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Abstract

A defensive k-alliance in a graph G = (V, E) is a set of vertices A C V
such that for every vertex v € A, the number of neighbors v has in A
is at least k more than the number of neighbors it hasin V — A (kis a
measure of the strength of alliance). In this paper, we deal with two types
of sets associated with defensive k-alliances; maximum defensive k-alliance
free and minimum defensive k-alliance cover sets. Define a set X C V to be
mazimum defensive k-alliance free if X does not contain any defensive k-
alliance and is a largest such set. A set Y C V is called minimum defensive
k-alliance cover if Y contains at least one vertex from each defensive k-
alliance and is a set of minimum cardinality satisfying this property. We
present bounds on the cardinalities of maximum defensive k-alliance free
and minimum defensive k-alliance cover sets.

1 Introduction

Alliances in graphs were first introduced by Hedetniemi, et al.[3]. They
proposed different types of alliances, namely (strong) defensive alliances,
(strong) offensive alliances|[1], global alliances[2], etc. A generalization of
these alliances called k-alliances was presented in [5], where the strength of
an alliance is related to the value of parameter k.

Consider a graph G = (V,E) without loops or multiple edges. A
vertex v in set A C V is said to be k- satisfied with respect to A if
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deg,(v) > degy_,(v) + k, where degy(v) = |[N(v) N A] = |Na(v)| =
deg(v) — degy_4(v). A set A is a defensive k- allience if all vertices in
A are k-satisfied with respect to A, where —A < k < A. Note that a
defensive (—1)-alliance is a “defensive alliance” (as defined in (3]), and a
defensive 0-alliance is a “strong defensive alliance” or “cohesive set” [4].

A set X C V is defensive k-alliance free (k-daf) if for all defensive k-
alliances A, A— X # @, i.e., X does not contain any defensive k-alliance as
a subset. A defensive k-alliance free set X is maximal if Vo ¢ X, 3SC X
such that S U {v} is a defensive k-alliance. A maximum k-daf set is a
maximal k-daf set of largest cardinality. Let ¢x(G) be the cardinality of
a maximum k-daf set of graph G. For simplicity of notation, we will refer
to a maximum k-daf set of G as a ¢r(G)-set. If a graph G does not have
a defensive k-alliance (for some k), we say that ¢r(G)= n, for example,
&r(Pn)=n, Yk > 1. Since Vk; > ks, a defensive kp—alliance free set is also
defensive k;—alliance free, we have ¢, (G) 2 ¢k, (G) if and only if k; > k».

We define a set Y C V to be a defensive k-alliance cover (k-dac) if
for all defensive k-alliances A, ANY # @, i.e.,, Y contains at least one
vertex from each defensive k-alliance of G. A k-dac set Y is minimal if no
proper subset of Y is a defensive k-alliance cover. A minimum k-dac set is
a minimal cover of smallest cardinality. Let (;(G) be the cardinality of a
minimum k-dac set of graph G. We refer to a minimum k-dac set of G as
a (x(G)-set. When G does not have a defensive k-alliance (for some k), we
say that (x(G)= 0. We proved the following theorem in [5];

Theorem 1. X C V is a defensive k-alliance cover if and only if V — X
is defensive k-alliance free.

Corollary 2. ¢x(G)+¢k(G) =n.
Corollary 3. (i, (G) < (k, (G) if and only if k1 > ke.

Corollary 4. If V' is a minimal k-dac then, Vv € V', there ezists a
defensive k-alliance S(v) for which S(v) NV’ = {v}.

2 A Tight Bound on ¢x(G)

We first present a bound on ¢x(G) when & = 0. The result is then gener-
alized to k£ > 0 in Theorem 14.

Theorem 5. If G is a connected graph then ¢ (G) > |3].

Proof. Let A be a ¢g (G) —set of a connected graph G and assume, to the
contrary, that ¢o (G) < |2]. Let B =V (G)—A4, hence |B| = (o (G) > [2].
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Since B is a 0—dac, Vv € B there exists a defensive 0—alliance S (v) such
that S(v) N B = {v}. Hence, Yv € B, deg4 (v) > degg (v). If B does not
contain a defensive 0—alliance, then B is a 0—daf set, which is contradiction
since, |[B| > [2] > ¢o (G). Hence, B must contain a minimal defensive 0—
alliance T'. If v € T then degg (v) = deg4 (v). Hence, Ng (T) =T.

Suppose T is the only minimal defensive 0—alliance in B. Then, for
any vertex ¢ € T, the set B — {z} is a defensive 0—alliance free set and
|B — {z}| > ¢0(G), a contradiction. Thus there are at least two disjoint
defensive 0—alliances in B.

Now, assume that the number of disjoint minimal defensive 0—alliances
in B is minimum among all such sets. For each v € B, let S(v) be a
minimal defensive 0—alliance such that S (v) N B = {v}. Also, define:
D = {v € B|degp (v) = deg,4 (v)},
R = {v € A|deg, (v) = degg (v)},
R~ = {v e A|deg, (v) < degg (v)}, and
Rt = {v € A|deg, (v) > degg (v)}-

Let T1,T5,...,T, be the disjoint minimal defensive O—alliances in B.
By the above arguments, 7 > 2 and Vi, Ng (T;) =T; C D.

We now present a sequence of lemmas which culminate in the rest of
the proof of Theorem 5.

Lemma 6. For1<i<randeachz € T;, Ny (z) C S(z)NR".

Proof. Suppose z € T; and let y € Na(z). Since z € T; C D, degg (z) =
deg, (z). Hence, N4 (z) C S(z) and y € S(z). Assume to the contrary
that y ¢ R, i.e., degy (y) > degg(y). Let A’ = AU {z} — {y} and
suppose S’ C A’ is a defensive 0—alliance. Since deg,. (z) < degg. (z),
z ¢ S'. But, then 8’ C A, which contradicts A being 0—daf. Hence, A’ is
defensive 0—alliance free and B’ = V — A’ is a 0—dac. Since T; is a minimal
defensive 0—alliance in B, T; —{z} is not a defensive 0—alliance in B’. Also,
degp: (y) < degy. (y) implies that y ¢ T”, where T" is a defensive 0—alliance
in B’. But then the number of disjoint minimal defensive 0—alliances in B’
is 7 — 1, which contradicts the assumption that B has a minimum number
of disjoint minimal defensive 0—alliances. O

Lemma 7. Fori# j and everyz; € T; and 25 € T, N ()N N (x2) = D.

Proof. Suppose i # j and there exist z; € T; and z2 € T such that
y € N (z1) NN (z3). Since T; NT; = @ and N (T;) = T;, we have that
y € A. From Lemma 6, we know that y € R~ N S (z1) N S (z2). Consider
the sets A’ = AU {z1,22} — {y} and B’ =V — A’. Since |A’| = |A|+1 and
A is a ¢o (G) —set, A’ must contain a defensive 0—alliance S’. However,
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deg 4 (z;) = degg (z1), ! € {1,2} and z1 29 ¢ E (G). Therefore, deg 4, (z1) =
degg: (z;) — 1 and, hence, {z1,22} NS’ = @. This implies that $' C A, and
contradicts A being a defensive 0—alliance free set. O

Lemma 8. For everyz € T;

(i) S(z) €S Na(z)URU {z},
(ii) S(z) is the unique minimal defensive 0—alliance in AU {z}, and

(i) Naugz} (S(2)) = 5 ().

Proof. Let z € T; and perform the following procedure:
S« Na(z)U{z}
While No(S') C Na(z)UR and No(S')—-S' # 0@
Begin
S — S'"UN4(S)

End

Since G is finite, the procedure will terminate with either N, (S') —
S’ = @, or with a vertex z € N4 (S’') — S’ such that z ¢ R. Assume
N, (8') — S’ # @. By construction, S’ U N4 (S') U {z} C S (z) for every
S (z) that is a defensive O—alliance and for which S (z) N B = {z}. There
are two cases.

Case 1. z € R™: This implies that deg,y(,) (2) < degg_(,) (2) and
contradicts the assumption that S (z) is a defensive 0—alliance containing
z.

Case 2. z € R*: Theset A’ = (AU {z})—{z} is a ¢ (G) —set, otherwise
there is a defensive 0—alliance in A U {z} not containing 2. Thus, B’ =
V — A’ is a 0—dac. Since T; is a minimal defensive 0—alliance in B, T; — {z}
is not a defensive 0—alliance in B’. Also, degg: (2) < degy, (2) implies
that 2 ¢ T’, where T' is a defensive O—alliance in B’. But, then the
number of disjoint minimal defensive 0—alliances in B’ is 7—1, contradicting
the assumption that B has minimum number of disjoint minimal defensive
O—alliances.

Since both cases lead to a contradiction, we conclude that N4 (S') —
S’ = @. Hence, S’ = S(z) C Na(z) U RU {z} and, by the construction,
S (z) = &’ is the unique minimal defensive O—alliance in A U {z}. Also,
since v € S (z) implies deg 4,,(,}(v) = degp_(5)(v), we must conclude that
Naugs (S (@) = § (=), O

Lemma 9. Fori# j and every x1 € T; and 2 € Tj, S (z1) NS (x2) = D.
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Proof. Suppose i # j, 1 € T, and zo € T;. Assume, to the contrary,
that z € S (z1) N S (z2). By Lemmas 6, 7 and 8, we know that N (z1) C
S(z1)NR™, Na(z1) N Na(z2) = D, and S (x2) C Na(z2) URU {z2}.
Hence, N4 (z,)NS (z2) = @. Since S (z) is a minimal defensive 0—alliance,
G [S (z1)], the subgraph of G induced by S (z), is connected. Hence, there
is a path P in G[S(z,)] between z and a vertex y € N4 (x;) that does
not contain z;. From Lemma 8, Nay(z,} (S(22)) = S(z2) and, hence,
y € Na (z1) NS (x2), a contradiction. ‘a

Corollary 10. Fori# j and any x, € T; and z2 € T}, every path between
S (z1) and S (z;) contains a vertez not in A.

Lemma 11. Ifi # j then there is no path between T; and Tj.

Proof. Assume to the contrary that such a path exists. Recall that T;NT; =
© and Np (T;) = T;. Hence, any path P from T; to T; must have an even
number of edges in common with the edge cutset (A, B). Let the number
of common edges between the edge cutset F' = (A, B) and the path P be
|F N P| > 2 and assume that |F N P| is minimum for all such bipartitions.
Now we have two cases:

Case 1: |[FNP| = 2. Let FNP = {z1a1,a272}, where z; € T;,
a; € No(z1) C S(z1), z2 € Tj, and az € Ny (z2) C S(z2). By Lemma 9,
S (z1) N S (z2) = @ and, by Corollary 10, there is no path from S (z;) to
S (z2) consisting of only vertices in A, a contradiction.

Case 2: IFﬂ Pl >2. Let FNP = {mlal,azxg,zsas, - ,azg+2$28+2},
s > 1, where z; € T;, a1 € Na(z1), a2 € S(z1), 2 € Np(az), ...,
02s+2 € N4 (T2542) and 2442 € Tj. Further, for 1 <1< 2s+2,0; € A and
z; € B. We claim for 2 <1< 2s+ 1, that z; ¢ Ty, 1 € u < r. Otherwise,
suppose that z; € T,,. Without loss of generality, assume u # i, then there
is a path from T; to T, such that |[F N P| < 2s, which is contrary to P
minimizing |F N P|.

Since az € S (z1), by Lemma 8, the set A’ = AU {1} — {a2} is a
¢o (G) —set and theset B’ = V— A’ is a 0—dac. Let F' = (A’, B’). Suppose
there is no defensive 0—alliance 7" in B’ such that a; € T'. Then there are
7 - 1 disjoint minimal defensive 0—alliances in B’, which is a contradiction
since B has the minimum number of disjoint minimal defensive 0—alliances.
Thus, there is a defensive 0—alliance 7V C B’ which contains a; and is
disjoint from sets T3,...,T;_1,Ti41,.--, k. But, then there is a path P’
between T” and T} such that |F” N P’| = 2s, which is again a contradiction.

Since both cases lead to contradictions, there is no path P between T}
and T; whenever ¢ # j. O

143



» From Lemma 11, we conclude that G is disconnected, a contradiction.
Therefore, the set B must be defensive 0—alliance free and, hence, ¢ (G) >
|B| > |A] = ¢o(G), again a contradiction. Thus, ¢o(G) > | 2|, which
completes the proof of Theorem 5. ]

Corollary 12. If G is a connected Eulerian graph then ¢_, (G) > [%J

We have also shown the following statement to be true.

Theorem 13. For connected graphs G, ¢o(G) < (o(G) if and only if every
block of G is either an odd clique or an odd cycle.

Theorem 14. For every connected graph G and 0 < k < A, ¢ (G) >

13] +15]-

Proof. By Theorem 5, the statement is true for £ = 0. Since every k—daf
set is also (k+1)—daf, ¢1(G) > $0(G) = |2] = |3] + |}] ie, the
statement is also true for £ = 1. Hence, we may proceed by induction on
k.

Assume that the statement is true for k¥ < M for arbitrary M > 1.
Let A be a ¢u (G) —set of a graph G. Again, A is also (M + 2) —daf
of graph G. By the induction hypothesis, ¢rpr4+2 (G) > |A] = éum (G) >
|2] + [%). If there exists a vertex v € V — A such that AU {v} is
(M + 2) —daf, then ¢pr42 (G) > |[AU {v}| > | B|+|&L]+1 = | 2]+ 25£2].
Suppose no such vertex exists. Then, Vv € V — A there exists a defensive
(M + 2) —alliance S (v) such that S (v) N (V — A) = {v}. But, then Vw €
S (v), degs()- (v} (W) = degy_g(y)-{v} (W) + M which is contrary to the
assumption that A is M-daf. O

The bound of Theorem 14 is also sharp and is achieved by the complete

graphs of even order. We believe (but have been unable to prove) the
following extension of the above theorem:

Conjecture 1. If G is a connected graph and —6(G) < k < A(G) then
w(@) > |2 +|X
=12l T 2]
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