MINIMAL EQUITABILITY OF HAIRY CYCLES

JERZY WOJCIECHOWSKI

ABSTRACT. Every labeling of the vertices of a graph with distinct
natural numbers induces a natural labeling of its edges: the label of
an edge (z,y) is the absolute value of the difference of the labels of
« and y. By analogy with graceful labelings, we say that a labeling
of the vertices of a graph of order n is minimally k-equitable if the
vertices are labelled with 1,2,...,n and in the induced labeling of its
edges every label either occurs exactly k times or does not occur at
all. For m > 3, let C/, (denoted also in the literature by Cr, 0 K
and called a corona graph) be a graph with 2m vertices such that
there is a partition of them into sets U and V of cardinality m, with
the property that U spans a cycle, V is independent and the edges
joining U to V form a matching. Let P be the set of all pairs (m, k) of
positive integers such that k is a proper divisor of 2m (i.e., a divisor
different from 2m and 1) and k is odd if m is odd. We show that C,,
is minimally k-equitable if and only if (m, k) € P.

1. INTRODUCTION

A labeling of a graph G is an assignment of distinct natural numbers to
the vertices of G. Every labeling induces a natural labeling of the edges:
the label of an edge (z, y) is the absolute value of the difference of the labels
of z and y. Bloom [4] defined a labeling of a graph to be k-equitable if in
the induced labeling of its edges, every label occurs exactly & times, if at
all. Furthermore, a k-equitable labeling of a graph of order n is said to be
minimal if the vertices are labelled with 1,2,...,n. A graph is minimally
k-equitable if it has a minimal k-equitable labeling.

The notion of minimally k-equitable labelings is a generalization of spe-
cial labelings of trees called graceful. A labeling of a tree is graceful if
and only if it is minimally 1-equitable. (Note that the induced labels of
the edges must be then 1,2,...,n — 1.) Graceful labelings were defined by
Rosa [6] in connection with a famous and very difficult conjecture of Ringel
and Kotzig (see Ringel [5]) concerning decompositions of complete graphs
with odd number of vertices into subgraphs isomorphic to trees. The open
conjecture that every tree has a graceful labeling implies the conjecture of
Ringel and Kotzig.
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The notion of minimal k-equitability was first applied to cycles. Let C,,
be the cycle on n vertices. Given natural numbers n and k, n > 3, it is
easy to see that if the cycle C,, is minimally k-equitable, then k is a proper
divisor of n (that is, k divides n, k # n, and k # 1). Answering a question
posed by Bloom [4], Wojciechowski [7] proved that this necessary condition
is also sufficient.

Barrientos, Dejter and Hevia [3] proved a number of results concerning
k-equitability of forests.

Another class of graphs to which the concept of minimal k-equitability
was recently applied is the class of graphs whose vertices could be parti-
tioned into two sets U and V such that U induces a cycle, V induces no
edges, and the edges between U and V form a matching (in particular, U
and V are of the same cardinality). We will call such graphs hairy cycles
and denote them by C/, (m is the cardinality of U).

There is a general construction that, given graphs G and H, produces
the corona graph G o H. The hairy cycle C,, is obtained by applying that
construction to the cycle C,, and the graph K consisting of a single vertex.
Therefore C7, is the corona graph Cy, o K.

Again it is easy to see that given natural numbers m and k, m > 3, if
the hairy cycle C}, is minimally k-equitable, then k is a proper divisor of
2m which is the number of vertices of Cj,. Going a little further, we get
the following resuit.

Proposition 1.1. Let m > 3 and k > 1 be integers. If m is odd and the
hairy cycle C,, is minimally k-equitable, then k is also odd.

Proof. Assume that m > 3 is arbitrary and the hairy cycle C}, is minimally
k-equitable. Let U and V be the sets that form a partition of the vertex set
of C}, such that U spans a cycle, V spans no edges, and the edges between
U and V form a matching. Let E be the set of edges of the cycle spanned
by U and F be the set of the edges of the matching.. Let

g:UuV = {1,2,...,2m}

be any labeling of C!,, and h : EU F — N be the induced labeling of the
edges of Cy,. It is clear that ), . h(e) is even.
We claim that

(1) Z h{e) = mmod 2.

e€F
If h(e) = 1 for every e € F, then ), h(e) = m so (1) holds. Otherwise,
there are vertices u € U and v € V such that |g(u) — g(v)| > 2. Let w,y
be vertices of C}, such that g(w) is between g(u) and g(v) in the standard
ordering of integers, and y is joined to w by an edge of F'. Let ¢’ : UUV — N
be the labeling of C/, obtained from g by exchanging min {g(w), g(y)} with
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max {g(u), g(v)}. For example, if

9(u) < g(w) < g(v) < g(y),
then we exchange the labels of w and v.
Let A’ : EUF — N be the labeling of the edges of C}, induced by g¢'.

Then
Z K (e) < Z h(e)
eeF e€EF
and
Z h(e) = Z h(e)mod 2.
e€F e€F

Therefore, induction on ), - h(e) can be used to prove that (1) holds in
general.

If m is odd and g is a minimal k-equitable labeling, then }_, . 5,z h(e)
is odd and divisible by k implying that k is odd.

Let P be the set of all pairs (m, k) of positive integers such that m > 3,
k is a proper divisor of 2m and k is odd if m is odd. Then for the graph
C!, to be minimally k-equitable it is necessary that (m,k) € P. Acharya
and Bhat-Nayak [1] [2] proved that the condition (m,k) € P is sufficient
for C;, to be minimally k-equitable when k € {3,4}. We will prove that
this condition is sufficient in general.

Theorem 1.2. Let m > 3 and k > 2 be integers. If (m,k) € P, then the
graph C, is minimally k-equitable.

We shall call a graph G an integer graph if its vertex set is a finite subset
of N. If e = (u,v) is an edge of G, then we will say that e has length
lu — v]. Observe that a finite graph H has a k-equitable labeling if and
only if it is isomorphic to an integer graph G with either 0 or k edges of
any length. We will call such G a k-equitable representation of the graph
H. Note also that a finite graph H is minimally k-equitable if it has a
k-equitable representation G whose vertices are consecutive integers. We
will call such G a minimal k-equitable representation of H.

In the following proofs, to show that C/, is k-equitable, we will construct
an integer graph G¥, that will be a minimal k-equitable representation of
C... In the included figures of the graphs G%, the vertices will be placed
on the real line, the edges that are part of the cycle (cycle edges) will be
marked by thick lines below the real line and the edges of the matching
(matching edges) above the real line.

The proof of Theorem 1.2 will be split into several lemmas. The proofs
of these lemmas will be given in the remaining sections. Assume that
(m, k) € P. We have then two possibilities: either k divides m or it does not
divide m. In section 2 we will present the starting point of our construction
in the case when k divides m, namely, we will show that C/, is minimally
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k-equitable when m = k or m = 2k. The proof that Cj, is minimally
k-equitable for £ > 3 will be given in section 4 for even k and in section
5 for odd k. If k does not divide m, then the definition of P implies that
k = 0mod 4 and m = ¢k/2 for some odd integer £ > 3. Let k = O mod 4.
We will prove in section 3 that the graph Cj, /2 is minimally k-equitable.
The proof that Cj, /2 is minimally k-equitable for odd £ > 5 will be given
in section 4.

2. MINIMAL k-EQUITABILITY OF C} AND Cj,

Lemma 2.1. Let k > 3 be an integer. The graph Cj is minimally k-
equitable.

Proof. Let G¥ be the integer graph with the vertex set {1,2,...,2k} and
the edge set consisting of all the edges listed below:

e (1,2), (2,3), ..., (k,k+1)
— the above edges are k edges of length 1, the first of which is a matching
edge, and all the others are cycle edges;

o (2,k+1),(3,k+2),...,(k+1,2k)
— the above edges are k edges of length k — 1, the first of which is a cycle
edge, and all the others are matching edges.
Figure 1 shows the graph G3 and Figure 2 shows the graph G¥ for
arbitrary k£ > 3.

]

2 4
A N
N :

FIGURE 1. The graph G3

It is clear that G”,§ is a minimal k-equitable representation of C}, implying
that Cj, is minimally k-equitable. §

Lemma 2.2. Let k > 3 be an odd integer. The graph Cj; is minimally
k-equitable.

Proof. Let G%, be the integer graph with the vertex set {1,2,...,4k} and
the edge set consisting of all the edges listed below:

o (L), 2 50), - (BhE+1)

— the edges listed above are £l edges of length £}, all of which are
matching edges;
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k+2 k43 k+4 2k-2 2k-1 2k

FIGURE 2. The graph G§

o (k+2,3%88) (k+3,347), .. (&£ 2k + 1)

— the edges listed above are 31 edges of length &£, the last of which is
a cycle edge, and all the others are matching edges;

o (B3,555), (51, 559), .. (i3, 243)

— these are "—'2'1 edges of length 1, the last of which is a matching edge,
and all the others are cycle edges;
o (2k+2,2k+3), (2k+4,2k+5), ...,(3k - 1,3k)
— these are k—;l edges of length 1, all of which are cycle edges;
o (E3,2k+1), (52,26 +2), ..., (35EL,3k)
— these are k edges of length %2’—1, all of which are cycle edges;
e (2k+1,3k+1), (2k+ 2,3k +2), ...,(3k,4k)
— these are k edges of length k, all of which are matching edges.
Figures 3, 4, and 5 show the graphs G3, G%,, and GJ, respectively;
figures 6 and 7 show the general graph G%, for arbitrary k = 1 mod 4, and
k = 3mod 4 respectively.

| O e b b

FIGURE 3. The graph G3
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FIGURE 4. The graph G3,

E B r P 11,02 ha ha Jis he hr hs fo ko 1
NI B o O i e,
FIGURE 5. The graph G7,
Lo UL e bl e Ll Fh el L
12 gp e e H nes :35-1' 3 k3 B 3-2 i~
L

FIGURE 6. The graph G%, when k = 1mod4

It is clear that G%, is a minimal k-equitable representation of Cj, im-
plying that C3, is minimally k-equitable. i
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FIGURE 7. The graph G%, when k = 3mod 4

Lemma 2.3. Let k > 2 be an even integer. The graph Cj, is minimally
k-equitable.

Proof. Let G2 be the integer graph with the vertex set {1,2,...,8} and the
edge set consisting of the following edges (see Figure 8):

3 L P
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]

FIGURE 8. The graph G2

e (1,2), (4,5) — 2 edges of length 1 — both of them cycle edges;
e (1,3), (2,4) — 2 edges of length 2 — the first a matching edge, the
second a cycle edge;
o (4,7), (5,8) — 2 edges of length 3 — both of which being matching
edges;
e (1,5), (2,6) — 2 edges of length 4 — the first a cycle edge, the
second a matching edge.
For k > 4 let Gljk be the integer graph with the vertex set {1,2,...,4k}
and the edge set consisting of all the edges listed below:
o (LE2), (2,582), ..., (5.)
— these are § edges of length -2'5, all of which are matching edges;
o (4122) (k+2,38) (% 2%)

— these are g edges of length '5‘, the last of which is a cycle edge, and all
the others are matching edges;
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— these are % edges of length 1, all of which are cycle edges;
o (2k,2k+1), (2k+2,2k+3),...,(3k— 2,3k - 1)

— these are 52- edges of length 1, all of which are cycle edges;
o (E2,2k+1), (54,26 +2), ...,(3,3k)

— these are k edges of length %, the last of which is a matching edge, and
all the others are cycle edges;

o (2k,3k+1), (2k+1,3k+2), ...,(3k — 1,4k)
— these are k edges of length &k + 1, all of which are matching edges.
Figures 9 and 10 show the graphs Gi and G%, respectively; Figures

11 and 12 show the general graph G%, for arbitrary k = Omod4, and
k = 2mod 4 respectively.

=

12 13 14 15 16

FIGURE 9. The graph G}

It is clear that, for every even k > 2, the graph G%, is a minimal k-
equitable representation of C7,, implying that C}; is minimally k-equitable. i

3. MINIMAL k-EQUITABILITY OF Cjy, ,, WHEN k = Omod 4

Lemma 3.1. Let k > 4 be an integer such that k = Omod4. The graph
Ciy/o is minimally k-equitable.

Proof. Let G&, /2 be the integer graph with the vertex set {1,2,...,3k} and
the edge set consisting of all the edges listed below:

o (LE2), (254, ...(5%k-1)
— these are 432 edges of length £, all of which are matching edges;
o (344 9k +2), (348 ,2k + 3), ... ,(2k — 1, 352)
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FIGURE 10. The graph G$,
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FIGURE 11. The graph G%, when k = 0mod 4
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FIGURE 12. The graph G%, when k = 2mod 4

3k kel "

— these are "—;—4 edges of length %, all of which are matching edges, (they

appear only when k > 8);
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o (k+1,3842) (3 ok), (2k + 1, 2i2)
— these are 3 edges of length ~2'°-, the first and the third of which are matching
edges, and the second is a cycle edge;
o (52,459, (5.58), .-.(k-1,k)
— these are % edges of length 1, all of which are cycle edges;
o (k,k+1), (k+1,k+2),...,(%2, %)
— these are % edges of length 1, all of which are cycle edges;
o (2k,2k +1), (2k +2,2k +3), ... (%54, 35°2)
— these are % edges of length 1, all of which are cycle edges;
o (5.2), (52,2 +1), ..., (k, %)
— these are 232 edges of length 3£, the first and the last of which are
matching edges, and all the others are cycle edges;

o (k+2,5E84) (k43,8646 (3 3k)

— these are "%2 edges of length -325, all of which are matching edges.
Figures 13, 14 and 15 show the graphs G}, G%,, and G2 respectively;
figure 16 shows the general graph Gj, , for arbitrary k = Omod 4.

e el Tl

FIGURE 13. The graph G#

It is clear that, for every k = Omod4, the graph G’gk /2 15 8 minimal
k-equitable representation of Cj, /2> implying that Ci /2 is minimally k-
equitable.

4. MINIMAL k-EQUITABILITY OF C], WHEN k IS EVEN

Assume that k > 2 is even. We are going to show that C}, is minimally
k-equitable for every m such that (m, k) € P.

Given a minimal k-equitable representation G of C},, we say that a set
S of edges of G is a k-socket if the following conditions are satisfied:

(1) S consists of § cycle edges of length 1 whose endpoints form a set
of consecutive k integers s, s+1,...,s+k~1;
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FIGURE 14. The graph G%,
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FIGURE 15. The graph G12

(2) if @ is the smallest integer in the vertex set of G and b is the largest
integer in the vertex set of G, then either b—s+1lors+k—ais
not the length of any edge of G.

Note that if the set of endpoints of the edges of S consists of either the
largest k vertices of G or the smallest k vertices of G, then the second
condition above is satisfied.

A minimal k-equitable representation of C}, with a k-socket will be called
a k-proper representation of Cj,.
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FIGURE 16. The graph G%, ,, when k = 0mod 4

Lemma 4.1. The graph G’z‘k is a k-proper representation of C, for every
even k > 2.

Proof. Let k > 2 be an even integer. It follows from the proof of Lemma
2.3 that Gk, is a minimally k-equitable representation of Cj,. If k = 2,
then let & = {(4,5)}. (See Figure 8.) With b = 8 and s = 4 the integer
b— s+ 1 =25 is not a length of any edge of G2. Thus S is a 2-socket in G3
implying that G2 is a 2-proper representation of Cj.

If k > 4, then let (see Figures 11 and 12)

Se k+2 k+4 k+6 k+8 3k—2 3k
- 2 ' 2 J'\U 2 2 )\ 2 T2/

With b=4k and s = %‘3, the integer b—s+1 = 77" is not a length of any
edge of G’,‘k, implying that G, is a k-proper representation of Cj,. il

Lemma 4.2. The graph G';k /2 is a k-proper representation of Cy, /2 for
every integer k > 4 such that k = 0mod 4.

Proof. Let k > 4 be an integer with ¥ = 0mod 4. It follows from the proof
of Lemma 3.1 that ng /2is8 minimally k-equitable representation of Cj, /2
Let (see Figure 16)

s - [(E+2 k+4) (k+6 k+8
- 2 ’ 2 ’ 2 ? 2 E A |

(3’6—6 3k—4 3k—2 3k
2 ' 2 ’ 2 2
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With b = 3k and s = &2, the integer b— s+ 1 = 2F is not a length of any
edge of G, /5, implying that G%, /2 18 & k-proper representation of Cyy /. B

Lemma 4.3. If k is even and there is a k-proper representation of C},,
then there is a k-proper representation of C;, ;.

Proof. Let G be a k-proper representation of C}, with a k-socket S and let
s be the smallest integer in the set of endpoints of the edges in S. Let a be
the smallest integer which is a vertex of G and let b be the largest integer
which is a vertex of G. Let H be the graph obtained from G by performing
the following operations:

e remove the edges of S;

e add 2 sets of k vertices each at both ends of the graph G, namely
add the verticesa —k,a—k+1,...,a—1land b+1,0+2,...,
b+ k;

e add k edges of length b—a+k+1 matching the new vertices, namely
add the edges (a — k,b+1), (e —k+1,b+2),...,(a—1,b+k);

Case 1: if G has no edges of length b — s 4 1, then

o add k edges of length b — s + 1 joining the endpoints of the edges
in & to the new vertices whose value is larger than b, namely add
the edges (s,b+1), (s+1,0+2),...,(s+k—1,b+k);

e add -’§ edges of length 1 that form a matching of the set of all the
new vertices whose value is larger than b, namely add the edges
b+1,b+2), b+3,b+4),...,(b+k-1,b+k).

Figure 17 shows the new edges of the graph H in case 1.

stk b=1 bk

—k+1 l s=1fs a+1 s+k=2 otk \
—&- ... -8—8+40—0- +++. =0—0 —0= i =O=—0 - coo Qe
a=k a=-2 a at1 -2 j b+2

-

FIGURE 17. The new edges of the graph H in case 1

Case 2: if G has some edge of length b ~ s + 1, (so that it has no edges of
length s + k — a), then
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e add k edges of length s + k — a joining the endpoints of the edges
in S to the new vertices whose value is smaller than a, namely add
the edges (a — k,s), (e —k+1,84+1),...,(a—1,8+k—1);

e add % edges of length 1 that form a matching of the set of the
new vertices whose value is smaller than a, namely add the edges
(e—ka—k+1),(a—k+2,a—k+3),...,(a—2,a—-1).

Figure 18 shows the new edges of the graph H in case 2. Figures 19 and 20
show the results of applying the above construction to the graphs G% and
G} respectively.

veo ves . h
o=1fo at1 oth=2 otk \ b2
=S O—0= v+ —O=—=0 “en QO™ 4+ =G0 - e @
a—k a-2 -Kan -2 otk+1 b-lj§+l b4k

FIGURE 18. The new edges of the graph H in case 2

Ll
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@<_

v
|\

@ C
.

FIGURE 19. A 2-proper representation of Cg obtained
from G?

Since each edge of S in G is replaced by a path of length 3 in H, the cycle

of G gives rise to a cycle of length m+k in H. Moreover, the new & edges of
length b—a+k+1 in H are matching edges implying that H is isomorphic
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FIGURE 20. A 2-proper representation of Cj, obtained
from G§

to C;,,x- It is clear that H is a minimally k-equitable representation of
C;.+1- The set of the new edges of length 1 in H is a k-socket since the set
of endpoints of these edges consists of either the & vertices of H having the
smallest label or the k vertices of H having the largest label. Thus H is a
k-proper representation of C;, ;. il

Proposition 4.4. Let (m, k) € P with k being even. Then Cl, is minimally
k-equitable.

Proof. Assume that m = £k for some integer £. The minimal k-equitability
of C;, follows from Lemma 2.1 when £ = 1, and from Lemma 2.3 when
¢=2. If £ > 3, then the minimal k-equitability of C!, follows by induction
on £ using Lemmas 4.1 and 4.3.

If k is not a divisor of m, then ¥ = Omod4 and m = £k/2 for some
odd integer £ > 3. The minimal k-equitability of C}, follows from Lemma
3.1 when £ = 3, and follows by induction using Lemmas 4.2 and 4.3 when
£>5. 1

5. MINIMAL k-EQUITABILITY OF C,, WHEN k IS ODD

Assume that k > 3 is odd. We are going to show that C!, is minimally
k-equitable for every m such that (m,k) € P.

If e = (u,v) is an edge of an integer graph and u < v, then we say that
u is the left endpoint of e and v is the right endpoint of e. Given a minimal
k-equitable representation G of C;,, we say that a pair T = (T,C) is a
k-thread in G if the following conditions are satisfied:
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(1) C consists of k edges that are cycle edges and have the same length;
(2) T iseither the set of all left endpoints or the set of all right endpoints
of the edges in C and it consists of k consecutive integers ¢, t + 1,
e tt+ k-1
(3) if a is the vertex of G with the smallest label, b is the vertex of G
with the largest label, s is the other endpoint of the edge in C that
has ¢ as one of its endpoints, Ag is the set of lengths of the edges
of G, and Rg 1, Lg 1, We are infinite sets of integers defined as
follows:
Rogr={b—s+1}U{b+2ik-t+1:7>0}
U{t—a+2ik:i>1},
Ler={s—a+k}U{db+(2%+1)k—t+1:i>0}
U{t—a+(2i+1)k:i>0},
Weg={b—a+ik+1:i>1},
then either Lg 1 or Rg,1 is disjoint with Ag U Wg.

The following three figures illustrate the definition of a k-thread in a
graph G when t < s; the pictures require obvious modifications when s < .
Figure 21 shows the edges of the graph G that belong to the set C. Figure
22 shows the relationship between the sets Rg 1, W and the vertices of
the graph G, where the integers in Rg ¢ and Wy are represented by edges
of the corresponding lengths. The set Rg 1 is represented above the line
containing the vertices of G and the set Wg below it. Figure 23 shows
analogous relationship between the sets Lg T, W¢ and the graph G.

a t—1 t t+1 t+k—2 t+k—1 t+k =1 s a+1 s+k—-2 s+k—1l stk
e O— -+ .o r—Q——0Q—0— -

b
-0 o0

L.

FIGURE 21. Edges of the graph G that belong to C
A minimal k-equitable representation of C,, with a k-thread will be
called a k-proper representation of Cy,.

Lemma 5.1. The graph G%, is a k-proper representation of Cj; for every
odd k > 3.

Proof. Let k > 3 be an odd integer. It follows from the proof of Lemma
2.2 that G’z“k is a minimally k-equitable representation of Cj,.
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FIGURE 23. Edges whose length is in Lg,t or Wg

Let (see Figures 6 and 7)

c= {($,zk+1),(¥,2k+z),...,(3’%,%)},

T={Ic+3 k+5 3k+1}.

and

27 2 77T 2
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With T = (T,C),a =1, b= 4k, t = &2 and s = 2k + 1, we have

RG,T={2k}U{Mk—_—1:i22}u{wzi21}.

2 2
Since
We = {ik :i > 5},
and ak
k+1 -1
AG = {1, T;k)—z'—} H

it is clear that

RerN(AcUWg) =0.
It follows that T is a k-thread in G%,, implying that G%, is a k-proper
representation of Cy,. I

Lemma 5.2. If k is odd and there is a k-proper representation of C,,, then
there is a k-proper representation of C,,

Proof. Let G be a k-proper representation of C,, with a k-thread T = (T, C),
let ¢ be the smallest label of T, let s be the other endpoint of the edge in
C that has ¢ as one of its endpoints, and let

S={s,s+1,...,s+k—1}.

Let a be the smallest label of the vertices of G and let b be the largest label
of the vertices of G. Let H be the graph obtained from G by performing
the following operations:

e remove the edges of C;

e add the verticesa —k,a—k+1,...,a—1land b+1,b+2,...,
b+ k;

o add & edges of length b—a-+k+1 matching the new vertices, namely
add the edges (e — k,b+1), (a—k+1,b+2),..., (a—1,b+k);

Case 1: if Rg,r N (Ag U Wg) = @, then

e add k edges of length b — s + 1 joining the vertices in S to the
new vertices whose label is larger than b, namely add the edges
(8,0+1),(s+1,64+2),...,(s+k—1,b+k);

e add k edges of length b — ¢t + 1 joining the vertices in T to the new
vertices whose label is larger than b, namely add the edges (z,b + 1),
(t+1,b+2), ..., (t+k—1,b+k).

Figure 24 shows the new edges of the graph H in case 1.
Case 2: if RgrN (Ag UWg) # &, (so that Lgx N (Ag UWg) = @) then

e add k edges of length s + k — a joining the vertices in S to the
new vertices whose label is smaller than a, namely add the edges
(a—k,8),(a—k+1,8+1),...,(a—1,s+k~-1)
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FIGURE 24. The new edges of the graph H in case 1

e add k edges of length ¢t + k — a joining the vertices in T to the
new vertices whose label is smaller than a, namely add the edges
(a—k,t),(a—k+1,t+1),...,(a—1,t+k~-1).

Figure 25 shows the new edges of the graph H in case 2. Figure 26 shows
the results of applying the above construction to the graph G3.

MT_ II:-
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FIGURE 25. The new edges of the graph H in case 2

Since each edge of C in G is replaced by a path of length 2 in H, the
cycle of G gives rise to a cycle of length m + k in H. Moreover, the new k
edges of length b~ a + k + 1 in H are matching edges, implying that H is
isomorphic to C},_ , .. Since

b—a+k+1>b—a,
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FIGURE 26. A 3-proper representation of Cy obtained
from G3

there are no edges in G of length b—a + &+ 1. Moreover the lengths of the
new cycle edges of H are in Lg 7 in case 1 and in Rg r in case 2, implying
that they are not in Ag. Therefore, the graph H is a minimally k-equitable
representation of Cj, .. To prove that H is a k-proper representation of

Cy.+1 it remains to show that there is a k-thread in H.

In case 1, let C' be the set of the new edges of H of length b — ¢ + 1
that join the vertices in T" to the new vertices whose label is larger than
b. We claim that the pair TV = (T,C’) is a k-thread in the graph H. Let
a'=a—k, b =b+k, and let s’ = b+ 1 be the other endpoint of the edge
of C’ that has t as one of its endpoints. We have then

Lyy = {f-a +k}u{t+(2i+1)k—t+1:i>0}
Uf{t—a' +(2i+1)k:i>0}
= {b—a+2k+1}U{b+2k—t+1:i>1}
U{t—a+2ik:i>1}
= RegrU{b—a+2k+1}\{b—s+1,b—-t+1}.
Moreover
Agp=AcU{b—a+k+1,b—s+1,b—t+1}\{|t - s|},
and

Wa {'—a' +ik+1:i>1}
{b—a+ik+1:i>3}

We\{b—a+k+1,b—a+2k+1},
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S0
AgUWy = (AgUWg)U{b—s+1,b—t+1}\{b—a+2k+1,|t —s|}.
Since Rgr N (Ag UWg) = 0, it follows that

LH,T’ n (AH U WH) = 0,
so the pair T = (T',(’) is a k-thread in the graph H.

In case 2, let C’ be the set of the new edges of H of length t + k — a
that join the vertices in T to the new vertices whose label is smaller than
a. We claim that the pair T' = (T,C’) is a k-thread in the graph H. Let
o =a—k,¥ =b+k, and let s = a — k be the other endpoint of the edge
of C' that has ¢t as one of its endpoints. Then
Ryp = (V- +1}Uu{b/+2k—t+1:i>0}U{t—a' +2ik:i>1}

= {b-a+2k+1}U{b+(2i+1)k-t+1:i>0}

Uf{t—a+(i+1)k:i>1}

= LgrU{b—a+2k+1}\{s+k—a,t+k—a}.
Moreover

Ap=AcU{b—a+k+1,s+k—a,t+k—a}\{t—s|},
and

Wy =We\{b—a+k+1,b-a+2k+1}
S0
AgUWy = (AgUWg)U{s+k—a,t+k—a}\{b—a+2k+1,|t—s|}.
Since Lg,r N (Ag UWg) = 0, it follows that
Ry N (A UWg) =0,

so the pair TV = (T',(’) is a k-thread in the graph H.

Thus H is a k-proper representation of C,, .. il

Proof of Theorem 1.2. Assume the (m,k) € P. If k is even then it
follows from Proposition 4.4 that C}, is k-equitable. If k is odd, then it is
a divisor of m. The k-equitability of C}, follows from Lemma 2.1 if k = m,

and it follows by induction using Lemmas 5.1 and 5.2 if k is a proper divisor
of m.

REFERENCES

[1] AcHARvA, M., BHAT-NAYAK, V.N., Minimal 3-equitability of Can o K1, presented
at National Conference on Discrete Mathematics and it’s Applications, held at M.S.
University, Thirunelveli, India, January 5-7, (2000)

[2] AcHARYA, M., BHAT-NAYAK, V.N., Minimal 4-equitability of Can o K1, Ars Combi-
natoria 65 (2002), 209-236.

[3] BARRIENTOS, DEITER and HEVIA, Eguitable labelings of forests, Combinatorics and
Graph Theory 1 (1995), 1-26.

149



|4] BLooM, G., Problem posed at the Graph Theory meeting of the New York Academy
of Sciences, November 1989.

{5} RINGEL, G., Problem 25, Theory of Graphs and Its Applications, Proc. Int. Symp.
Smolenice (June 1963), Czech. Acad. Sci. Prague, Czech. (1964), 162.

[6] Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs, Gordon
and Breach, New York, N.Y. (1967), 349-355

[7] WouciEcHowskl, J., Equitable labelings of cycles, J. Graph Theory 17 (1993), no. 4,
531-547.

DEPARTMENT OF MATHEMATICS, WEST WIRGINIA UNIVERSITY, MORGANTOWN, WV

26506-6310, USA
E-mail address: jerzy®math.wvu.edu

150



