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A Steiner triple system (STS) of order v, denoted by STS(v), is a pair
(V,B) where V is a v-set and B is a collection of unordered triples (called
blocks) of V, such that for every unordered pair in V, there exists exactly
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one block in B that contains it. A partial Steiner triple system (PSTS) of
order v, denoted by PSTS(v), is a pair (V,B) with similar properties, in
which “exactly one” in the previous definition is substituted by “at most
one”.

The study of triple systems is an active area of research (see [1]). Avoid-
ance problems in triple systems have been largely studied [6]. One famous
problem is Pasch avoidance. A Pasch configuration on an STS (PSTS) is a
configuration consisting of 4 triples on the STS (PSTS) spanning 6 points,
which can only be of the form: {{a,b,c}, {a,d,e},{f,b,d},{f,c,e}}. An
STS or PSTS is Pasch-free if it does not contain 4 triples forming a Pasch.
The anti-Pasch packing number, denoted here by D(v), is the maximum
number of blocks on an anti-Pasch PSTS(v); the anti-Pasch PST S(v) con-
taining exactly D(v) blocks are said to be mazimal. When an anti-Pasch
STS(v) exists, then a maximal anti-Pasch PSTS(v) must be a Steiner
triple system.

Chee et al. [2] have shown that maximal anti-Pasch PSTSs give opti-
mal erasure-resilient codes that tolerate all 3-erasures and most 4-erasures.
These codes are used for handling failures in large disk arrays (RAIDs) and
have smallest possible update penalty and check-disk overhead among the
codes tolerating the same level of failure. The only 4-erasures that cannot
be corrected are the unavoidable ones coming from catastrophic failures,
i.e. an erasure of a disk plus all of its check disks. This application has
been introduced by Hellerstein et al. [8]. The parity check matrix for the
code is given by [A]|I] where A is the point-by-block incidence matrix of
the anti-Pasch PSTSs.

In this article, we classify the anti-Pasch PST'S(v), for v < 15, by a
computational exhaustive generation of the non-trivial cases, namely v €
[10,14). A catalogue containing all such pairwise non-isomorphic designs,
as well as their automorphism group sizes and leave graphs, is provided.

The algorithm employed in the search is an orderly algorithm based
on the methods by Denny and Gibbons [4]. The algorithm also falls into
the general framework described by McKay [10]: it is an isomorph-free
exhaustive generation that guarantees to generate each (pairwise noniso-
morph) substructure only once, and it is fully parallelizable. We implement,
a distributed version of the algorithm, which dynamically assigns the un-
finished subtasks whenever a workstation is free. This implementation uses
a client-server approach, in which a server generates all small substructures
(partially filled incidence matrices) which are independently completed by
various client workstations. Such distributed method raises some compu-
tational questions that are experimentally investigated, such as: how big
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should the substructures generated by the server be, how is the running
time affected by the addition of more workstations (clients), among others.
We believe that our experimental findings can be of value to researchers
applying similar distributed exhaustive generation techniques to other com-
binatorial problems.

2 Previous existence and enumeration results

We now summarize previously known results on the existence and enumera-
tion of STSs and PSTSs, for both general and anti-Pasch cases. An STS(v)
exists if and only if v = 1,3 (mod 6); for these values an optimal PST S(v)
must be an STS(v). For all v, the size of the largest PSTS(v) has been
determined, and various constructions are known. An anti-Pasch STS(v)
is known to exist for every admissible parameter except for v = 7,13, that
is, an anti-Pasch ST'S(v) exists if and only if v = 1,3 (mod 6) and v # 7,13
(see references in [1] plus the later result by Grannell et al. [7]). This im-
plies that D(v) = (v% —v)/6 for all v = 1,3 (mod 6), v # 7, 13. We observe
that the known construction of optimal PSTSs for v = 0,2 (mod 6) from
the deletion of a point on a PSTS{v + 1) can be directly applied to show
that D(v) = (v? —2v)/6 for all v = 0,2 (mod 6), v # 6,12. As far as we
know, D(v) has not been generally determined for v = 4,5 (mod 6). In [11],
the value of D(v) is computationally obtained for v € {6,7,10,11,12,13},
which completes the determination of D(v) for v < 15.

Enumeration results of pairwise non-isomorphic STSs for all admissible
v < 19 are known and shown in the next table. The entries for v = 19
have been recently completed by Kaski and Ostergard [9). However, much
less is known on the enumeration of anti-Pasch PSTSs. Indeed, the only
previously known results seems to be the ones implied by the existence of
anti-Pasch STSs.

v T7]9[13] 15 19
# STS(v) T[1[ 2|80/ 11,084,874,829
# anti-Pasch STS(v) [0 ]|1] o 1 2,538

3 Outline of the algorithm

The algorithm employed by us is based on the general method proposed by
Denny and Gibbons (4] (see more details in [3]). Their method consists of
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various improvements on an algorithm first proposed by Gibbons et al. [5].

The algorithm builds the incidence matrix (points by blocks) for each
triple system generated. The main strategy is a 2-level backtracking algo-
rithm for constructing the incidence matrix: the first level of the backtrack-
ing consists of the generation of the matrix, row by row, and the second
level is a backtracking on the possible values of the columns for each row.
It has been experimentally shown (see Denny [3]) that it is much more
efficient to do the backtracking on points (rows) rather than blocks of the
designs.

The columns of the matrix (corresponding to the blocks of the design)
are required to be lexicographically ordered. In this way, identical columns
of a partially generated matrix can be grouped into cells, and new points
are added to the leftmost columns in a cell, avoiding the generation of some
isomorphic configurations. See [3] for more details on the row cell structure.

Exactly one representative of each isomorphism class of designs of any
given order must be generated, this is called a canonical representative.
The canonical representative selected is the lexicographically smallest de-
sign among the members of an isomorphism class (the ordering of designs
is based on a special lexicographical ordering of matrices described in Sec-
tion 3.1). An orderly generation is employed, imposing that the rows of
the matrix be sorted in lexicographical order as well. In this way, partial
matrices of a canonical representative must be canonical partial designs;
therefore, we can backtrack on any row corresponding to a partial matrix
that is not in canonical form. We explain the canonicity test algorithm in
Section 3.3.

Another important aspect of the algorithm is the checking that the par-
tial matrices satisfy several properties, so that they correspond to partially
constructed anti-Pasch PSTSs. Partial matrices satisfying these properties
are called feasible. These properties are described in Section 3.1 and 3.2.

A rough general description of the algorithm is given next:

Input: v; ub, Ib (upper and lower bounds on D(v))
Output:  isomorph-free list of PSTS(v) with D(v) blocks

Let M be a v by ub matrix, initially full of zeroes.
cr = 1; (stores the current row)
designList = empty-list;
bmaz = 0; (largest # blocks in a design generated so far)
while (er > 0) do
result = generate-next-row(M,cr); (row dacktracking)
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if (result is not OK) then (there is no next row)
cr =cr—1; (backtrack on rows)
elseif (M is feasible) [and (M is canonical)] then (*)
cr =cr +1; (prepare for generation of next row)
else do nothing ( i.e. try next possible row content)
endif;
if (ecr =v+1) then
Let b be #blocks in the design given by M.
if (b > byez) and (b>1b) then
if (M is canonical) then (*x)
if (b > bmaz) then
bmaz = b; (update bmqz)
designList = empty-list;
endif;
add M to designlist;
if (b>1b) 1b = b; (update lb)
endif;
endif;
or = v;
endif;
endwhile;
output designList;

The procedure generate-next-row is a second level backtracking algo-
rithm on rows. Figure 1 shows, for row number 4, the feasible rows in the
order they are generated by this procedure.

Remark: If we are interested in avoiding other configurations, the only
required change in the above algorithm is in the feasibility test for M.

3.1 Restrictions used in row generation

Let v be the order of the designs sought and ub be an upper bound on
its number of blocks. Since we don’t know the number of columns on the
largest incidence matrix (corresponding to the maximal designs), we take
M to be a 0-1 matrix with v rows and ub columns such that the sum of the
elements in a column are equal to either 3 or 0 (the column either represents
a triple or is not used). Given two rows there exists at most one column
for which both rows contain number 1 (partial PSTS property), and no
6 x 4 submatrix of M contains exactly two ones per column (anti-Pasch

property).
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Let »; be the number of 1s in row ¢ of the incidence matrix of a design.
Knowledge on the structure of the designs sought allows for the determi-
nation of lower and upper bounds on D(v) and on r;, which adds extra
restrictions to feasible rows.

Theorem 1. Let v # 6,7,12,13. Then, the following are valid lower and
upper bounds on b= D(v) and r;:

ifv= biower bupper Tlower | Tupper
0 (mod 6) vzzzv v‘gzv v_—2-2, u-2-2
1 (mod 6) uzﬁ—u v‘ﬂ—v vT-l v;l
2 (mod 6) vt | ez em2| e
3 (mod 6) 026—11 _uzﬁ; u'—,-l u:l
4 (mod 6) (v—1)(v-2) u”—%v——? 1 0;2
5 (mod 6) @—2)‘: v—3) uz-(;;—s 1 u;l

Proof. For v = 0,1,2,3 (mod 6), these results follow from the existence
of maximal PSTS(v) that are anti-Pasch, for v # 6,7,12,13. For v =
4,5 (mod 6), the upper bounds on b and r come from the size of a maximal
PSTS(v); the lower bound on v comes from the existence of an anti-Pasch
STS(v—1) and an anti-Pasch ST S(v — 2), respectively. a

Let C; be the set of columns j of M such that M;; = 1. We employ
the following modified lexicographical ordering on the rows of matrix M:
we say that C;, <y C;, if and only if |C;,| > |Ci,| or ( |Ci,| = |Ci,| and
Ci, is lexicographical smaller than Cj,). This is a modification of the usual
lexicographical ordering, such that rows with larger numbers of 1’s precede
the others. This is chosen in order to give priority to rows that are more
likely to give large b, since large b arises from large r;’s; this heuristics
attempts to increase the lower bound on b earlier on the generation. This
lexicographical ordering imposes restrictions on the contents of the next
row to be generated.

3.2 PFeasibility testing

The following proposition gives a useful pruning condition which was em-
ployed by our algorithm.

Proposition 1. Let M be a v by b incidence matriz of an anti-Pasch
PSTS(v), with rows satisfying the above mentioned modified lexicographical
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112 3 4]5 6 7/8 9 1011 12
1 1)1 1 1]0 0 0f{0 0 0]0 O
2]1}100 0f1 1 1]0 000 0
341f0 0 0jo 0 O]J1 1 1/0 O

Column (cell) backtracking for row 4:

4 |1
infeasible: more than 3 ones in a column

40110 0|10 O0)J1 0 O]J1 O

feasible row

410({10 Of10 Of(0 0 O¢1 1

feasible row

41010 000 Of|1 0 Of1 1

feasible row

410{00 O0f10 01 0 O]|1 1

feasible row

4010 0]J]10 01 0 0|0 O

infeasible: violates Proposition 1

Figure 1: Row generation during generate-next-row
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ordering. Let M; be the submatriz consisting of the first i rows of M, let
O; be the total number of ones in M; and r; be the number of ones in row
i. Let lb be a lower bound on b. Then,

Oi +ri(v—i) > 3-1b. 1)

Proof. The left-hand side is an upper bound on the number of ones in M,
while the right-hand size is a lower bound on it. O

Whenever (1) is violated, M; is considered infeasible and the algorithm
backtracks on row i.

When the number of rows is v, we also ensure the global feasibility that
every column has either three or no 1’s.

3.3 Canonicity testing

For each possible row contents for the incidence matrix, associate a rank
according to the modified lexicographical ordering described in the previous
section. A design B can be represented by the set Rp of ranks for the
rows of its incidence matrix. Let C be the set of designs in the same
equivalence class of isomorphic designs. We considered a design B € C
to be canonical (i.e. to be the canonical class representative) if the set
Rp is lexicographically smaller than Rp: for all B' € C \ {B}. We will
say that B is lexicographical smaller than B’ (B <;, B') whenever Rp is
lexicographically smaller than Rpg:.

Our implementation employs a canonicity test algorithm by Denny and
Gibbons (3, 4]. The canonicity test algorithm consists of a backtracking
algorithm which goes through the possible permutations on the rows and
employs quick tests that permit an early non-canonicity detection and also
computes the automorphism group of the canonical designs. We describe
this method next.

Let B be a design on v points; let k£ < v and ®x = [p1,pa,...,pi] repre-
sent the point relabeling (p; — 1), (p2 = 2),..., (px = k). The canonicity
test is a backtracking on ®, in strictly increasing lexicographical order.
Given a partial relabeling ®,, we construct B}, the relabeled partial struc-
ture on points {1,2,...,k}. Let Bj be the partial structure corresponding
to the first k rows of the incidence matrix of B. The algorithm continues
in the following way, in each of the cases below:
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1. If Bx <p Bj then backtrack on level k (since any extension of ®;
maps B to a lexicographically larger design).

2. If By > B, then reject B and exit canonicity test (since any extension
of ®; maps B to a lexicographically smaller design, proving that B is
not canonical).

3. If By = B, then
if (k = v) then record the automorphism &, of B, else extend ®; to
@41 by setting pr41 to its smallest possible value.

The algorithm continues in this way, until we exit in step 2 (non-canonical
B) or the backtracking is finalized (canonical B).

The canonicity test must be invoked whenever a complete anti-Pasch
PSTS is generated. Canonicity tests may also be invoked for partially
generated designs, since only canonical partial matrices can be extended to
canonical matrices, given the ordering imposed on the matrix rows. Our

. experiments reported in Section 5 show that canonicity testing at each
generated row is much more efficient than canonicity testing restricted to
complete matrices. These two variations are reflected in the main algorithin
by doing the canonicity testing at either the line marked with (*) or the
one marked with (**).

Example 1. Canonicily testing conditions.

In Figure 2, since B >, B’, we conclude B is not canonical and we abandon
the canonicity testing algorithm.

Remark: ® induces a column permutation on the malriz, since the matriz
must remain block ordered.

®
[T hTel e efolo]—=1 [1] [1la] 1] o] o] o]e]0
2[1ilofo] 1 T1fofofo]—=2]2] [1]o]o[t]1]jofo]o
301000110/310010100
altlo]o]1]ololo]s B
B B

Figure 2: One step of the canonicty testing algorithm.

3.4 The distributed version of the algorithm

Our algorithm likewise the algorithms described in [4, 5, 10] process each de-
sign independently, without explicitly examining previously generated de-
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signs. Therefore, it can be fully parallelized: different processors may deal
with the completion of different partially filled incidence matrices (starter
configurations) independently.

Gibbons and Denny [4] suggest the following distributed algorithm.
Choose a row L such that enumeration up to row L can be done quickly;
the partial designs up to row L are the starter configurations. Each pro-
cessor deals with extending a specified subset of the starter configurations.
With this approach, every processor generates all starter configurations,
and not only the ones it is supposed to process. Lexicographically smaller
starter configurations tend to take longer to extend, so one should try to
distribute lexicographically consecutive ones evenly among the processors.
McKay [10] suggests to split the search among P processors evenly by
letting processor i extend all starter configurations labeled j, such that
(j mod P) =i.

Our distributed algorithm uses a different approach. One processor
(the sever) is responsible for generating the starter configurations and the
other processors (the clients) are responsible for extending them. Disk
memory constraints prohibit the storage of starter configurations. The
server holds the current starter configurations and waits for a client to
request a configuration. When a client requests a configuration, the server
delivers it to the client and proceeds to generate the next configuration.

There are two advantages of this approach over the ones described be-
fore. First, load balance between clients is more likely achieved by our
approach, since clients request tasks whenever they are free, rather than
having a share of all tasks pre-assigned to them. Second, the backtracking
process done by the server in order to generate the next starter configu-
ration happens in parallel with the processing of configurations by clients.
This suggests that we can choose over a wider range of values of L. This
choice will be influenced by the relative speed of the server with respect to
the clients.

4 The catalogue of anti-Pasch PSTS(v) for
v < 15 with maximum b

The following table shows enumeration results for the maximal anti-Pasch
PSTS of order up to 15 obtained by our algorithm. We include information
on how many of these designs are also mitre-free. A mitre is a configuration
of the form {{a,b,c},{a,d, e}, {aq,f,g9},{b,d,f}, {c,e,g}}. STSs (PSTs)
that contain no Pasch and no mitre are called 5-sparse [6].
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The columns labeled by v and b represent the order of the PSTS and the
maximum number of blocks in a PST S(v), respectively. The third column
contains the number of non-isomorphic PSTSs of order v containing exactly
b blocks. The fourth column reports on the total number of distinct designs;
this value was computed using the automorphism group sizes of the various
non-isomorphic designs. For each table entry, the second row indicates how
many of the anti-Pasch designs are 5-sparse. Whenever computed values
represent new results, they are marked in bold. The algorithm correctly
reproduces the known results. The orders of the maximal anti-Pasch PSTS
that are Steiner triple systems are underlined.

v b | #NonlsoDesigns #DistDesigns
5 2 1 15
S-sparse 1 15
6] 3 1 120
d-sparse 1 120
7] 5 1 420
5-sparse 0 0
8| 8 1 840
5-sparse 0 0
9] 12 1 840
5-sparse 0 0
10 | 12 6 5,518,800
5-sparse 1 151,200
11| 15 14 257,425,920
5-sparse S 55,218,240
12| 19 5 2,075,673,600
9-sparse 1 479,001,600
13| 24 2 4,151,347,200
5-sparse 0 0
14] 28 6 | 319,653,734,400
5-sparse 0 0
15[ 35 1 21,794,572,800
5-sparse 0 0

Tables 1, 2, 3, and 4 in the Appendix contain the complete isomorph-
free catalog of maximal anti-Pasch PSTS on v points, for v < 15, found
by our algorithm. The column labeled s contains an arbitrary reference
number to distinguish designs of the same order; each triple of the design
is reported vertically to save space. The 5th column contains the size of
the automorphism group of the design; dividing ! by this size, we obtain
the number of distinct designs isomorphic to it. Column M reports on
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the number of mitre configurations found in each design. The last column
reports on the leave graph of the design, which is the graph with vertex set
[1,v] and edge set corresponding to the uncovered pairs in the design.

5 Experimental analysis of the algorithm

The distributed program was run on a system with one server and up to 31
client machines; the sequential program was tested on the server only. The
server consisted of a Sun UltraAX-MP with four 400 MHz UltraSPARC-II
processors and 1024 MB of RAM. The clients were Sun Ultra 5, with one
360 MHz UltraSPARC-Iii processor and 128 MB of RAM.

We investigated the following questions:

1. How much improvement is obtained when doing canonicity testing at
each row rather than at the last row only 7

2. How many rows (parameter L) should be preprocessed by the server?

3. How much improvement on total time can we get by increasing the
number of clients?

The answer to the first question is that a dramatic improvement is
obtained when doing canonicity testing at each row (rather than at the
last row only) for v > 11. For v = 11 and v = 12 the algorithm was 8 and
23 times faster, respectively. For v = 14,15, we were unable to complete
the classification if the canonicity testing was applied only at the end. After
these findings, we run all other experiments doing canonicity tests at every
row.

Data for investigating the second question is gathered in Table 5. The
number of clients employed was 31. For each v, all possible values of L
have been tried. We report the total CPU time (all clients considered), as
well as the average ((total CPU time)/31) and the maximum CPU time
for any given client. We also report the total real time from beginning to
end of the generation. Number of units refer to the total number of starter
configurations processed by all clients.

From the data for v = 12,13, we found that a few medium values of
L starting at around v/2 tended to yield smaller running times. This is
illustrated in the graphs of Figure 3. We tried such medium values for
v > 14 and report the results for which running time didn’t exceed several
days. This approach enabled us to solve these cases.
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In order to have some insight on question 3, we did experiments with
v = 13 combined with a range of preprocessed rows L € [6,12]. Table 6
shows results when the number of clients is 1, 2, 5, 10, 20, 31. We observed
a sharp decline on running time from 1 to 2 and from 2 to 5 clients, and
a much less significant decline from 20 to 31. This can be observed in
the graphs in Figure 4, where ciirves for L = 6,7,8,9 are plotted showing
running times for increasing number of clients.

6 Conclusion

In this article, we have described an algorithm for the isomorph-free gen-
eration of maximal anti-Pasch partial Steiner triple systems. A distributed
version of the algorithm has been designed, implemented and experimen-
tally analyzed.

The model in which approximately 50-65% of the incidence matrix rows
are processed by the server while the rest is completed by the clients was
successful for our implementation and hardware specification. This enabled
the completion of the classification of these systems for order up to 15.
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Appendix: Tables and Figures

| s | Designs | G| M| Leave Graph
v=>5b=2

1100 81 0
13
24 4 2

v=06,b=3
11 001 61 0

122 4
345 2 3 5 0

v="7,b=5
1| 00012 12 1 )

13534
24656 4

v=8 b=28
1 | 00011224 B 1] , |, 5 .,
13534356 I I I I
24675677 7 46 44 &5
v=9b=12
1] 000011122234 [ 432[ 6

135734634565
246857886778

[ IV .S 1.

Table 1: Anti-Pasch PSTS catalogue (part I).
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[ s | Designs | G| M] Leave Graph

[v=10b=12

1 | 000011122234 121 3|0 12367 45
135734634565

| | 246857886779 9 8

"2 ] 000011122234 16| 3

016 7 3,4, 5
135734634565 W
246857896779 5 8

3 | 000011122234 2 1 2 4.5 0
135734634565 '\\If I I?
246957886798 V24 ¥

4 | 000011122234 3] 1 o, ..
135734634575 62\, 8
246859786998 3 1 7

5 | 000011122234 2 1 s 20 93
134534534755 {|§ I I
267898686979 e st %4

6 | 000011122334 24| 0| 7 0ul
123423545455 I IZI
678989769768 8 9 50404

v=11,b=15

1 | 000001111222334 | 120 [ 0 a__ 7
123452345345455
678922978689a76 9 8

2 | 000001111222334 41 1 7 9
123462346345455 8 a
578922978689a76 d

3 | 000001111222334 1] 2 * ,.\
125792468368455 ? &Y
3468a5792279678 3

4 | 000001111222334 211 > ‘.\
125782468369455 9 o a
3469a57a987a678 6 7

5 | 000001111222334 6 1| 5 4 5 & 7

125782468367455 w v
8

3469a57a989a678 9 a

6 | 000001111222334 1] 1% 5% 2
125782468357456
3469aa57969878a 6 9 a s

Table 2: Anti-Pasch PSTS catalogue (part II).
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| E] | Designs

=

[ GIM]

Leave Graph __ |

11, b = 15 (cont.)

7

000001111222334
124682457356567
39572269847889a

2

000001111222346
135793468345857
2468a57a9967a89

000001111223346
124682357574598
23579468968 7%aa

10

000001111223345
124682357564876
a35794689789aa9

11

000001111223345
124682357794566
a357946898a978a

12

000001112223456
135793463457878
2468a57986aa99a

10

13

000001112223446
135793463586587
2468a57997a8a9a

14

000001112223446
135793463586587
2468a579a7989%aa

=12,b=19

0000011112222334456
13579346834586758a7
2468a57b9967b8b9%aba

0000011112222334456
1357834683457695877
2469a57aba6988bb9ab

>r<1

0000011112222334459
135783468345667567a
2469a572998b78bab8b

VY

0000011112222334458
1357834693456675679
2469a57bab8a78ab98b

ARV

0000011112222334457
135783468345668567a
2469a257b998a7abb98b

0 1
>b 9 u<3IGI
2 5 4 7 8

Table 3: Anti-Pasch PSTS catalogue (part III).

116




s | Designs | G| M| Leave Graph

v=13,b=24

1 | 000000111112222233344456 6111
13579b3456a3456956856 787
2468a.c79b8ca87cb9bccaba9

~
-

11

2 | 000000111112222233344456 2] 5
13569b345783456956856 787
2478ac9b6ac78cabbcaadcIb

~
o

a® rn

O

v=14,b=28

1| 0000001111122222333444556677 1] 7
13579b3468a3458b6785899c8a9%a
2468ac579dbc679ddbaacdbdbeed

2 | 0000001111122222333444556677 1| 2
13579b3468¢3458a6785899b8a9a
2468ac579bdd679cbcaadbed cddb

» —™ | 0 0™

3 | 0000001111122222333444556677 1 3
13579b3468¢345826785899b829%a
2468ac579bd c679ddbaadbedcbdc

4 | 0000001111122222333444556677 3| 4
13579b3468a3458967858 cab899a
2468a.c57d9bc67bdabd9adcdcbed

5 | 0000001111122222333444556678 12| 4
13579b3469a3457867858c7b9aJa
2468ac578dbc69adbd9abdcdcdbe

6 | 0000001111122222333444556678 4| 1
13579b3469c3457867b58a789a9a
2468ac578bd96ad ccaddbcb9dbed

B.e—e® | e | e | 20D | A —eO | Q. 00O
To—ae | Cco—a™ | # o™ | To—a | To—e™ | » o—e™
ne—e | » 0—e | Co—ew | vo—eW | e | O ooV
wo—e® | co—e> | co—o™ | 0 0—0P | o 0—0> | co—e™
a o——aW | 0o—etn | 0o——eWr | 00—t | 0 o——eWr | Do——an

» 0—e | 0 60— | 0 06— | »p o—

v=15b=35

1 | 00000001111112222223333444455566678 | 60 | 2
13579bd3469ac34578b678a58ab78979c9a
2468ace578bde96aecdbcded9cebecaeddb

Table 4: Anti-Pasch PSTS catalogue (part IV).
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v L Client CPUTime RealTime #Units
Total Avg Max | (seconds)

11 1 17.83 0.58 17.83 39 1

— 2 11.72 0.38 11.72 14 4

3 21.04 0.68 12.90 15 23

4 18.53 0.60 10.94 18 113

5 18.60 0.60 8.41 19 452

6 5.17 0.17 0.66 22 2,426

7 14.99 0.48 0.75 47 7,842

8 9.80 0.32 0.52 86 13,768

9 1.92 0.06 0.15 62 8,063

10 0.17 0.01 0.03 26 877

11 - - - 16 0

12 1 24.15 0.78 24.15 37 1

2 24.16 0.78 24.16 27 2

3 23.98 0.77 22.63 25 7

4 23.93 0.77 22.53 26 32

5 25.45 0.82 21.81 24 134

—+ 6 23.60 0.76 17.60 20 508

7 21.39 0.69 7.02 21 1,427

8 16.66 0.54 2.66 26 1,695

-9 12.62 0.41 3.01 20 520

10 3.85 0.12 0.35 25 632

11 0.14 0.00 0.04 24 270

12 - - - 22 0

13 1 616.31 19.88 616.31 626 1

2 618.58 19.95 618.58 623 2

3 617.15 19.91 472.91 476 7

4 616.46 19.89 471.98 475 33

5 618.74 19.96 274.70 276 134

6 615.34 19.85 192.62 193 230

7 675.63 21.79 82.11 83 499

— 8 564.97 18.22 46.02 79 3,824

9 452.05 14.58 22.17 257 16,677

10 158.81 5.12 6.64 656 51,762

11 12.81 0.41 1.22 607 19,779

12 0.81 0.02 0.06 551 365

13 - - - 643 0

14 8 | 481,520.58 | 15,532.92 | 42,038.06 42,294 93,939

— 9 | 436,283.51 | 14,073.66 | 16,479.11 24,870 853,365

15 | =+ 9| 671,345.23 | 21,656.30 | 34,752.76 34,868 404,142

10 | 635,159.30 | 20,489.01 | 20,846.04 62,640 | 3,045,865

Table 5: The effect of the number of rows preprocessed by the server.
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Effect of preprocessing (v=12)

38 T T T T T

Time

2 4 6 8 10
- Number of Preprocessed Rows

Effect of preprocessing (v=13)
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2 4 6 8 10
Number of Preprocessed Rows

Figure 3: Total running time vs number of preprocessed rows (L).
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L | NumClients | Total Client CPUTime | RealTime
6 1 616.53 1,316
2 616.52 331

b 617.18 195

10 616.37 283

20 616.05 195

31 615.34 193

7 1 614.42 1,406
2 612.48 329

5 617.95 152

10 676.46 136

20 615.24 83

31 675.63 83

8 1 579.31 2,484
2 563.45 432

5 578.07 201

10 666.63 161

20 572.79 103

31 564.97 79

9 1 467.33 2,895
2 470.87 851

5 457.59 468

10 548.29 318

20 612.80 277

31 452.05 257

10 1 152.06 3,732
2 156.19 2,074

5 250.49 1,139

10 320.47 800

20 238.90 697

31 158.81 656

11 1 9.59 1,705
2 9.45 1,161

5 10.04 765

10 11.16 623

20 11.62 637

31 12.81 607

12 1 0.09 580
2 0.04 557

b 0.09 553

10 0.18 550

20 0.12 553

31 0.18 551

Table 6: The effect of the number of processors (clients) for v = 13 and
various values of L.
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Effect of a variable number of clients (v=13)

900 T T T T T T

5 10 15 20 25 30
Number of Clients

Figure 4: Running time for different number of clients, for L = 6,7,8,9.
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