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Abstract

This is the first in a series of three papers in which we investigate a
special class of designs that we designate as “Moore - Greig Designs”.
The sobriquet is associated with the fact that ideas gleaned from two
constructions, one due to E. H. Moore (1896) and the other due to
M. Greig (2003), are combined to produce designs that have remark-
able properties and features. A Moore - Greig Design is an RBIBD
that contains, simultaneously, nested RBIBDs, nested GWhDs, many
GWhD,s, frames, nested frames, GWhFrames, nested GWhFrames,
GWh,Frames, RRDFs and nested RRDFs. All of these designs are
Z-cyclic. To be more precise, let p be a prime and let {s;}2; be a
monotone increasing sequence of positive integers such that s;|siy1
for all ¢, 1 <i < m—1. Let n be a positive integer such that s,, <n
and sm|n. A Moore - Greig Design is a Z-cyclic (p",p°™,p°™ — 1)-
RBIBD that contains (1) a Z-cyclic (p", p**, p®>* — 1)-RBIBD for each
i, 1 £i<m-—1, (2) a Z-cyclic (p*,p*™) GWhD(p") for each i,
1<i<m-—1, (8) for each i, 1 £ i < m -1, a Z-cyclic (p°,p"™)
GWhD,(p"), for each a = o/(p** — 1), a = 1,2,...,p% — 2, (4) a
Z-cyclic {p*™} - frame of type (p°™ —1)?, ¢ = (p" — 1)/(p°™ —- 1),
(5) a Z-cyclic (p*,p’™) GWhFrame of type (p°™ — 1)?, for each
i, 1 <i<m-1, (6) a Z-cyclic (p" — 1,p* — 1,p%,1)-RRDF for
each 7, 1 < ¢ < m. Other than a single published example there is
no literature pertaining to GWhD,s. Therefore the infinite classes
of GWhDgs constructed from the Moore-Greig Designs are the first
general results related to this type of design. It is also believed that
many of the other designs contained within the infinite classes of
Moore - Greig designs are new. In this paper, Part I, we provide
detailed descriptions of both the Moore construction and the Greig
construction. In the case of the Moore construction we supply proofs
since such proofs are lacking in Moore’s paper. Also included in
this paper is a description of Moore-Greig Designs corresponding to
m = 2 and a discussion is given of the presence of the GWhFrames,
nested designs and the RRDFs. Our methods are such that the con-
structions are straightforward if one has the (associated) Galois Field.
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In Part II we investigate the Moore - Greig Designs in their complete
generality, that is to say, for arbitrary m and focus on the infinite
classes of GWhD,s that are obtainable from them. Also in Part II
we provide an extensive listing of primitive polynomials. In Part
III we investigate the RRDFs, “nested” RRDFs and the frames that
can be constructed from the general Moore - Greig Designs of Part II.

keywords: Moore - Greig Designs, Generalized Whist Tournaments, Z-Cyclic
Designs, Resolvable BIBDs, Z-Cyclic Frames, Z-Cyclic Resolvable Relative
Difference Families, Nested RBIBDs, nested frames.

1 Introduction

Throughout this paper there will be considerable reference to the fact that
certain designs are Z-cyclic. If a (v,k,A)-BIBD is resolvable then to say
it is Z-cyclic means that the elements are in Z,_; U {oo} and that the
resolution classes can be arranged in an order, say R, Rs,..., such that
Riy1 can be obtained from R; by adding +1 (mod v — 1) to every element
in R; with the rule co + 1 = co. If the BIBD is nearly resolvable then to
say it is Z-cyclic means that the elements are in Z, and the near resolution
classes can be cyclically generated as in the resolvable case except that here
the arithmetic is (mod v). A nice feature of Z-cyclic (N)RBIBDs is that
one need only provide an initial resolution class, say R;, and the remaining
resolution classes are obtained by development of R; in the cyclic manner
described. Let p be a prime and let n,s be positive integers such that
sn. In his classic paper “Tactical Memoranda I - III”, E. H. Moore [17]
presents a scheme that produces a collection of p™~* base blocks, each of
size p®, whose elements are in Zp~_; U {o0}. Moore remarks that the de-
velopment of these blocks via the elements of Z,~_; leads to a (Z-cyclic)
(p™, p®,p° — 1)-RBIBD. Moore also remarks that this RBIBD possesses the
feature that its first ¢ = (p™ — 1)/(p® — 1) resolution classes form a Z-cyclic
(»™,p*,1)-RBIBD. Moore offers this scheme as an example, albeit abstract,
of certain tactical configurations discussed in his paper (see (g) on page 274
in [17]). Moore’s paper contains very few proofs. In particular he gives no
proof of the above remarks. In the development of a proof it became clear
that Moore’s scheme not only leads to the claimed RBIBDs but also to
other types of designs that are useful tools in the construction of additional
designs. Thus it was discovered that, using Moore’s scheme, one can build
Z-cyclic resolvable relative difference families (RRDFs) and frames (these
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designs are defined in Section 2). If one has appropriate input designs then
the resolvable relative difference families can be used to produce Z-cyclic
GWhFrames (defined in Section 2). A guarantee that appropriate input
designs exist follows from a result due to M. Greig. This result, originally
circulated as a private communication, is described as Greig’s Log Table
Method by I. Anderson [3], and appears, with proof, in [1]. The original goal
of the present study was to obtain some new results related to GWhFrames.
However, we found that applying a structure analogous to that employed in
Greig’s Log Table Method to Moore’s designs enabled us to obtain designs
that possess remarkable features. Because of the manner in which we came
upon these designs we chose to refer to them as “Moore - Greig Designs”.
Each Moore - Greig Design is simultaneously many distinct designs and con-
tains many additional designs such as frames, resolvable relative difference
families, generalized whist tournament designs, GWhDs, and generalized
whist tournament designs with parameter a, GWhD,s. Both of these lat-
ter designs are defined below.There is virtually no literature pertaining to
GWhD,s except for their definition and a single example contained in [1].
Thus the infinite families of GWhD,s that can be constructed from our
methods are the first such. Obviously the validity of our results rely heav-
ily on the validity of both Moore’s construction and Greig’s construction.
Because of this reliance we provide detailed descriptions of these methods
and give complete proofs of Moore’s claims. Section 3 is devoted to Moore’s
construction and Section 4 is devoted to Greig’s construction. In Section 5
a brief comparison of the two methods is given. In Section 2 we provide
definitions and background materials that are useful for our investigations.
In Section 8 resolvable relative difference families are discussed and it is
shown how one can obtain such designs from Moore’s construction. In
Section 6 we generalize Greig's approach and apply this generalization to
Moore’s construction thereby obtaining the Moore - Greig Designs. This is
done only for the case of two parameters, i.e., m = 2, where m is the upper
index of the sequence {s;}/2; that is mentioned in the abstract. A brief
discussion of the nested designs obtainable from the materials of this study
is contained in Section 10. In Part II, Moore-Greig Designs are constructed
in their complete generality and infinite families of GWhD,s are built from
these designs. In Part III, RRDFs, frames, GWhFrames, GWh,Frames
and “nested” RRDFs are constructed from the general results of Part II.
It is believed that many of our results represent new infinite families of the
respective designs. For any specific case, if one wishes to make any of the
constructions discussed here then one would begin with the construction
of the appropriate Galois Field. For this purpose one needs, in general,
to know an appropriate primitive polynomial. Thus in Part II we provide,
as an appendix, a listing of some primitive polynomials. This listing is
considerably more extensive than those found in [9, 13, 15].
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2 Some Preliminary Materials

Let p be a prime and n be a positive integer. Both Moore’s Construction
and Greig’s Construction begin with the Galois Field GF(p™). There is ex-
tensive literature pertaining to the theory of Galois Fields and the following
two theorems are among the most basic. We quote them here simply for
the fact that they substantiate some of the approaches we employ. The
proofs of these theorems can be found in [8].

Theorem 2.1 Any two finite fields having the same order are isomorphic.

Theorem 2.2 Given a finite field F' of order p" then F has a subfield of
order p° if and only if s divides n.

If one wishes to construct GF(p™) for specific p and n then one needs to
know a primitive polynomial, £ ,a;6*, where 6 is a primitive element for
GF(p"). If z € GF(p"), = # 0 then its multiplicative representation is 6%
and the exponent i is called the index of . The additive representation for
z is the polynomial form c,—16"" + c,—20" "2 +... + 10 + ¢y, where the
coefficients ¢; are elements in Z, and are calculated via manipulation of the
primitive polynomial. It is convenient to abbreviate this latter representa-
tion by an n-string consisting of the coefficients only, i.e. ¢p~1¢a—2---c10.
Another standard theorem of algebra that we will have occasion to use is
the following.

Theorem 2.3 If G is a finite Abelian group of order g then G has at least
one subgroup of order h for each h that divides g.

Example 2.1 The Galois Field of order 32, having primitive polynomial
62 + 0 + 2, consists of the following 9 elements: 0, *, i = 0,1,...,7. The
respective (abbreviated) additive representations are 00, 01, 10, 21, 22, 02,
20, 12, 11. Note that GF(32) has four additive subgroups of order 3, namely
< 00,01,02 >, < 00,10,20 >, < 00,21,12 >, and < 00,22,11 >. Only the
first of these is closed under multiplication and is therefore a subfield of
order 3. This subfield is isomorphic to GF(3) = Z3 via the map 0h — h.

We now list the definitions of three combinatorial structures that are
of interest to us, namely generalized whist tournament designs, resolvable
relative difference families and frames.

Definition 2.1 Lete, k,t,v be positive integers such thatv =0,1 (mod k)
and k = et. Let a be a positive rational number. A (t,k) generalized whist
tournament design on v players, having parameter a, is a (v,k,a(k — 1))-
(N)RBIBD that satisfies the conditions indicated below. Each block of the
BIBD is considered to be a game in which e teams of t players each compete
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simultaneously. Players on the same team are called partners and players
in the same game but not on the same team are called opponents. For each
pair of players, say {z,y}, = is to be a partner of y ezactly a(t—1) times and
T is to be an opponent of y ezactly a(k —t) times. Such a design is denoted
by (t,k) GWhD,(v). When v=1 (mod k) consistency with the definition
of a NRBIBD requires that a be an integer. When v =0 (mod k), practical
reasons require that each of a(v — 1), a(k — 1), a(t — 1) and a(k — t) be an
integer. When a = 1, all reference to the parameter a is suppressed.

This definition of generalized whist tournament designs appears in [1]
" but, to date, all of the literature pertaining to these designs deals only with
the case a = 1. Of course if one can construct a (t,k) GWhD(v) then a
(t, k) GWhD,(v) with a equal to a positive integer, say u, can be obtained
by taking u copies of (¢t,k) GWhD(v). Thus the interesting situation is
associated with fractional values for a. Clearly, if a is to be a fraction,
the only permissable fractional values are those for which the denominator
of a divides ged(t — 1,k — t). The conventional notation for a game in a
generalized whist tournament design is to group teammates together and
separate teams by semi-colons. Thus, for example, for t = 2 and k = 6 each
game is written in the format (a, b; ¢, d; e, f).

Definition 2.2 Let G be an additive group of order v and let H denote
a subgroup of G of order h. For a fized positive integer k, a collection of
k-subsets of G, B = {By,Ba,..., By}, is called a difference family over G
relative to H if the list of differences of B covers every element in G\ H
exactly once and covers no element in H. Each subset B; is called a base
block of the difference family and k is called the block size. A difference
family over G relative to H is said to be resolvable if the union of the base
blocks constitutes a complete system of representatives for the nontrivial
right (or left) cosets of H in G. A difference family over G relative to H
that is also resolvable is typically denoted by (G, H,k,1)-RRDF. It is also
common notation to write (v, h,k,1)-RRDF.

Definition 2.3 A frame is a group divisible design, GDDx(X,G,B) such
that (1) the size of each block is the same, say k, (2) the block set can be
partitioned into a family F of partial resolution classes and (3) each F; € F
can be associated with a group G; € G so that F; contains every point in
X\ G; ezactly once.

The text by Furino et al. [12] is an excellent source of information per-
taining to frames. If the blocks of a frame are of size k& and if u; of the
groups are of size g;, ug of the groups are of size gs, etc., u,, of the groups
are of size gm, then one refers to the frame as a {k}-frame of (group) type
97'95% -+ - gim. If the blocks of a frame possess any special properties then
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it is common to have the notation for the frame reflect these properties.
In particular a (¢, k) GWh,Frame is one for which the blocks can be parti-
tioned into sub-blocks so that every pair of elements from distinct groups
appear together in the same sub-block exactly a(t — 1) times and in the
same block exactly a(k — 1) times. If @ = 1 then the notation is simply
GWhFrame.

3 Moore’s Scheme

Let p be a prime and let n, s be positive integers such that s|n. Let # denote
a primitive element in GF(p™). Since GF(p") contains (up to isomorphism)
precisely one subfield of order p®, let H denote this subfield. Moore’s scheme
is as follows. Let H* denote the additive subgroup in H and denote by
B the collection of p"~* sets of size p° consisting of H* and its p*~% — 1
additive cosets. Let B* denote the collection of sets obtained from the
sets of B by replacing each non-zero element by its index (relative to )
and by replacing 0 by co. Moore’s claim is that the sets in B* are the
base blocks of an initial resolution class of a (Z-cyclic) (p*,p°,p° — 1)-
RBIBD and that the first (p® — 1)/(p* — 1) resolution classes form a (Z-
cyclic) (p™,p®, 1)-RBIBD. We proceed now to prove these claims. It is
important, for our purposes, that one knows the structure of H. Of course
H contains 0 and an element, say z, that is of order p* — 1. There exists
a unique positive integer j such that z = 67 and therefore (67)?"~! = 1.
Consequently j(p®* — 1) must be a multiple of p* — 1 and, in turn, j must
be a multiple of ¢ = (p" — 1)/(p° — 1). Of course, if j = cq then ¢ must
be relatively prime to (p® — 1). There are then ¢(p° — 1) choices for ¢,
where ¢ is the Euler ¢ function. For convenience we choose ¢ = 1, since
any other (appropriate) choice leads to the same subfield via Theorem 2.1.
We conclude, then, that H = {0} U {§™7 : m = 0,1,...,p° — 2}. Let
a €GF(p") be such that a ¢ H. Denote the coset a + H* by C(a). Since
a ¢ H there exist unique positive integers m and j such that a = §™9+7,
with0 < m<p°—2and0< j<gq Foreachg=1,2,...,p° -2 set
by = 6%99a. Of course, we can set by = a. Clearly by, € H for all g. Denote
the coset by + H* by C(by). In what follows all elements are considered
to be represented in their additive format. For brevity and convenience we
sometimes use the multiplicative symbolism to denote an additive element.
Also, for convenience, we use division symbols and subtraction symbols to
denote, respectively, multiplication by multiplicative inverse and addition
by additive inverse.

Theorem 3.1 If g # f then C(bg) NC(bs) = 0.
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Proof: Assume the contrary. Hence there exist elements hj,ho € H* such
that 69%a + hy = 6/% + hy. That is to say, a(§99 — /9) = hy — hy. Since H
is closed under multiplication and addition, this latter statement indicates
that @ € H, a contradiction.

Thus the additive cosets of H™, neglecting H* itself, can be parti-
tioned into y = (p"~* — 1)/(p° — 1) cells C(a;), C(a2), ..., Clay) with
C(a:) = {C(a;), C(6%a;),...,C(0%" ~29q;)}. Let a € {a1,az,...,ay}. De-
note by C*(a) the set of indices of the elements in C(a) and by C*(a) the
collection {C*(a),...,C*(6®"~29qa)}. Certainly if C*(a) = {i1,%2,...,ips }
then C*(09%a) = {i; + gq,%2 + g4, ...,ips + gg}. It follows then that the
set of differences arising from the elements in C*(a) is identical to the set
of differences arising from the elements in the set C*(69%a) for each of
g=1,2,...,p° ~ 2. Thus if d is a difference arising from the elements in
C*(a) then, in the totality of differences, d occurs at least p® — 1 times. It
suffices to show that any such d occurs as a difference exactly p* — 1 times.

Theorem 3.2 Let a € {aj,ay,...,ay}. No difference arising from the
elements in the set C*(a) is a multiple of q.

Proof: Suppose otherwise. Then there exist hy,he,hsg € H™ such that
hy # ha, h3 # 0,1 and (a + h1)/(a + h2) = hz. It follows that a(l — h3) =
hahg — h1. Since H is a subfield and hs # 1, we conclude that a € H, a
contradiction.

Theorem 3.3 Let a € {aj,a2,...,a,}. All differences arising from the
elements in C*(a) are distinct.

Proof: If the theorem is false, there exist hj,ha, hs,hqy € H™* such that
hy # ho, hs # hyg, hy # hs, and he # h4 such that (a+ h1)/(a+ h2) = (a+
hs)/(a+hy). It follows that a(h1 +hq —he —h3) = hohs —h1hs. Once again
we arrive at the contradiction that a € H, unless both (hy+hs—ho—h3) =0
and (hehs — h1hy) = 0. Now if these latter two equations were to hold then
equating the two solutions for k) leads to the contradiction that hg = hy.

Theorem 3.4 All differences arising from the elements in the sets
C*(a1),C*(a2),...,C*(ay) are distinct.

Proof: Assume the contrary. Let a,b € {a1,...ay}, a # b. There exist
hi, ho, ha, hy € HY such that hy # ha, hg # hy for which (a+hy)/(a+h2) =
(b+h3)/(b+ha). It follows that a = bhs+hg where hs = (ho—h1)/(ha—h3)
and hg = (hohs — h1hg)/(hg — h3). Since hs # 0 we have hg = 699 for some
g =0,1,...,p° — 2. This allows us to conclude that a € C(697b) which
contradicts the manner in which the a; were chosen.
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Each set C*(a;) produces p*(p® —1) differences. Therefore the totality of
differences arising from the sets C*(a1),...,C*(ay) is yp*(p* — 1) = p™ —p°.
The number of elements in GF(p") \ H is also p® — p*. Thus we have
established the following theorem.

Theorem 3.5 The differences arising from the sets C*(ai),...,C*(ay)
cover the set Z,n_1 \ ({0} U{gg:9=1,2,...,p° — 2}) ezactly once.

We can now conclude that the totality of differences that arise from the
sets in C*(a1),...,C*(ay) cover the set Zpn 1\ ({0}U{gq: g =1,2,...,p°—
2}) exactly p* — 1 times. To complete the verification of the construction
of the Z-cyclic RBIBD we need to investigate the set of differences arising
from the elements in H* = {00,0,q,2q,...,(p° — 2)q}. Since —gq is the
index of the multiplicative inverse of 6979 it easily follows that the totality
of the differences of elements in H* matches that of Z,-_;. Thus each
multiple of ¢ occurs as a difference exactly p* — 1 times.

The net result of the above discussion is that Moore’s scheme does
indeed produce an initial resolution class of a Z-cylic (p", p®, p* —1)-RBIBD
in the casc that s|n. Let a € {a),...,a,}. Forb € Zy._, let b+C*(a) denote
the collection of sets obtained by adding & modulo (p™ —1) to every element
in every set in C*(a). It easily follows from the structure of the sets in C(a)
that gg+C*(a) = C*(a), forallg = 0,1,...,p°—2. Similarly gg+ H* = H*.
Thus the RBIBD consists of p°—1 copies of a (p™, p*, 1)-RBIBD. If the order
of the elements in the blocks is unimportant then these latter RBIBDs are
identical.

Example 3.1 Consider GF(3*) with primitive polynomial 8% + 8 + 2. Let
s = 2 then ¢ = 10 and H = {0000, 0001, 1121, 2210, 2211, 0002, 2212, 1120,
1122}. A set of coset representatives is {0010, 0100, 1000, 0021, 2100, 0111,
2001,1020} with respective indices 1,2,3,4,6,8,12,18. Note that y = 1
therefore there is one basic coset, say C(0010), and the others are of the
form C(6'%9(0010)). Here, the order of an element in a block is not im-
portant one can list only the indices of the basic set, namely C*(0010) =
{1,53,78,49, 36,44, 37,55, 22} Consequently the (Z-cyclic) (3¢%,32,32 — 1)-
RBIBD is given by {0, 0, 10, 20,

30, 40, 50, 60, 70}, C*(0010) + 10g, g = 0,1,2,...,7. It is an easy observa-
tion that the first 10 resolution classes form a (Z-cyclic) (34, 32,1)-RBIBD.

Example 3.2 Consider GF(2°) with primitive polynomial 6 +64+63+6+
1. Let s = 3 then ¢ = 9 and H = {000000, 000001, 110101, 010111, 110100,
100001, 100011,010110}. A set of coset representatives is {000010, 000100,
001000,010000,011011, 101001, 001110, } with respective indices 1,2, 3, 4,

6,12,21. Note that y = 1, hence there is one basic coset, say C(000010), and
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the others are of the form C(#°¢(000010)). Thus it suffices to list only the in-
dices of the basic set, namely C*(000010) = {1, 56, 8,40, 7,5, 30,51}. Con-
sequently the (Z-cyclic) (28, 23, 23—1)-RBIBD is given by {c0,0,9, 18,27, 36,
45,54}, C*(000010) +9g, g =0,1,2,...,6. Again, it easily follows that the
first 9 resolution classes form a (Z-cyclic) (2¢,2%,1)-RBIBD.

4 Greig’s Log Table Method

Although the log table method of M. Greig has been reported elsewhere (1,
3] we choose to describe it again here. Our approach is to emphasize the
algebra of the method thereby making the generalized whist design ap-
plications a bit more transparent. We first introduce some notation and
terminology. Let p be a prime and let w and r be positive integers such
that w < r. Unless otherwise indicated the elements of our Galois fields are
to be represented in the (abbreviated) additive form. Thus if a eGF(p")
then a = ¢—1c,—2---c1cp. Consider the set G = {a €GF(p") : ¢r—1 =
-+ = ¢y = 0}. Clearly G is an additive subgroup of GF(p") and G has
order equal to p*. We call G the Greig subgroup of order p* in GF(p")
and denote it by G(p;w,r). The Greig subgroup is a clever choice be-
cause it allows for an easy interpretation as to why the associated Z-cyclic
(p",p*,p” — 1)-RBIBD contains an appropriate (p",p™,p™ — 1)-RBIBD
for any m < w. It is this latter feature that prompts us to investigate the
Greig method in some detail.
Define a p™~% by p“ table as follows. Label the columns by the last
w coefficients of the elements in G(p;w,r) adopting the convention that
the first column is labeled 00-..0. Label the rows by the p"~* possible
structures for the first r—w coefficients for an element in GF(p"). Adopt the
convention that the first row is labeled 00 .- -0. The (%, §) entry in the table
is the string of symbols obtained by adjoining the label of the j-th column
to the end of the label of the i-th row. Clearly then the first row consists of
the elements in G(p;w,r) and the i-th row consists of the elements in the
coset a + G(p; w, ) where a is the element whose first r — w coefficients are
the label of the i-th row and whose last w coefficients are all 0. Denote this
(coset) table as CG(p; w,r). In CG(p; w, ) replace 0 by oo and every other
entry by its index. The resulting table, with the labeling of the columns
as indicated below, is the so-called Greig Log Table. We will denote this
table by the symbol LG(p;w,r). If one treats each row of LG(p;w,r) as
the blocks of a design, it is proven in [1] that these blocks form the initial
resolution class of a (Z-cyclic) (p", p%,p" — 1)-RBIBD. Suppose now that
m < w. In CG(p;w,r) rearrange the column labels into groupings of p™
columns in such a way that the labels in the first grouping are precisely the
elements in the first row of CG(p; m, w), the labels in the second grouping
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are precisely the elements in the second row of CG(p;m,w), etc. With
this rearrangement it is clear that each row of CG(p; w,r) is made of p*—™
sub-rows, each sub-row being a coset of G(p;m,r). Thus the totality of
sub-blocks in the corresponding (Z-cyclic) (p™,p%,p¥ — 1) are precisely
the blocks of the initial resolution class of the (Z-cyclic) (p",p™,p™ — 1)-
RBIBD that would be obtained from LG(p;m,r). It easily follows that
Greig’s Log Table Method produces a Z-cyclic (p™, p*) GWhD(p") for all
positive integers m < w < 7.

Example 4.1 Consider GF(2) with primitive polynomial 84+68+1. There
are three Greig subgroups, one of order 2 one of order 4 and one of order
8. Let us consider that we wish to construct the initial round of a Z-cyclic
(2,2%) GWhD(2*)-RBIBD. The column labels for CG(2;3,4) would be (in
order) 000,001, 010,011,100, 101, 110,111. Row 1 is labeled 0 and row 2 is
labeled 1. The blocks of the corresponding GWhD are (00, 0; 1, 4; 2, 8; 5, 10)
and (3,14;9,7;6,13;11,12).

Example 4.2 Consider GF(32) as in Example 2.1. Our goal is to construct
the initial round of a Z-cyclic (3!,32) GWhD(32)-RBIBD. The column la-
bels for CG(3;2,2) would be (in order) 00,01,02, 10,11, 12, 20, 21, 22. Row
1 is labeled 0. There is only one block of the corresponding GWhD, namely,
(00,0,4;1,7,6;5,2,3).

5 Comparison of the two methods

Clearly both methods utilize a coset table of an additive subgroup in the
Galois Field, GF(p"). Moore demands that the additive subgroup be that
of a subfield and Greig demands that the subgroup has a specific struc-
ture. Greig’s approach, presumably motivated by generalized whist designs
and/or nested RBIBDs, has considerable flexibility in that one only re-
quires that m < w < n. One could allow m = w but from the point of
view of generalized whist designs this would mean that there is only one
team competing in a game. This latter circumstance would lend itself to
a more reasonable interpretation that each team consists of exactly one
player. That is to say, m = w is analogous to m = 0. Greig’s structure
is such that it is virtually self-evident that the resulting RBIBD possesses
the generalized whist design requirements. Moore’s approach is more re-
strictive since the demand is that s|n. The advantage, however, is that
Moore’s RBIBD contains several very useful designs such as RRDFs and
frames. These latter designs are touched upon in Sections 8 and 9 and in
greater detail in Part III of this three part series. In the next section we
refine Moore’s construction by incorporating Greig’s approach.
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6 Moore - Greig Designs

In this section we combine the ideas of Moore and Greig and obtain infinite
classes of designs, the Moore - Greig Designs, that are quite fascinating.
Here we restrict our attention to the sequence {s;}7_, and leave the com-
plete generality to Part II of this series. For convenience set s; = uand so =
s. We require that u, s and n be positive integers such that « < s < n and
for which u|s and s|n. Set ¢’ = (p"* —1)/(p*—1),and ¢ = (p" - 1)/(p° - 1).
Let w = (p° — 1)/(p* — 1) and r = (w — 1)/p* = (@~ - 1)/(p" - 1).
Note that w > 1 and ¢’ = wq. We induce an ordering in Moore’s subfield of
order p® in such a way that the first p* elements are the elements in Moore’s
subfield of order p* and every grouping of p* elements thereafter is a coset
of the additive group associated with the subfield of order p*. Given that
this structure parallels Greig’s scheme it is obvious from the results of Sec-
tion 3 that the resulting (p™,p®, p° — 1)-RBIBD will be such that its blocks
can be broken into sub-blocks of size p* and these sub-blocks will form an
RBIBD having all of the features associated with the Moore construction.
The (p™, p°,p° — 1)-RBIBD formed as described above is called a Moore -
Greig Design with parameters p, n, u, s and is denoted by MG(p; n, s, u).

Example 6.1 Consider GF(3%) as in Example 3.1 and take u = 1, s = 2.
Note that ¢’ = 40, ¢ = 10, w = 4 and 7 = 1. In accordance with the Moore -
Greig ordering H is presented as H* = {0000, 0001, 0002,1121, 1122, 1120,
2212,2210,2211}. The set of coset representatives is as in Example 3.1.
In contrast to Example 3.1 the order in which elements occur in each
block is important thus we present the entire initial resolution class of the
MG(3;4, 2, 1) design here. We use semi-colons to emphasize the sub-blocks.
Using symmetric differences [4] it is easy to show that these blocks form a
(81,9,8)-RBIBD and that the sub-blocks form a (81, 3,2)-RBIBD. That is
to say, MG(3;4,2,1) is a (3,9) GWhD(81).

(c0,0,40; 10, 70, 60; 50,20,30) (1,53, 44; 78,22, 55; 37, 49, 36)

(11,32, 46;63,65,47;54,8,59)  (21,75,69; 42,57, 64; 56, 73, 18)

(31,67,28;5,74,66; 79,52, 3) (41,4,13;77,76,9; 38, 15, 62)

(51,6,72;14,19,48;23,7,25)  (61,29,35;16,58,33;2,24,17)

(71, 68, 27; 39, 43, 12; 45, 26, 34).

7 GWhDs having parameter a

A major feature of Moore - Greig Designs, from our perspective, is that one
can obtain infinite classes of GWhD,s with a # 1. As mentioned earlier
there is at present only one published example of these designs and that
appears in [1}. In Part II of this study [10] we will develop Moore - Greig
Designs in a general fashion thereby providing infinite classes of GWhD,s.
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We content ourselves here to point out that if one takes the first 40 rounds
of the MG(3; 4,2, 1) given in Example 6.1 one obtains a (3,9) GWhD,(81)
with a = 1/2.

8 Z-cyclic RRDFs

Relative difference families have been known and used for quite some time [9].
Referring to relative difference families as resolvable is a fairly new concept.
The terminology begins with Buratti [5] and such difference families appear
in 7] where they are refered to as 1-rotational difference families. Most of
the literature concerning resolvable relative difference families is due to
Buratti. Resolvable relative difference families can be found in the work
of Hanani [16] and that of Greig [14] (although neither of them used this
terminology) . As with any type of design, resolvable relative difference
families have an intrinsic interest in their own right. On the other hand,
RRDF's are powerful tools with which to build other designs as, for example,
they can be used to construct frames (see Section 9 and also the materials
in [11]). The fact that resolvable relative difference families can be used to
construct frames was previously known [14]. It is not clear as to whether
it is well known that combining resolvable relative difference families with
other designs can produce frames that possess special properties [2, 6].

Clearly Theorem 3.5 establishes that C*(a,),C*(a2),...,C*(ay) are
base blocks for a Z-cyclic (p" — 1,p° — 1, p%, 1)-relative difference family
(RRDF). Since sin it follows that p® — 1 = (p* — 1)(p**#~1) 4 pse=-2) 4 4
p° +1), where p = n/s. Our structure of the cells C(a;), C(a2), ..., C(ay)
allows for easy discernment that this difference family is also resolvable with
respect to the cosets By = {0,q,2q,...,(p° —2)g} +9,9=1,2,...,(¢g—1).
That is to say, if j € C*(a;) U B, then the remaining elements in B, will
be found, one each, in the sets C*(6%a;), C*(§%a;), ... C*(6(P*~2)9),

Example 8.1 The materials in Example 3.2 yield a Z-cyclic
(7-9,7,8,1)-RRDF. This RRDF has but one base block, namely,
(1,5,7,8,30, 40, 51, 56).

Example 8.2 The materials in Example 6.1 enable us to give a Z-cyclic
(8-10,8,9,1)-RRDF. This RRDF has but one base block, namely,
(1,53,44,78,22,55,37, 49, 36).

Example 8.3 In a manner that will be made precise in [11] one can also

obtain a Z-cyclic (2 - 40,2, 3,1)-RRDF from the materials in Example 6.1.
This RRDF has 13 base blocks.
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(10,70,60) (1,53,44) (78,22,55) (37,49,36)
(11,32,46) (63,65,47) (54,8,59)  (21,75,69)
(42,57,64) (56,73,18) (31,67,28) (5,74, 66)
(79,52, 3)

9 Z-Cyclic Frames

As described in Section 2 if the blocks of a frame possess any specific prop-
erty then it is commonplace to emphasize that property when referencing
the frame. The interest here focuses on GWhFrames. For a GWhFrame
the partial resolution classes will be called rounds of the frame.

Definition 9.1 Suppose S = Z,, v = hy and Z, has a subgroup H of
order h. Suppose a GWhFrame of type hY has a special round R,, called
the initial round, whose elements form a partition of S\ H and is such that
it, together with all the other rounds, can be arranged in o cyclic order, say
Ry, Ry,... so that Rj,1 can be obtained by adding +1 modulo v to every
element in R;. A frame with these properties is said to be Z-cyclic.

Clearly the set H* \ {oo} associated with Moore’s construction is a
subgroup of order p* — 1 in the ring Z,»_;. It is also clear that removal of
the block H* from the initial round of Moore’s (p*, p*, p°* —1)-RBIBD yields
the initial round of a Z-cyclic frame of type (p*—1)9. If one removes the first
block from the initial round of the MG(3; 4, 2,1) design of Example 6.1 one
obtains the initial round of a (3,9) GWhFrame of type 8'°. The extraction
of GWhFrames from Moore - Greig Designs will be discussed in more detail
in [10, 11].

10 Nested Designs

It follows from the materials of Sections 4 and 6 that the designs discussed
have sub-designs built into them. That is to say, there are designs nested
within the (super) design. As will be shown in [10, 11] this nesting can
go quite deeply into the (super) design. It is not too difficult to see that
the Moore - Greig Designs contain nested frames and GWhFrames. It
is also a fact, but perhaps not quite so obvious, that the Moore - Greig
Designs contain “nested” RRDFs (as, for example, the (240, 2, 3, 1)-RRDF
of Example 8.3). Here again we leave the discussion of these features to
Parts II and III of this study.
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