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Abstract

The resolution of workshop problems as the Flow Shop or the Job Shop has a great
importance in industrial areas. Criteria to optimize are generally the minimization of the
makespan time or the tardiness time. However, few resolution approaches take into
account those different criteria simultaneously. This paper presents a comparative and
progressive study of different multicriteria optimization techniques. Several strategies of
selection, of diversity maintaining and hybridization will be exposed. Their performances
will be compared and tested. A parallel GA model is proposed. It allows to increase the
population size and the limit generations number, and leads to better results. In parallel to
the work on the optimization technique, we propose here a new bi-criteria flow shop
benchmarks, responding to the need to common problem instances in field of
multicriteria optimization.
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1 Introduction

The Flow Shop problem has received a great attention [11][23] due to its
importance in industrial areas [20]}[22]. The adopted methods for its
resolution vary between exact methods as Branch & Bound, Heuristic
search [14][23][24][25]{27] and metaheuristics [1][2][15][17][21].
However, the majority of these works study the problem in a unicriterion
form and aim principally to minimize the makespan time.

Genetic algorithms (GAs) have turned out to be of great efficiency to
deal with combinatorial optimization problems; different extensions to
the multicriteria case have been elaborated [4][5][11]{12][32][34][35].
The difficulty of the multicriteria case lies in the absence of a total order
relation between the solutions of the problem. Considering GAs, this
insufficiency appears in the difficulty to design a selection operator that
assigns selection probabilities, proportional to the desirability degree of
the individuals in the population. Another drawback is related to the
sensitiveness of the initial population choice as well as the bad sampling
during the selection. This sensitiveness frequently induces the premature
loss of the diversity as well as the instability of the search. Hence,
designing diversity maintaining techniques is necessity.

The second section of this paper presents the multicriteria flow shop
problem. It exposes the different parameters to optimize as well as the
constraints to satisfy. In the third section, we will expose the different
possibilities of extension of GAs to the multicriteria case. We will also
present the different choices of coding, the objective functions, and the
genetic operators. In the fourth section, different selection strategies will
be presented and their performances compared. In the fifth section, we
will expose the implemented diversity maintaining methods and their
contribution for the solutions quality. The sixth section will be devoted
to the presentation of the hybridization of multicriteria GAs with a local
search procedure and its contribution will be underlined. In the next
section, a comparison of the performances of the proposed method with
other works is made. In the last section, we study the possibility of
extension to parallel GAs.



2 Multicriteria Flow Shop problem

The flow shop problem is presented as a set of N jobs {J}, J, ..., Jy} to
be ordered on M machines. Machines are critical resources: one machine
cannot be assigned to two jobs simultaneously. Each job is comgosed of
M consecutive tasks J; = {t;, t;5,.., ta}, where t; represents the j" task of
the job J; requiring machine n;. Subsequently, all the jobs have the same
processing sequence on the machines. To each task #; is associated a
processing time pj;, a release time 7; and a due date d; (deadline of job
).

Scheduling tasks on different machines must optimize some criteria
[8][18]. These criteria vary according to the particularities of the
considered problem, and generally consist in the minimization of one of
the following parameters [33], where C; denotes the completion time of
jobJ:

Crnax  : Makespan time (max; C;)

C : Mean value of jobs completion time

Thee :Maximum tardiness max; {max{0, C-d;}}

T : Total tardiness (Z; max {0, Ci-d}})

T : Number of jobs delayed with regard to their achievement dates
d.

Fpax  : Maximum job flux (% (C-r)

F : Mean job fluxes.

A criterion is said to be regular when a delay in the schedule of a task
leads to the degradation of the solution quality.
Formally, let C and C’ be two vectors defined as:

C={Cy, Cis, ..., Cap, C2, ..., Cny, Cra, ...Cppg} and
C'={C1,C'12,0, C'21, C'22, .., C'np, C'na, ...C'nas}

where C; and C’; designate the achievement dates of the task #;. If Fis a
regular criterion, then C<C’ = F(C) < F(C’). This property will allow
us, in the following, to only take into consideration semi-active
schedules, i.e., schedules where each task is programmed as soon as
possible [8][18][19].

We are interested in the study of permutation flow shop problem
F/perm,di/(Cpax, T), where jobs must be ordered in the same order on all
the machines.
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Fig. 1. Schedule example

3  GA and Multicriteria Flow Shop Problem

3.1 Coding

The application of a genetic algorithm to a given problem needs a
chromosomal representation of a solution [10] (in our case a
representation of a schedule of jobs). As in permutation flow shop jobs
are ordered in the same order on every machine, a schedule is completely
define by a permutation defining the processing order of the jobs on the
machines.

2| 4 7 1 3 6 5

Fig. 2. Chromosomal representation of the schedule depicted in Fig. 1

3.2 Determination of the completion times of tasks

The evaluation of a given sequence needs the calculation of the
beginning and achievement dates of tasks. Since the criteria to optimize
are regular, this calculation is realized by the construction of the
schedule, at the earliest, of tasks.

The calculation is made in a recursive manner starting with the first
executed tasks as follows:

0 : if J, is the first job of the permutation and j=1
Tj-ny + Puj-yy : ifJ, is the first job of the permutation and j # 1 a

7 |1, + p,, if J, : is not the first job of the permutation and j=1
max(ry ., + Py, Ty + Pyy) + Otherwise



where 7; is the starting date of the task ¢;. J;: is the job preceding J; in the
permutation.

This formula expresses the fact that a task z; cannot start unless the
machine m; has finished to process the previous task #;; and the previous
task #.;) of the same job is over.

The calculatlon of 1 is described in the following algorithm (with SfiJ
the i job of chromosome S, and fiee the availability date of machine):

BEGIN

/* calculation of starting dates of the tasks r;; executed on the first machine */
Sfree:=0

fOI’ i:=1toNdo begin rs[,-],:=ﬁ'ee;ﬁ'ee:=rs[i,, + Dsyijt 5 end;

/* calculation of beginning dates of the tasks t; executed on other machines */
Jorj:=2to M /* for each machine */

do begin

Jfree:=0;

Jori:=1toN do begin rs:= maximum(free, rsjiy.i+ psjiy.1); free:= roy; +
Psis end;

end;
END.

3.3 Objective functions

The optimization criteria taken into account in this work are the two
following objectives: minimizing the global makespan time as well as
the global tardiness.

f1=Coue = Max (s + Pus) @
J,€ jobs
f2=T= Z [Max (0.le + Py =) ] &)
J, e jobs

3.4 Genetic operators

Following Murata and Ishibuchi [17], the mutation and crossover
operators are described in the figures below:
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The mutation operator consists in choosing randomly two-points of the
chromosome, and performing a rotation as shown in fig. 3.

The crossover operator, also called two-points crossover, consists in,
first, the random choice of two points. An offspring individual is then
generated. In its extremities, the offspring is similar to parentl, and
elsewhere remaining jobs are taken in the order encountered in parent 2
(fig. 4). Two-point crossover combine both efficiency and
implementation simplicity. One should refer to [10] to a comparative
study of different crossover operators for flow shop problem.

4  Selection operator

The absence of a total order relation between the different possible
solutions of a multicriteria problem involves confusion in defining the
notion of optimality.

4.1 Dominance and Pareto optimality
A well known definition is the dominance notion or Pareto optimality

notion. Dominance represents a partial order relation on points of the
search space.



S, domines S, < Vk e[1..n0bj] £,(S,) < £,(S,) and

3k e[1.n0bj]/ £,(S) < £,(S,) @

Where nobj designates the number of objectives (f; ) to be optimized.
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Fig. 5. Non-dominated solutions

Intuitively, a solution S; is said to dominate the solution S; only if: §; is,
better or equal to S; every where (with regard to the objectives), and
better than S at least for one objective.

The multicriteria optimization purpose is to reach a set of non-dominated
solutions that approximates as best as possible the set of Pareto solutions
of the problem.

4.2 GAs and multicriteria optimization problems

Many adaptation techniques of GAs to the multicriteria case are found in
literature. The principal differences between these methods consist in the
way of taking into account the different objectives.

1 - In the selection phase: the multicriteria aspect appears in the
ordering of individuals, according to their fitness, in order to be selected.
a— Lexicographical selection: it’s based on a pre-established priority
order between objectives [28].

b— Ranking selection: it consists in ranking individuals of the population
according to different criteria. Therefore, NSGA [29] and NDS [7]



selections use the dominance notion, the WAR selection [7] uses the
objective function value.

c— Parallel selection: for each generation, the population is decomposed
in nobj sub-populations of equal size. To each sub-population is
associated an objective to optimize. Individuals of a same sub-population
are then selected according to the corresponding objective [26].

d— Selection by weighted sum of variable weight objectives: adopted by
Murata and Ishibuchi [17], this method consists, at each generation, in
randomly generating a set of #n0bj numbers ®;, ®; ,... , W belonging to
[0, 1] such as @; + @ + ... + @y = 1. Individuals are then selected,
during this generation, according to the formula of;(S)* @yfS) +...+
mnobif;zob}(s)-

2- In the reproduction phase: The multi-sexual reproduction [6]
assigns to every objective a given sex. To each individual of the
population is also associated a sex (after generation of the initial
population or reproduction). Individuals are allowed to reproduce
together only if they are of opposite sexes.

4.3 Implemented selection strategies

In this study, we have implemented and compared six multicriteria
selection strategies. The main differences between these methods consist
in the way individuals of the population are ordered and selection
probabilities are calculated.

4.3.1 Selection by Weighted Sum of Objectives

It is one of the first methods used [12] for multicriteria optimization. Based on
the transformation of the problem to a single criterion problem, this method
consists in combining the different objective functions in one function, as
follows.

f(S)= z I ACH. (6)

ke[1..nobj}

The weights A, are experimentally taken in the interval [0..1] such as Z;
A =1. The rank of an individual in this case is equal to f{S;). Then, the
selection probability, 77(S;), of individual S; is equal to:

10



Rank(S,)= f(S,) Y]

7(S;)=Rank(S;)/ Y, Rank(S,)

jelt.ap]

®

where £p designates the current population size.

4.3.2 Parallel Selection

Half of the selected elements are selected with regard to their makespan
time cost. The remaining #p/2 individuals are selected with regard to
their tardiness cost.

4.3.3 NSGA Selection

In the NSGA selection [29] (Non-dominated Sorted Genetic Algorithm),
the ranks of individuals are calculated in a recursive manner, beginning
with the non-dominated individuals of the population.

Rank 1 is associated to the non-dominated set of individuals E; of the
current population.

Rank 2 is associated to the set of individuals E, dominated only by
individuals belonging to E;.

Rank k is associated to the set of individuals E;, dominated only by
individuals belonging to £, U E, U ... U E;,.

The selection probability of an individual S; of Rank » in the population
follows Baker expression [5]:

_Sx(@ip+1-R))

z(S; 9
(S;) px—1) ©®
Where § designates the selection pressure and

Je[l..n-1]

11



4.3.4 NDS Selection

In the NDS selection [7] (Non-Dominated Sorting), the rank of an
individual is equal to the number of solutions dominating the individual
plus one.

Rank(S,;) = S; € Population/S; dominates S, | +1 1)
The selection probability is calculated using formula (9).

43.5 WAR Selection

The weighted Average Ranking [3] consists in calculating the rank of
each individual of the population with regard to the different objectives
separately. The rank of an individual is calculated as the sum of ranks.

Rank(S,) = Rank _ Makespan(S,) + Rank _Tardiness(S;)  (12)

The selection probabilities are calculated as for NSGA selection.

4.3.6 Elitist Selection

The elitist selection consists in maintaining an archive population PO*
that contains so for the best non-dominated solutions encountered during
the search. This population will participate to the selection and
reproduction stages [10].

WAR selection

Fig. 6. Comparison between NSGA, NDS and WAR selections

In this case, the selection probability of an individual S; of rank » in the
current population corresponds to the following expression:

12



((p—4) Sx(p+1-R,)
ip ipx(ip-1)

(S;) = (13)

Then, element of the Pareto population are chosen with a probability
A/t,. Hence, “4” determines the expected number of individuals selected
from the PO* set. Actually, all the selection methods keep an archive
containing the best solutions encountered during the search (Pareto set).
The particularity of the elitism is to let this population participate during
the selection phase. The rank of individuals is calculated with the NSGA
technique. The following procedure describes the selection procedure, of
an individual of the current population, in the elitist selection case.

Population

Selection

v

| Population |

v

Reproduction

Fig. 7. Elitist selection strategy

4.4 Scheme of the GA
We describe here the principal components of the GA.

BEGIN

1. Generate randomly the initial population.

2. Calculate the PO" of the current population.

3. While the number of limit generations is not reached.
Do begin

a. Calculate the rank of individuals with regard to the adopted selection
bpe.

b. Calculate the selection probabilities of each individual.

c. Select tp individuals from the current population and eventually from
the population PO’ (elitist selection) according to their probabilities,
and form the intermediate population.

d Fori:=1totp /* Crossover phase*/

Do begin

13



Select a pair of individuals from the intermediate population.
According to a crossover probability Pc
Choose either (a) do the crossover and insert the offspring
individual in the new population or (b) insert one of the two parents
in the new population.

e. Fori:=1totp Do
Mute the individual S; of the population with a probability Py,

f Update PO*: PO*=Non-dominated solutions of (PO*+Population.)

End
END.

4.5 Performances of the different selection strategies

To compare the performances of the 6 implemented selection strategies,
tests were effectuated on Heller’s [13] problem with 20 jobs * 10
machines. Tests show an effective improvement of the search with the
introduction of the elitism in the selection phase. The non-Pareto
strategies, represented here by the Weighted Sum Selection and the
Parallel Selection, seem to be non-adapted to the multicriteria case. The
three selection strategies NSGA, NDS and WAR are of almost identical
performances, with a slight supremacy of NSGA and NDS methods. The
parameters of the different methods are described in table 1, the
population size is 200 and the limit generation number is 15000:

Table 1. Parameters of the different selection strategies

Weighted sum | A1=0.5}12=0.5
NSGA S=17

NDS S=1.7

WAR S=1.7

Elitist S=17 [A=5

4.6 Effect of the parameter "A" on the elitist selection strategy

As the contribution of the elitism has been proved, it's interesting to
know the impact of the choice of the parameter “A”. The choice of this
parameter value influences considerably the balance between
exploitation and exploration.

14



Effectively, a high value of A intensifies the exploitation of the good
found solutions. A low value of A favors the exploration of new horizons
of the search space.

Figures 9 and 10 show the evolution of the Pareto front obtained after

different generation numbers for values of the parameter equal to 1 and
4.

Makespan

L + . +
142 . R
R o
1 ; 80 230 280 330 380 430 480
Tardiness

| -o Eltist O NSGA & NDS - WAR + Weightedsum _ ® Parallel selection |

Fig. 8. Comparison of the different selection strategies
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Fig. 9. Search evolution for A =1

Fig. 10. Search evolution for A=4
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For low values of 4 (4=1), the Pareto frontier convergence is slow,
contrary to results obtained for 4=4.

5 The diversity maintaining

Classical GAs are reputed to be very sensitive to the initial population
choice and the bad sampling during the selection. This fragility is
observable on the diversity loss, or what is also called the genetic drift.
To face this drawback, several approaches, aiming to maintain the
diversity in the population, were proposed.

1. Introduction of new individuals: this technique consists in generating,
randomly and during the search, new individuals and inserts them into
current population.

2. Stochastic Universal Sampling (SUS): Baker [32] proposed a
technique that aims to eliminate the drifts of the probabilistic choice that
make the effective offspring number of an individual different from
those expected theoretically. The SUS selection proceeds by choosing
probabilistically the first individual only (by turning a biased wheel).
Other individuals are then selected by turning the wheel, from its current
position, with a constant angle each time.

3. Distance maintaining: Proposed by Mauldin [16], this technique
defines a value k as a minimal distance authorized between two
individuals of the population. When an individual is generated, its
distance with regard to the rest of the population is calculated. Then, if
an individual is judged similar to another individual (distance < k), then
it will be mutated until the distance k is respected.

4. Crowding [16]: Holland was the first to suggest the use of this
operator in the replacement phase of GAs. After the generation of an
individual, this operator replaces, in the population, the individual most
similar to it.

5. Neighborhood restriction: Other works, proposed for the diversity
maintaining are based on neighborhood restriction [9]. The principle is to
allow reproduction between two individuals only if they are similar.
Other works prevent reproduction between similar individuals to avoid
incest.

6. Ecological niching: The sharing principle consists in the degradation
of the fitness of individuals belonging to search space regions with a
high concentration of solutions. This process has the effect to:

16



- change the problem scenery,
- favor the dispersion of the solutions in the search space,
- form sub-populations of similar individuals.

The degradation of the fitness of an individual is realized thanks to a
function called sharing function sh. In a minimization scheme, the
revised objective function f of an individual S; noted f(S;) is equal to the
original function f multiplied by the sharing counter (niching counter) of
the individual m(S,).

S(5) = f(§)xm(S)) (14)
The sharing counter calculates the similarity degree of an individual with

the remaining individuals of the population.
The sharing function s# is defined as follows:

m(x)= Z.‘EW sh(dist(x, y)) 15)
dist(x,y) o o
sh(dist (x,y)) _J1 _(_}'— ) if. dist (x,y)<y (16)
0 otherwise

In formula (16) the constant y designates the non-similarity threshold
(niche size), i.e., the distance from which two individuals x and y are not
considered as belonging to the same niche any more. The constant o
allows to control and regulate the form of the function sh. Depending on
whether the distance between two individuals is calculated in the
decision space (chromosomal representation of an individual) or in the
objective space (fitness of individuals), three approaches are possible:
genotypic sharing, phenotypic sharing and combined sharing.

5.1 Genotypic Sharing

In this case the distance between individuals is calculated according to
the difference between chromosomes. Since a schedule is represented by
a permutation, the distance between two schedules (two permutations) is
then equal to:

17



disti(x, y) = |{(, j)eJxJ /i precedesj

17
in the solution x and j precedes i in y}| .

This means that the distance between two individuals x, and y is equal to
the number of order inversions between them.

5.2 Phenotypic Sharing

The distance in this case is taken as the difference between the costs
of the two individuals. f; designates the i* objective function.

dist2(x, y) = z| £()-£,0) as)

5.3 Combined Sharing

This case represents the combination of the two first approaches cited
above. Both, the distances (genotypic and phenotypic) are used. The
function sh, in this case, takes the following form:

([ disti(x,
1-—'5-(—]"—”—) if distI(x,y)<y1, dist2(x,y)2y2
y

dist2(x,y) . .

|l-—— if distI(x,y)2y1, dist2(x, 2
sh(x,y)=< 2 ist](x,y)2y1, dist2(x,y)<y a9

dist1((x,y)dist2(x, . .

1 distI{(x,y )dist2(x,y) if dist1(x,y)<y1, dist2(x,y)<y2
yly2

0 otherwise

5.4 Experiments
To show the contribution of the different diversification methods on the

search, many tests were performed on the Heller problem 20*10, with a
limit generation number equal to 50000 and using the same parameters

18



as those described above for the elitist selection strategy. Results are
presented on figure 11.

The parameters concerning the diversification strategy are: 0=0.9, y1=4
and y2=1. We notice that the contribution of the genotypic
diversification is slightly appreciable compared to the results obtained by
the phenotypic diversification. However, the diversification in decision
space is distinguished by an efficient set of solutions not found by the
phenotypic diversification. The composed diversification presents a best
solution quality than the two previous methods. Noting that the
diversification contribution appears only after a considerable number of
generations, hence the necessity to take a very high limit generation
number (>40000).

6 Hybridization with a Local Search

We were interested by the use of a Local Search (LS) procedure [32] as a
mean of acceleration and refinement of the Genetic Search. In this case,
the idea is to run the GA first in order to approach the Pareto frontier.
Then the local search will be used for the refinement of the found
solutions (see fig. 12).
In order to generate the neighborhood of a given solution, we were
inspired by the mutation operator. Thus, the neighborhood of a solution
corresponds to the set of permutations generated after the rotation of a
pair of jobs (see fig. 13).
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Fig. 11. Diversification contribution
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The hybridization [32] process consists in generating the neighborhood
for each individual of the Pareto population. The non-dominated
neighbors in the Pareto population are inserted in this one. The solutions
belonging to Pareto and dominated by the neighborhood of one solution
are suppressed. This process is iterated until no neighbor of any Pareto
solution is inserted in the Pareto population. Fig. 14 describes
schematically the Local Search process.
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NN
neighbors neighbors -
L 2 v

Eliminate neighbors | | Eliminate neighbors
dominated by Pareto | { dominated by Pareto I — U /7

v v

| New Pareto individuals

528

D

526-

J 500 600 700 800 900 1000 1100
Updating of Pareto

, 4
| Pareto I-———

Fig. 14. Local Search in action Fig. 15. Local search contribution
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The tests of performance of the hybrid GA with the local search show
that LS is of no interest for little size problems, notably Heller 20*10.
However, the hybridization contribution appears as soon as the size of
the problem increases. The tests presented in fig. 15 are realized on
Heller problem with 100 jobs and 10 machines.

7 Tests & performances

Comparative studies of multicriteria optimization works, as the Flow
shop problem, are generally confronted to the absence of benchmarks.
This is due to the difference between the criteria to optimize and the
specificities of the treated problem. For the Flow Shop problem, only the
makespan may be considered as an effective comparison criterion,
because such benchmarks exist. Hence, one quality of a muliticriteria
algorithm may be its ability to find extrema solutions (that are at the
extremities of the Pareto front) approaching those found by the
unicriterion algorithm.

Problems "taxx", due to Taillard [5], are classical problems for
minimizing the makespan in a flow Shop context. They offer a good
comparison support. These problems are often cited in literature [2][21]
and each one is characterized by a value LB, corresponding to the
makespan lower bound, and a value UB corresponding to the best
solution obtained for this problem.

The algorithm used by Taillard to generate those benchmarks, consists in
the generation of a problem instance from the three entry data: N, M and
an integer number SEED. We extended this process in order to generate
instances with tardiness. The following algorithm describes our bicriteria
Flow shop instances generator, where N, M, SEED and UB are global
variables given by the user. This algorithm generates instances as
Taillard ones with a time-limit d; for every job.

Sunction unifl: integer
begin
m =2147483647;
a=16807;
b=127773;

21



c = 2836;
k =SEED/b ; /*integer division*/
SEED = a * (SEED modulo b) - k * c;
if (SEED < 0) SEED = SEED + m;
valeur 0_1 = SEED/m ; /*non-integer div.*/
return inf + (valeur 0 _1 * (sup - inf + 1));

end

Sunction unif2: integer

begin
m = 2147483647;
a=16807;
b=127773;
c =2836;
k = SEED2/b; /*integer division*/

SEED2 = a x (SEED2 modulo b) - k xc;

if (SEED2 < () SEED2 = SEED2 + m;

valeur_0_1 = SEED2/m /*non-integer div.*/

return (12 x UB/30 + value_0_1 x 17 x UB/30);
end

procedure Generate_instance

begin
SEED2 = SEED * 2;
forj=1toM

Jori=1toN do p; = unifl;
/*py: duration of t;*/
Jori=11toN do d=unif2;
/*d;: deadline of job J;*/

end.

Table 2 presents results of tests, performed on 8 Taillard instances
extended to the bicriteria case, noted ma_taxx_bi. MM designates the
best obtained makespan and MR the minimal registered tardiness. Dev
measures the difference between the best obtained makespan and UB.
|PO| calculates the number of solutions of the obtained Pareto frontier.

Results in table 2 show the algorithm capacity to find extremum
solutions. The obtained Pareto set is sufficiently spread, what offers a
good sampling of the Pareto frontier. The deviations, although slight, are
justifiable. Indeed, the proposed algorithm is very independent of the

22



treated problem, since no heuristic, guaranteeing minimizing the
makespan or the tardiness is used.

The small size of the |PO| set is due to the strongly correlated
characteristics of the two objectives to optimize.

The proposed algorithm, not guided by any heuristic adapted to the flow
shop problem, converges very slowly. The parallelization of the
algorithm is then imposed as a sensible mean to fill this deficiency. The
reduction of the processing time of a generation will compensate the
augmentation of the population size or of the limit generations number.

Table 2. Performance of the hybrid genetic algorithm

Problem |Dim. |SEED LB |UB (MM [Dev | MR ||POJ|Nb of
NxM % gener.
ma_ta0l_bi [20x5 | 873654221 |1232(1278 (12780 453 |4 50 10°
ma_ta02_bi [20x5 |379008056 | 1290|1359 (13590 491 |6 50 10°
ma_tall_bi [20x10 | 587595453 | 1448|1582 [15860.25]| 1508 [28 |80 10°
ma_tal2_bi [20x10 | 1401007982 | 1479 | 1659 | 1674 | 0.9 [ 1342 |21 |80 10°
ma_ta2l_bi [20x20 [ 479340445 |1911}2297[2330]1.43[1062 [32 [2010*
ma_ta31_bi [50x5 [ 1328042058 [2712]2724[2735[0.4 [3629 |11 |20 10°
ma_tad1_bi [50x10 | 1958948863 [ 2907 | 3037 | 3126 | 2.93 | 6653 |24 |20 10°
ma_taS1_bi [50x20 | 1539989115 | 3480 | 3886 | 3990 | 2.67 | 1137932 |30 10°

8 A parallel genetic algorithm

The parallelization mechanism, we have adopted, is based on the
distributed model [31]. This approach favors the subdivision of the
population into sub-populations of equal size. Each processor executes
the GA on the sub-population assigned to it. On determined laps of time,
the different GAs exchange their best individuals.

We have opted for a ring communication topology (fig. 16) in order to

minimize the interprocess communication rate and also to maintain the
connexity of the graph.

23



GAnxp GA;

GA,4 GA;

Fig. 16. Ring communication topology

With this scheme, good individuals may be spread to all sub-populations
after a certain number of generations.

We describe below the migration process.

BEGIN
1. Generate the initial sub-population P, i =0,
2. While the limit generation number is not reached
do - selection;
- Reproduction
- If (i modulo Period) = 0 then
- if the sent individual is received then choose a non-dominated
individual and send it to the process on the right
- if the process is available then receive an individual from the left
process
- acknowledge reception to the left process.
- insert the received individual in the population by randomly
choosing a victim
-i=i+1]
Done
END.
The advantages of such a model are:
- Reliability and stability: The blocking of a process or its slowness
doesn't influence the behavior of other processes.
- Reduced communication rate: during each migration wave, we will
have a maximum of 2 x NC exchanged messages — NC individuals
transmitted and NC acknowledgements of receipt.
- Independence in regard to the environments: the algorithm is
independent of the execution platform (homogeneity, number of
machines, characteristics).
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Fig. 17. Execution time of the parallel Fig. 18. Efficiency of the parallel
GA for ma_ta21_bi in function of the GA for ma_ta2l bi
number of machines

Figures 17 and 18 show respectively the variation of the processing time
(in seconds) and the efficiency of the parallel GA with regard to the
machines (processes) number. The tests were effectuated on a cluster of
stations SUN ULTRAI and the parallel program are implemented using
C/PVM (Parallel Virtual Machine) Library. The execution time gain
being proved, this may encourage us to increase the population size as
well as the limit generation number in order to reach better solutions.
Results are shown in table 3 for the two instances ma_tall_bi and
ma_ta2l_bi.

Moreover, as shown in figures 19 and 20, the use of large populations
distributed on different GAs and the increase of the maximal generation
number improve the quality of solutions obtained.

Table 3. Improvement of the quality of the solutions for (1): ma_tall_bi and
(2): ma_ta21_bi
Sequential GA with tp=200 Parallel GA with tp=300

Pb. | UB MM |Dev% | MR [|PO]| Nb gen | MM [ Dev % | MR | |PO| | Nb gen |
(1) { 1582|1586 0.25 |1508]28 |80000 |1583|0.06 |1431]32 {300000

(2) 1229712330 1,43 11062132 |2060000]230510.34 |1057]29 300000
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Fig. 19. Parallelization impact on the Pareto frontier for ma_tall_bi
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Fig. 20. Parallelization impact on the Pareto frontier for ma_ta21_bi
9 NEH heuristic for the generation of the initial population

In this section, we propose a probabilistic method of NEH heuristic, due
to Nawaz and Ham [2], which generates a population of individuals of
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good quality. In this method a solution is generated by a progressive
elaboration of several partial sequences. At each iteration, a job J; is
selected in order to be inserted, in the partial sequence &, with a
probability equals to:

(iﬁy]a Z(ipg}a (20)

j=l ked\_j=1

where ¢ corresponds to the set of jobs not yet planned.

Once a job is selected, it’s inserted in the sequence & at the position that
provides the best makespan. o represents a control parameter of the
heuristic. It belongs to the interval ] 0,+ o [. A small value of « leads to

modest quality solutions well spread in the search space, while a high
value generates good quality solutions concentrated in attractive regions
of the search space.

We give below the initial population generation procedure based on
NEH heuristic.

BEGIN
For each individual of the initial population
do begin
@ = {set of all jobs}, &= nil;
VJ; calculate the total time P[i]= %(P;)
end;

choose job J,, with probability P[m]/Z (P{k]°);

Plm]=0; &= d-J,;

choose job J, with probability P{n]*/Z(P[k]°);

P[nj=0; &= d-J,

If Ju—J, is better than J,—>J,, then & = J,—»J,else 8§ = J,—»/),,

Fork=3tN
Do begin
choose J,, with probability P[m]*/Z (P[k]®);
Plmj=0; &= d-J,;
Generate the set of the constructed sequences by introduction of J,, in 6
at one of the k possible positions;
6 = the best new sequence;

end;
END.
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Conclusion and perspectives

In this work, we have constructed our algorithm by a progressive
introduction of concepts such as selection, diversity maintaining,
hybridization and parallelization. At each stage we have shown the
contribution of the introduced mechanism, what allows us to formulate
the following conclusions.

Pareto selection strategies (NSGA, NDS, WAR) are well adapted to the
multicriteria case. Efficiency of such methods is still improved with the
introduction of Elitism during the selection phase. Elitism may lead to a
premature convergence of the search, so, it is necessary to adequately
choose parameters A and S. However, the risk of a genetic drift and of
instability of the search is always present. Diversification strategies seem
to be the privileged mean to prevent such problems. Three variants of the
method, based on the ecological niching, were developed. The
phenotypic sharing appears to be the most interesting. This interest is
related to the fact that a large and well spread Pareto frontier is desirable.
However, the genotypic diversification may yield good results. The
combination of both concepts improves quality of solutions found.

Then, the local search was used as a mean of refinement and acceleration
of the search (fig. 21). The hybridization scheme consists in first,
executing the GA in order to get a first approximation of the Pareto
frontier and then executing the local search which has the merit to
improve the solutions (find the local optima of the search regions).
Moreover, experiments have shown that an iterative execution of the
local search, after each generation of the GA, doesn't give better results
and doesn't justify the important cost of the induced processing time. The
contribution of hybridization appears for problems of important size
only.

To test the efficiency of such a method, we are faced to two problems:
multicriteria flow-shop problems are not standard (criteria to optimize
are not identical), and the absence of benchmarks. In this work, we have
proposed to extend Taillard instances [30] to the bicriterion case. The
tests performed show a great ability of the hybrid GA to reach solutions
with a small makespan.

Due to the selection and diversification mechanisms, the proposed GA is
quite slow. Parallelization is then presented as an interesting mean to
overcome this drawback. The reduction of the required time for a
generation incites to use larger populations and to increase the limit
generations number, which improves the quality of the Pareto frontier.
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As perspectives of this work, we may study other hybridization
mechanisms of the genetic algorithm, with other methods, like tabu
search, for example as this method has been successfully used for the
Flow shop problem

We also need to test the strength of the method for Flow Shop problem
with more than two criteria. A graphical comparison being impossible in
this case, more elaborated tests of performance methods must be used,
such as the contribution notion [5] and entropy [5][32][36]. The
extension of the method to the job shop problems may also be studied.
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