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Abstract

We show that the number of points at distance i from a given
point z in a dense near polygon only depends on ¢ and not on the
point z. We give a number of easy corollaries of this result. Subse-
quently, we look to the case of dense near polygons S with an order
in which there are two possibilities for tq, where Q is a quad of S,
and three possibilities for (ty,vy), where H is a hex of S. Using the
above-mentioned results, we will show that the number of quads of
each type through a point is constant. We will also show that the
number of hexes of each type through a point is constant if a certain
matrix is nonsingular. If each hex is a regular near hexagon, a glued
near hexagon or a product near hexagon, then that matrix turns out
to be nonsingular in all but one of the eight possible cases. For the
exceptional case, however, we provide an example of a near polygon
that does not have a constant number of hexes of each type through
each point.
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1 Introduction

1.1 Basic definitions and properties

Let ' = (V, E) be a graph. A cligue of T is a set of mutually adjacent
vertices. A clique is called mazimal if it is not properly contained in another
clique. We will denote the distance between two vertices z and y of I by
d(z,y). If X; and X, are two sets of vertices, then we denote by d(X;, X»)
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the minimal distance between a vertex of X; and a vertex of Xs. If X, is
a singleton {z}, then we will also write d(z, X,) instead of d({z}, X2). For
every i € N and every nonempty set of vertices X, we denote by I';(X) the
set of all vertices y for which d(y, X) =i. If X is a singleton {z}, then we
also write I';(z) instead of [';({z}).

A near 2d-gon is a connected graph of diameter d with the property
that for every vertex x and every maximal clique M there exists a unique
point ' in M nearest to z. A near 0-gon consists of one vertex and a near
2-gon is a maximal clique with at least two vertices.

A point-line incidence structureis a triple (P, £, 1), where P is a nonempty
set whose elements are called points, £ is a (possibly empty) set whose ele-
ments are called lines and where I is a subset of P x L, called the incidence
relation. If (p,L) € I, then we say that p is incident with L, that p is
contained in L, that L contains p, etc.. A point-line incidence structure is
called a partial linear space (respectively a linear space) if every two dif-
ferent points are contained in at most (respectively exactly) one line. The
point graph or collinearity graph of a point-line incidence structure S is the
graph whose vertices are the points of S with two different vertices adjacent
whenever they are collinear, i.e. whenever they are incident with the same
line.

There is a bijective correspondence between the class of near polygons
and a class of partial linear spaces. If a graph I' is a near polygon, then
the point-line incidence structure whose points, respectively lines, are the
vertices, respectively maximal cliques, of I" (natural incidence) is a partial
linear space S. The graph I’ can easily be retrieved from S: T’ is the point
graph of S. Because of this bijective correspondence, the partial linear
spaces which correspond with near polygons are usually also called near
polygons. In the sequel we will always adopt the geometrical point of view.
A near 0-gon is then a point and a near 2-gon a line. In the sequel we will
denote the line with s + 1 points by Ls41.

A near polygon is said to have order (s, t) if every line is incident with ex-
actly s+1 points and if every point is incident with exactly £+1 lines. A near
2d-gon, d > 2, is called a generalized 2d-gon if for every i € {1,...,d — 1}
and for every two points = and y at distance i, |T'y(y) NT;—1(x)| = 1. This
condition is always satisfied if d = 2; so, the generalized quadrangles are
precisely the near quadrangles. A generalized 2d-gon is called degenerate
if it does not contain ordinary 2d-gons as subgeometries. For more back-
ground information on generalized quadrangles and generalized polygons,
we refer to (8] and [10].

A nonempty set X of points of a near polygon § = (P, L,I) is called
a subspace if every line meeting X in at least two points is completely
contained in X. A subspace X is called geodetically closed if every point on
a shortest path between two points of X is as well contained in X. Having
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a subspace X, we can define a subgeometry Sx of S by considering only
those points and lines of S which are completely contained in X. If Sx is
a near polygon, then we call Sx a subgon of S. If X is geodetically closed,
then Sx clearly is a subgon of S. If a geodetically closed subgon Sx is a
nondegenerate generalized quadrangle, then X (and often also Sx) will be
called a quad. Sufficient conditions for the existence of quads were given
in [9]. Every nonempty set X of points is contained in a unique minimal
geodetically closed subgon C(X), namely the intersection of all geodetically
closed subgons containing X. We define C(Q) := 0. If X;,..., X are sets
of points, then C(X; U---U X}) is also denoted by C(X,,...,Xx). If one
of the arguments of C is a singleton {z}, we will often omit the braces and
write C(---,z,---) instead of C(---, {z},---).

A near polygon is called dense if every line is incident with at least
three points and if every two points at distance 2 have at least two common
neighbours. Geodetically closed subhexagons of a dense near polygon are
called hezes. Dense near polygons satisfy several nice properties, see [2] for
an overview. We collect some of these properties in the following lemma.

Lemma 1 (i) (Lemma 19 of [2]) Every point of a dense near polygon S
is incident with the same number of lines. We denote this number by

ts +1.

(#) (Theorem 4 of [2]) If z and y are two points of a dense near poly-
gon, then C(z,y) is the unique geodetically closed sub-[2 - d(z,y)]-gon
containing ¢ end y. So, if £ and y are two poinis at distance 2 in a
dense near polygon, then these points are contained in a unique quad.

(#43) ([2]) Let S be a dense near 2d-gon, d > 1, let F be a geodetically closed
sub-2i-gon, i € {0,...,d—1}, of S and let L be a line which intersects
F in a point. Then C(F,L) is a geodetically closed sub-2(i + 1)-gon.

1.2 Short overview

In the present paper we will show that a dense near polygon also satisfies
the following nice property.

Theorem 1 Let S be a dense near 2d-gon and let i € {0,...,d}. Then
IT;(z)| only depends on i and not on the chosen point z of S.

In Section 5, we will derive some easy corollaries of Theorem 1. In Section
6, we look to the case of dense near polygons & with an order in which
there are at most two possibilities for ¢g, where @ is a quad of S, and at
most three possibilities for (ty,vy), where H is a hex of S. Using Theorem
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1 and the derived corollaries, we will show that the number of hexes of
each type through a point is constant if a certain matrix is nonsingular. If
each hex is a regular near hexagon, a glued near hexagon or a product near
hexagon, then that matrix turns out to be nonsingular in all but one of
the eight possible cases. For the exceptional case, however, we provide an
example of a near polygon that does not have a constant number of hexes
of each type through each point.

2 Three classes of near polygons

Regular near polygons

A near 2n-gon is called regular if it has an order (s,t) and if there exists
constants t;, 1 € {0,1,...,n}, such that for every two points z and y at
distance i, there are precisely ; + 1 lines through y containing a point at
distance i — 1 from z. Obviously, ¢ = —1, t; = 0 and ¢4 = t. The numbers
s, t, t; (i € {2,...,n—1}) are called the parameters of S. The regular near
polygons are precisely those near polygons whose point graph is a so-called
distance-regular graph ([1]).

Product near polygons

Let S; = (P1,£1,11) and S2 = (P2, L2,12) be two near polygons. A new
near polygon S = (P, L,I) can be derived from S; and S;. It is called the
direct product of S; and S, and is denoted by S) xS2. We have: P = P x Py,
L = (Py x L2) U (L1 x P2), the point (z,y) of S1 x Sz is incident with the
line (2,L) € P, x L2 if and only if £ = z and y I L, the point (z,y) of
S1 X S is incident with the line (M, u) € £y X P; if and only if z I; M and
y = u. If d;(-,-), i € {1,2}, denotes the distance in S; and if d(-,-) denotes
the distance in S; x Sz, then d[(z1,z2), (¥1,¥2)] = di(Z1,31) + d2(Z2,72)
for all points (z1,z2) and (y1,¥y2) of S1 X S2. If S, ¢ € {1,2}, is a near
2n;-gon then the direct product S = S; x Sz is a near 2(n; +n2)-gon. Since
S X8 &2 8; xS and (81 x 82) x Sz = 8 % (82 X 83), also the direct
product of k > 3 near polygons Sy, ..., Sk is well-defined.

Lemma 2 (Theorem 1 of [2]) Let S be a near polygon with the property
that every two points at distance 2 have at least two common neighbours.
If k > 2 different line sizes occur in S, then S is isomorphic to a direct
product of k near polygons each of which has constant line size.

Glued near polygons

A spread of a near polygon is a set of lines partitioning the point set. A
spread S of a near polygon A is called a spread of symmetry if for every line
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K of § and for all point pairs k;, k2 € K there exists an automorphism of
A mapping k; to k2. Two spreads of symmetry S; and S; of a near polygon
A are called compatible if the group of automorphisms of A fixing each line
of S) commutes with the group of automorphisms of A fixing each line of
So.

In [3], it was explained how a certain partial linear space S can be
constructed from any 7-tuple (A, Az, Sy, S2, K3, K»,6), with 4; and A,
near polygons of diameter at least 2, S; (i € {1,2}) a spread of symmetry
of Ai, K; (i € {1,2}) a line of S; and @ a bijection from K; to K2. The
resulting partial linear space § is not necessarily a near polygon, but when
it is, it is called a glued near polygon of type A; ® A2. We refer to (3] for
necessary and sufficient conditions. If S is a glued near polygon, then there
exists a partition T} of S into geodetically closed subgons isomorphic to .A;
and a partition T of S into geodetically closed subgons isomorphic to As
such that

e every element of T} intersects every element of T5 in a line,

e every line is contained in an element of T or an element of T5.

3 Some properties of near polygons

Let S be a dense near 2d-gon, let F be a geodetically closed subgon of S
and let ¢ € {0,...,d}. Then we define the following sets:

e W(S): the set of all geodetically closed subgons of S,
e W;(S): the set of all geodetically closed sub-2i-gons of S,

o W;(S,F): the set of all geodetically closed sub-2i-gons of S containing
F.

For every point = of S and every 7 € {0,...,d}, we define W;(S,z) =
Wi(S, {z}). If U is a geodetically closed subgon containing z, then n;(U, z)
denotes the number of points of U at distance i from 2. Obviously, n;(S,z) =
|Ti(x)|. By property (ii) of Lemma 1,

ni(S,z) = Z ni(U, z). (1)

Uew;(S,z)

Lemma 3 Let S be a dense near 2d-gon, d > 2, of order (s,t) and let =
be a point of S. Then

d-1
na(S,2) = v—Y ni(S,z), 2

i=0
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d-2
na-1(S,z) = " :_ 1 (” + Z[(—s)d_i - l]ni(S,:c)) , (3)

i=0

where v denotes the total number of point of S. As a consequence, if the
numbers n;(S,z), i € {0,...,d — 2}, do not depend on z, then also the
numbers ng—1(S,z) and nq(S,z) do not depend on z.

Proof. Obviously, v = Z?:o n;(S, ) and so equation (2) holds. Every line
L of S contains a unique point nearest to z and hence 3_ (=8)d—dEv) =
0. So, 0 = ZLEL zyeL(_s)d—d(z,y) = Zye‘P Zmy(_s)d-—d(z,y) =(t+1)
> yep(—5)3~4@¥). Hence

d
> (—8)*F - ni(S,z) =0. (4)
i=0
Equation (3) now easily follows from equations (2) and (4). i

If S is a dense near polygon of order (s,t), then we can apply Lemma
3 not only to S, but also to every geodetically closed subgon of S (see
property (i) of Lemma 1). Together with the properties of geodetically
closed subgons and equation (1) this will allow us to prove Theorem 1 for
dense near polygons with an order. For dense near polygons without an
order, we will need Lemma 2.

4 Proof of Theorem 1

Theorem 1 says the following.

Let S be a dense near 2d-gon, d > 0 and let ¢ € {0,...,d}.
Then the numbers n;(S,z) do not depend on the point z of S.

We will prove this result by induction on the pair (d,7). (We say that
(d',%) < (d,1) if either &’ < d or (d' = d and 7' < 7).) Obviously, Theorem
1 is true if (d,i) < (2,0). Suppose therefore that (d,i) > (2,0) and that
Theorem 1 holds for any dense near 2d’-gon S and any i’ € {0,...,d'}
satisfying (d’,1') < (d,%) (= Induction Hypothesis).

(I) Suppose that not every line of § is incident with the same number of
points. Then, by Lemma 2, there exist dense near polygons S, and S
satisfying S & 8; x Sz, diam(S,) < diam(S) and diam(S2z) < diam(S). For
every point (z,y) of 81 x Sz, we have n;(S1 x Sz, (z,¥)) = Z;.:o nj(S1,x) -
n;—;(S2,y) and, by the Induction Hypothesis, this number does not depend
on the chosen point (z,y).
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(ITI) Suppose that S has order (s,t), where ¢t = ts (see Lemma 1) and s+1 is
the constant number of points on a line. By connectedness of S, it suffices
to show that n;(S, z) = n:(S, y) for arbitrary collinear points ¢ and y. By
Lemma 3 and the Induction Hypothesis, this property holds if 2 € {d—1, d}.
So, suppose that i < d — 2. By equation (1), we have

n(S,e)= Y mUz)+ >, ni(U,z).  (5)

Uew; (5,3’/) Uew; (S!z)\w( (S,zy)

By Property (iii) of Lemma 1, we have

Z ny(U,z) = Z Z n;(U, z).

UeW;(S,z)\Wi(S,zy) VEW;41(S,zy) UeW;(V,z)\W;(V,zy)

By equation (5),

Z n;(U,z) = n;(V,2) — }: n;(U, z).

UeW;(V,z)\W;(V,zy) Uew;(V,zy)
Summarizing, we have
n(S,z)= Y. mUz+ Y, n(V,iz)— Y. n(Uz)].
UEW;(S,zy) VEWi11(S,xy) Uew;(V,zy)
(6)

Now, all geodetically closed subgons occuring in the right hand side of
equation (6) contain the point y and have diameter at most i + 1. Now,
14+1<d-1. So, from the Induction Hypothesis, it follows that

n(S,z) = Y. wmUy)+ Y, (ni(V,y) - Y wUy].
UeW:(S,zy) VEW;41(S,zy) Uew;(V,zy)
Now, applying equation (6) with y instead of x, we obtain that
ni(S, z) = ni(S, y)-

As mentioned earlier, Theorem 1 now follows from the connectedness of S.
5 Some easy corollaries

Lemma 4 (Proposition 2.6 of [9]) If (z,Q) is a point-quad pair of a
dense near polygon, then precisely one of the following holds.
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(a) There is a unique point z’ in Q nearest to = and d(z,y) = d(z,z') +
d(z',y) for every point y of Q. In this case we will say that x is
classical with respect to Q.

(b) The points in Q nearest to x form an ovoid O, of Q. In this case we
will say that = is ovoidal with respect to Q.

Definition. For every quad Q of a dense near polygon S and for every
i € N, let M; c(Q), respectively M; 0(Q), be the number of points of I';(Q)
which are classical, respectively ovoidal, with respect to Q. By Lemma 4,

IT:i(Q)] = M c(Q) + M; 0(Q).

Corollary 1 Let S be a dense near 2d-gon of order (s,t). Then the fol-
lowing holds.

(a) The number of points at distance i € {0,...,d—1} from a line L only
depends on i and not on the chosen line L.

(b) The number of lines at distance i from a point = only depends on i
and not on .

(c) For every i € {1,...,d — 1} and for every quad Q, stq - Mi_1,c +
M; c(Q) + (1 + stg) - M;,0(Q) only depends on i and tg. So, if Ca
and Q, are two quads of order (s,a) for a certain a € N\ {0}, then
IT:(Q1)] = ITi(Q2)| (mod sa) for every i € {0,...,d}.

Proof.

(a) Let L = {z1,...,Tst1}, let & € {1,...,d} and let n; denote the con-
stant number of points at distance i from a given point. If y € I'i(z;)
for a certain j € {1,...,s + 1}, then either y € T';(L) or y € [';i_1(L).
Hence, (s + 1)n; = |Ti(z1)] + [Ti(ze)| + -+ + [Tel@aa)| = ITi(L) +
s+ |Di—1(L)| for every i € {1,...,d}. The property now easily follows
if one takes into account that |To(L)| = s + 1.

(b) Let m;, i € {0,...,n — 1}, denote the number of lines at distance
i from z. Counting flags (y,L) with y € Ti(z) gives ni(t + 1) =
mi_1 - s+m; for every i € {1,...,d}. The property now follows from
the fact that mg =¢+ 1.

(c) Let L* be a given line of Q. Counting pairs (z, L) with z € I';(L) and
L a line of Q gives (1 +tg)(1+ st@)ITi(L*)| = X pco ITi(L) = 1 +
tQ)stQ-M'_l,c(Q)+(1+tQ)-Mi,c(Q)+(1+tQ)(1+stQ)~Mi,o. Hence,
stq - Mi_1,0(Q) + Mic(Q) + (1 +stq) - M; 0(@Q) = (L+stg) - [Tu(L*)|
only depends on ¢ and tq. o
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Corollary 2 Let S be a dense near 2d-gon with d > 3. Suppose that every
quad has order (s,a) or (s,az) with oy # ag. Then the number of quads
of order (s, ;) through a given point i3 a constant.

Proof. Let n, denote the constant number of points at distance 2 from
a given point. Take a point = of S and let A;, i € {1,2}, denote the total
number of quads of order (s, @;) containing z. Since every two lines through
z are contained in a unique quad, we have

(a1 + oy - A1+ (a2 + 1)az - Ap = (E+ 1)t (7)

Since there exists a unique quad through every two points at distance 2,
we have

82(11 -+ 8202 . /\2 = Ng. (8)
Now, the determinant of the system (7)-(8) is nonzero. So, A; and A, can
be written as a function of s, ¢, a1, a2, ne and are independent from the
chosen point z. o

Corollary 3 Let S be a dense near 2d-gon with d > 4. Suppose that every
quad has order (s,a) and that every hex has order (s,1) or (s,B2) with
B1 # P2. Then the number of hexes of order (s, 3;) through a given point is
a constant.

Proof. Let n3 denote the constant number of points at distance 3 from
a given point. Take a point z of S and let y;, ¢ € {1,2}, denote the total
number of hexes of order (s, ;) containing z. One easily calculates that

the number nz(H;, z) is equal to ﬁ—éf_‘—fﬂ for every hex H; of order (s, ;)
and every point z of H;. Since there exists a unique hex through every two

points at distance 3,

$°B1(B1 — @) 8°B2(B; — )

Tat1 MT T a3 kT ©)
Now, if we count the number of pairs (@, L), where Q is a quad through z
and L is a line through x not contained in @, we find by (iii) of Lemma 1
that

(B +1)B (B2 +1)B2
afa+1) a(a+1)

Now, the determinant of the system (9)-(10) is nonzero. So, y; and us can
be written as a function of s, ¢, «, 81, B2, ng and are independent from the
chosen point z. a

(B2—0a) p2 = M(t—a:). (10)

(Br—a)-pm+ @+ Da

Definition. Let S = (P, L,I) be a near 2n-gon, n > 2. A distance j-ovoid
(2 <j<mn)of Sis aset X of points satisfying:
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(1) d(z,y) = j for all points z,y € X;;
(2) for every point a of S, there exists a point z € X such that d(a,z) < %;

(3) for every line L of S, there exists a point z € X such that d(L,z) <
i—1
5
A distance 2-ovoid is just an ovoid. From (1), (2) and (3), we immediately
have:

e If j is odd, then for every point a of S, there exists a unique point
¢ € X such that d(e,z) < 3.

o If j is even, then for every line L of S, there exists a unique point
z € X such that d(L,z) < 2.

If X is a distance j-ovoid, then the map P — N;z — d(z, X)) is a so-called
valuation of S, see [5). Valuations are very important objects for classifying
near polygons. These objects will be used in [7] to classify all dense near
octagons with three points per line.

Corollary 4 IfS is a dense near 2n-gon and if X; and X are two distance
j-ovoids of S, then X, and X, have the same number of points.

Proof. Let v, respectively b, denote the the total number of points, re-
spectively lines, of S. Let n;, i € {0,...,n}, denote the constant number of
points at distance i from a given point. Let m;, j € {0,...,n — 1}, denote
the total number of lines at distance j from a given point (see Corollary
1). By the above remark, we have that every distance j-ovoid contains
points depending on j odd or even. O

ﬂo+ﬂ1+ +ﬂ1_;_! or mo+my+- +mj_r

6 Dense near polygons with two types of quads
and three types of hexes
In this section, let S be a dense near polygon for which the following holds:
e every quad of S has order (s, ;) or (s, az),
o (tr,vy) is equal to (B1,v1), (B2,v2) or (B3,vs) for every hex H of S.

Here vy denotes the total number of points of H and s, a1, a2, B1, B2, Bs,
v, v2 and v3 are nonnegative integers such that a; # a2 and (B1,n1) #

(B2,v2) # (B3,v3) # (B1,v1). We say that a hex is of type (i), i € {1,2,3},
if (tzr,vy) = (Biyvi). By Corollary 2, there exist constants A1 and A2 such
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that each point of S is contained in A; quads of order (s,a;) (¢ € {1,2}).
By equations (2) and (3), it follows that ne(H, z) and n3(H, ) only depend
on the type of the hex H and not on the particular choice of the hex H
or the point z in H. By equations (7) and (8), it follows that there exist
numbers Ag.') (1<i<3and1<j< 2)such that for every hex H of type
(i) and every point £ € H, there are )\(’) quads of order (s, ;) through z
contained in H. By equation (4) it follows that for every hex H of type (i)
and every point z of H, ng(H,z) = s3(z\(’)a1 + )\(‘)az —~B;). Let z be a
point and let y;, 7 € {1,2,3}, denote the total number of hexes of type (i)
containing z. Counting points at distance 3 from z, we obtain that 2} is
equal to

()‘gl)al +A0 aa— 1) -m+ (AP +/\£2)02 —ﬂz)'u2+(z\£3)a1 +2D ay—f3)-p3-

Counting pairs (Q, L) where Q is a quad of order (s, ;) through = and L
is a line through z not contained in @, gives

AP(B1— 1) -+ A28y — a1) - 2 + AP (Bs — 1) - pa = At — @),
)\gl)(ﬁl —ag) - p + )\52)(;32 —ag) - p2+ /\ﬁ‘”(ﬁs —ag) - p3 = Aot — az).

Let M(s,a,, a2, b1, B2, 83,v1,v2,v3) be the following matrix

’\gl)(ﬂl - C¥1) )\52)(,32 - 0!1) /\ga)(ﬂa - 01)
AP (8, - a) AP (8 — o) A (B3 — a)

Mey +2Pa — i AP + 3702~ APy + 2P as - b5
The above equations provide a proof of the following result.

Theorem 2 If det{M(s, a1, az, B, B2, B3, v1,v2,v3)| # 0, then the number
of hezes of each type through a point is a constant.

For every hex H of type (i), we define
/\gt:) (ﬂi - 0-'1)
NH)=| 2)(Bi-on)
Moy + 2 ay - ;

Except for three examples when s = 2, every known dense near hexagon is
either regular, glued or a direct product of a line and a generalized quad-
rangle. Consider now the following classes of near hexagons.
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e For all s,t; € N\ {0,1}, let Ci(s,t2) denote the class of all near
hexagons which are isomorphic to L,41 X @ for some generalized
quadrangle @ of order (s,2).

e For all s,t; € N\ {0,1}, let C2(s,t) denote the class of all near
hexagons which are isomorphic to a glued near hexagon of type Q®Q’
for some generalized quadrangles Q and Q' of order (s,t2).

e For all s,t,,t with s > 2 and ¢,t; € N\ {0}, let C3(s,t,t2) denote the
class of all regular near hexagons with parameters (s,t,t2).

In the following table, we list the parameters for each of these classes.

class o | o [Z] AL A2
Ch (s,tz) 1 to |ta+1 ]| t2+1 1
Cz(s, tz) 1 12 2to t% 2
Cs(s, t2, ty| t2 | — t ‘: :;:1_;) 0

If H belongs to one of these classes, then N(H) is equal to one of the
following matrices :

[ ta(t2 +1) ]
Nl(31 t2) = 1 )

[2)

t2(2t2 — 1)
Ny (3, tz) = 2to ,
£
t!t-{-l!st—t:!
ta(ta+1
0
t(t—t2
to+1

N3(3) t:t2) =

If S is a dense near hexagon with two types of quads and three types of
hexes such that every hex belongs to one of the above classes, then we have
to consider the following possibilities.

(1) Every hex belongs to Ci(s,t2) U Ca(s,t2) U Cs(s, ta,1), t2 # 1.
(2) Every hex belongs to Cy(s,t2) U Ca(s, t2) U Cs(s, 1,%), t2 # 1.
(3) Every hex belongs to Ci(s, t2) U Cs(s, t2,t) U Cs(s, 1,t'), te # 1.

(4) Every hex belongs to Ci(s,t2) U Ca(8, t2,t) U Ca(s, t2,t'), t2 # 1 and
t#¢t.
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(5) Every hex belongs to Ci(s,t2) U Ca(s,1,t) U Cs(s,1,t'), t2 # 1 and
t# ¢,

(6) Every hex belongs to Ca(s,t2) U Cs(s,t2,t) U Cs(s,1,¢), ta # 1.

(7) Every hex belongs to Ca(s,t2) U Cs(s, t2,t) U Cs(s,t2,t'), t2 # 1 and
t#t¢.

(8) Every hex belongs to Ca(s,t2) U Cs(s,1,t) U Cs(s,1,1'), t2 # 1 and
t#1t.

We will now treat each of these cases separately.

Case (1):
In this case, we have
ta(ta +1) t3(2t2—1) 0
t(t+1)(t—t
M= 1 2L AT
2 t(t—ta)
t2 t2 t2+1

One easily calculates that det(M) = £§%[t(tz —2)+t2+1). Since tp > 2,
det(M) is always nonzero. So, the number of hexes of each type through a
point is a constant. This case includes the near polygons in which each hex
is isomorphic to either Q(5, ) X Lg+1, a glued near polygon of type Q(5,¢)®
Q(5,9) or HP(5,4%). All the near polygons which have only these hexes
will be classified in [6]. [Recall: Q(5, g) is the generalized quadrangle of the
points and lines of a nonsingular elliptic quadric in PG(5,q). H?(5,¢?) is
the near hexagon whose points, respectively lines, are the two-, respectively
one-dimensional, subspaces of a nonsingular hermitean variety in PG(5, ¢),

with reverse containment as incidence relation.]
Case (2):
In this case, we have
taltz +1) (262 ~1) ﬁ”—‘é‘—‘l

M = 1 2t2
to t% t(t-1)

2

One calculates that det(M) = —X=1(=22 1¢¢ £ 2 then the number
of hexes of each type through a point is a constant. This property does
not necessarily hold if ¢ = 2. In [7] it is shown that there exist two glued
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near octagons of type (Q(5,2) ® Q(5,2)) ® Q(5,2) and one of these near
octagons does not have the required property: there are points which are
contained in three hexes of type Q(5,2) ® Q(5,2) and there are points
which are contained in only two such hexes. The construction of the near
octagon given in {7] can be generalized to generalized quadrangles with a
pair of compatible spreads of symmetry. If Q is a generalized quadrangle of
order (s,t) having a pair (S1,92) of compatible spreads of symmetry such
that |S; N S2| € {1,s + 1}, then there exists a glued near octagon of type
(Q@ ® Q) ® Q which contains points z2 and z3 such that x;, i € {2,3}, is
contained in precisely i hexes of type @ ® Q. Among all known examples
of generalized quadrangles with a spread of symmetry only the generalized
quadrangles Q(5, g) have a pair (S}, S2) of compatible spreads of symmetry
such that |$; N S,| € {1,s + 1}. We refer to [4] for more details.

Case (3):
In this case, we have
ta(te + 1) 0 £ereE)
t(t+1)(t—t
M= 1 i—TH—rl,z e 3 0
¢ t(t—t2) t'(t'-1)
2 ta+1 3

One calculates that det(M) = X700 (45 4 1)(¢ + 1) — (¢ + 1)t]. If
det(M) = 0, then ¢ would divide ¢» + 1 and hence ¢ < ¢t + 1. Now, by the
corollary on p158 of [2] we have t > t2(t2 + 1) for any regular near hexagon
with parameters (s, t2,t). Since t2 > 2, we have ¢t > ¢y + 1. So, det(M) # 0

and the number of hexes of each type through a point is a constant.

Case (4):
In this case, we have
ta(t2 +1) 0 0
M= 1 te+1)(t=ta) tI(E'+1)(t'—ta)
= ta(ta+1) ta(ta+1
¢ t(t—ta) t' (' —ty
2 ta+1 ta+1

One calculates that det(M) = “'("'")t(::l")(t_t'). So, the number of hexes

of each type through a point is a constant.
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Case (5):
In this case, we have
ta(t +1) HHNEZD  LEHNE-1)

M= 1 0 0
¢ t(t—1) vt —1)
2 ) 2

One calculates that det(M) = “I(t_l)(t;"l)(t_t') # 0. So, the number of
hexes of each type through a point is a constant.

Case (6):
In this case, we have

t§(2t2 -1) 0 ﬂ"i‘zﬁﬂl

t(t+1)(t—t.
M= 2ty et 0
2 t(t—t2) t'(t'-1)
2 to+1 2

One calculates that det(M) = t—’t—‘l;(:%%;'———ll [(t+1)(2t2—1)—(¢'+1)(z—1)).
Ifdet(M) =0, then t'+1 = 2t2—1+4—§2_'72. Hence, 4—:"‘_'72 € Nand i+1 < 4¢,.
Since sty > 4, we have t + 1 < (st2 + 1)(¢2 + 1). From Theorem 5 of [2], it
then follows that ¢ = ¢2 + ¢,. From t + 1 < 4¢, it then follows that t, = 2
and ¢t = 6, but this is impossible since we should have that i:{‘l—2 € N. So,
det(M) is always nonzero and the number of hexes of each type through a
point is a constant.

Case (7):
In this case, we have
t2(2t2 — 1) 0
tt+1)(t—t2) ¢'(t'+1)(t' —t2)
M= 2t tz(tz+1)2 t2(t2+1) ?
12 t(t—t2) t(t'~ta)
2 tz+1 ta+1

One calculates that det(M) = t’(Zt’_1)“'((:;::;?'_t’)(‘_") # 0. So, the
number of hexes of each type through a point is a constant.
Case (8):
In this case, we have
t%(?tg _ 1) t(t+l;(t—1) t’(t'+13(t’—l)

M= 2t 0 0
12 t(t—1) v('-1)
2 2 2
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One calculates that det(M) = t"“l("l)(;’_l)(t_t') # 0. So, the number of
hexes of each type through a point is a constant.
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