 7

5° < L(27,10,6;3) < 7
5° < L(28,9,7;3) <6
6t < 1(29,7,9;3)< 7
5° < L(29,10,9;4) < 6
5° < L(30,10,9;4) <6
5° < L(33,10,7;3) < 6"

<7

5%t < L(34,10,7;3)
6t < 1(37,10,4;2) < 7
61t < L(38,10,4;2) < 7
61t < 1(42,9,5;2) < 7*
61! < L(69,10,15;3) < 7°

5° < L(21,8,8;4) < 7°

6t < L(23,7,10;4) < 7"
6t < L(25,6,9;3) < 7"

5° < L(25,8,7;3) < 6
6t < L(26,7,4;2) <7

61 < L(27,7,4;2) < 7

6tt < L(27,9,3;2) < 7
5% < L(27,10,9;4) < 6
5° < L(28,10,6;3) < 7
6t < 1(29,7,13;4) <7
6t < L(30,7,9;3) < 7
6t < L(31,8,4;2) <7
6t < L(34,8,9;3) < 7
6tt < 1(35,9,4;2) < 7*

[

61t < 1(38,7,17;4) <
61! < L(39,10,4;2) < 7
6t < L(46,10,10;3) < 7*
611 < L(70,10,15;3) < 7*

Table 6.5: Lotteries {m,n,t;k), (m > 20, ¢t # k) for which the optimality
of the design upper bound L(m,n,t;k) < € for € = 6,7 could not be es-
tablished. Largest lower bounds are given for which the characterisation
search technique in §2 could be executed within a reasonable amount of

time.

*The characterisation procedure could not be implemented up to

level 5. tThe characterisation procedure could not be implemented up to
level 6. By Theorem 1(a). *See Table 4.3.
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