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Abstract

The degree set of a finite simple graph G is the set of distinct
degrees of vertices of G. For any given finite set D of positive integers,
we determine all positive integers n such that D is the degree set
of some simple graph with n vertices. This extends a theorem of
Kapoor, Polimeni & Wall (1977) which shows that the least such n
is 1 + max(D).
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A finite sequence dy,ds,...,d, of nonegative integers is said to be
graphic if there exists a finite simple graph G with vertices vy, va,...,vun
such that each v; has degree d;. Two obvious necessary conditions for such
a sequence to be graphic are: (1) &; < n for each 4, and (2) Y7, d; is even.
However, these two conditions together do not ensure that a sequence will
be graphic. Necessary and sufficient conditions for a sequence of nonnega-
tive integers to be graphic are well known. Two such characterizations of
graphic sequences are a rather involved explicit characterization by Erdds
& Gallai [4], and an elegant recursive characterization by Havel [5] and
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later, but independently, by Hakimi [6].

The degree set of a simple graph G is the set D(G) comprising the dis-
tinct degrees of vertices in G, that is, D(G) = {d : degv = d for some
vertex v in G}. In fact it has long been known that every finite simple
graph G of order n > 2 must have two vertices of the same degree [1], so
|D(G)| < n when n > 2. Moreover, there is an explicit characterization of
graphic degree sequences which utilizes a proper subset of the Erdés-Gallai
conditions, one condition for each member of the degree set ([3],[8]). It
is natural to ask when a set of positive integers forms the degree set of a
graph, and then to investigate the order and size of such graphs. A signifi-
cant step in that direction is the result

Theorem KPW (Kapoor, Polimeni & Wall [7]) For each nonempty finite
set D of posilive integers, there ezists a finite simple graph G for which
D(G) = D. Moreover, there is always such a graph of order A + 1, where
A = max(D), and there is no such graph of smaller order.

We say that a graph G is an (n, D)-graph if has order » and degree set
D. Our goal here is to determine all n for which there exists an (n, D)-
graph corresponding to a given finite set D of positive integers. The main
result is the following.

Theorem. Let D be any nonempty finile set of positive integers, and let
A = max(D). Then D is the degree set of infinitely many distinct finite
simple graphs. If all members of D are odd, there exists an (n, D)-graph if
and only if n > A and n is even; otherwise, there ezists an (n, D)-graph if
and only if n > A, provided also that n # A + 2 in the special case where
D = {1, A} for any even integer A > 4.

We need two lemmas to prove our theorem. First recall that a match-
ing in a graph is any collection of edges no two of which have a vertex
in common. A matching is mazimal if it is not properly contained in any
larger matching in the graph.

Lemma 1. Every mazimal matching in a simple graph with minimum de-
gree § has size at least [6/2].

Proof. Any matching M of size less than [§/2] is incident with fewer
than § vertices. The graph has at least § + 1 vertices; choose any vertex
v not incident with any edge in M. Since v has degree at least §, it has
at least one neighbour w which is not incident with any edge in M. Then
MU {vw} is a matching that properly contains M, so M is not maximal. O
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Lemma 2. Let D be any nonempty finite set of positive integers, with
6 = min(D), and suppose there ezists an (n, D)-graph. If § is even there
exists an (n+ 1, D)-graph, while if § is odd there exists an (n+2, D)-graph.
Moreover, if § is odd and § + 1 € D, there ezists an (n + 1, D)-graph.

Proof. Let G be an (n, D)-graph. By Lemma 1, G has a matching M* of
size [6/2]. Construct the graph G* from G by adjoining a new vertex u to
G\ M* and adjoining the new edges {uv : v is incident with some edge in
M*}. This preserves the degrees of all vertices that were in G, and u has
even degree, either 4 or § + 1. Thus G* is an (n + 1, D)-graph if § is even
or if 4 is odd and § + 1 € D. Now let us further consider the case when &
is odd, regardless of whether or not é + 1 € D. Since (6 — 1)/2 < [§/2],
Lemma 1 ensures that G has a matching M of size (§ —1)/2. Then G\ M
has minimum degree & or § — 1, so has a matching M’ of size (§ — 1)/2,
by Lemma 1. Construct G’/ from G \ (MU M) by adjoining new vertices
u and u’, and adding the edges {uv : v is incident with some edge in M},
{u'v : v is incident with some edge in M '}, and uu’. (If § = 1 then M and
M’ are empty, so G’' = G U K3.) This preserves the degrees all vertices
from G, while u and u’ have degree 8, so G’/ is an (n+ 2, D)-graph. O

Lemma 3. Let D = {1,2,2m — 1}, where m > 2. There ezists an (n, D)-
graph with unique vertez of degree 1 if and only if n > 2m.

Proof. The necessity for n > 2m follows from Theorem KPW. For any
such n, let S be the sheaf of cycles formed from m — 2 cycles of order 3
and one cycle of order n — 2m + 3, by identifying a single vertex z in each
of these cycles. Then S has order n — 1, the degree of z is 2m — 2, and all
other vertices have degree 2. Finally form the graph G from S by attaching
a pendant vertex y by the single edge zy. Then G is an (n, D)-graph, and
y is its unique vertex of degree 1. m]

Proof of Theorem. Let D be any nonempty finite set of positive integers,
with § = min(D) and A = maz(D).

(1) Theorem KPW ensures there is a (A + 1, D)-graph but no (n, D)-graph
withn < A. If § is even, or J is odd and § + 1 € D, it follows from Lemma
2 that there is an (n, D)-graph if and only if n > A + 1.

(2) Next consider the case when all members of D are odd. If G is any
(n, D)-graph then n is even since the sum of degrees of G is necessarily
even, whence Theorem KPW and Lemma 2 imply that there is an (n, D)-
graph if and only if n > A 4+ 1 and n is even.
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(3) For the rest of the proof we may assume that & is odd,  +1 ¢ D and
D has at least one even member.

(4) Let us begin with |D| = 2, so D = {4, A}, with § odd, A even, and
A>643.

(4a) Suppose § = 1, s0 D = {1, A} with even A > 4. Any (A +2, D)-graph
must have an even number of vertices of degree 1 since the sum of degrees is
necessarily even. But A + 2 is even, so the number of vertices of degree A is
even. Any two vertices u and v of degree A must be adjacent, for otherwise
the remaining A vertices would all be in the common neighbourhood of »
and v, so there could not be any vertices of degree 1. Hence exactly two
vertices have degree 1; one is adjacent to u, the other is adjacent to v. It
follows that are the only two vertices of degree A. But this forces A = 2,
contrary to the condition A > 4, so there is no (A + 2, D)-graph. On the
other hand, by (1) there is a (A + 2, {A})-graph G, and the disjoint union
GUK, is a (A + 4, D)-graph. From Theorem KPW and Lemma 2, it now
follows that there is an (n, D)-graph if and only if n > A and n # A +2.
(4b) For all instances of D remaining in this proof it suffices to show that
there is a (A +2, D)-graph, for then Theorem KPW and Lemma 2 combine
to ensure hat there is an (n, D)-graph if and only if n > A.

(4c) Now suppose D = {5, A} with odd § > 3, A even, and A > 6+ 3. By
(2) there is a (A, {6—2})-graph G. Let G V 2K} be the graph resulting from
G by adjoining two new vertices u and »’, and adding the edges {uv,u'v : v
is a vertex of G}. Then G V 2K is (A + 2, D)-graph and (4b) applies.
(5) Next consider |D| = 3. We may assume D = {4,d, A} with odd §,
d > &+ 2, and at least one of d and A even.

(5a) Suppose § = 1. If d is odd then A must be even, so in any case (1)
and (2) ensure the existence of a (A, {d —2})-graph G. Let G V* Py be the
graph formed by adjoining an order 4 path P4 with internal vertices u and
u’, and adding the edges {uv,u’v : v is a vertex of G}. Then G V* Py isa
(A + 2, D)-graph and (4b) applies.

(5b) Now suppose § > 3, and assume inductively that the theorem holds
for any degree set with exactly 3 elements and odd minimum element less
than d. Let D* = {§ —2,d — 2,A — 2}. If d is odd then A must be even,
so in any case by hypothesis there is a (A, D*)-graph G. Then G V 2K, is
a (A + 2, D)-graph, so (4b) applies. We have now shown that the theorem
holds for every degree set with at most 3 elements.

(6) Now suppose |D| = k > 4, and assume inductively that the theorem
holds for all degree sets with fewer than k elements. Let D be a set of k
positive integers with § odd, § + 1 ¢ D and at least one even member.
(6a) Suppose k = 4, § = 1 and D = {1,3,2m, A}, where 4 < 2m < A.
Let D’ = {1,2,2m —1}. By Lemma 3 there is a (A + 1, D’)-graph G with
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exactly one vertex y of degree 1. Then there is a (A 42, D)-graph G V* K,
formed from G by adjoining a single vertex u and adding the edges {uv : v
is a vertex of G, v # y}. Now (4b) applies.

(6b) Suppose k >4, 6 =1 and D is not of the form {1, 3,2m, A}, where
4<2m < A. Let D'={d-2:d € D,1 <d < A}. Since A must be
even if all members of D* are odd, in all cases it follows from the induction
hypothesis that there is a (A—2, D ’)-graph G. Then G V* Py isa (A+2, D)-
graph, and (4b) applies.

(6c) Finally suppose k > 4 and § > 3. Assume the theorem holds for all
degree sets with exactly k elements and odd smallest member less than 4,
with base case guaranteed by (6a) and (6b). Now let D* = {d—-2:d € D}.
By hypothesis, there is a (A, D*)-graph G. Then G V 2K is a (A +2, D)-
graph, and (4b) applies. a

An (n, D)-graph G is a progenitor for the degree set D if there is no (m, D)-
graph with m < nand m = n (mod 2). Note that there is an (m, D)-graph
for every m > n with m = n (mod 2), by Lemma 2.

Corollary 1. Every nonempty finite set of positive integers D with max(D) =
A has a progenitor of order A + 1. Moreover D has a progenitor of order
A + 2, with the following exceptions: (a) if all members of D are odd, it
has no progenitor of odd order; (b) if D = {1, A}, with even A > 4, then
D has a progenitor of order A + 4.

If G and H are two graphs with the same degree set, D(G) = D(H), their
degree sequences can only differ with regard to the multiplicity with which
any degree d € D occurs. In particular, G and H are degree sequence
equivalent (mod d) for some d € D if G and H have the same multiplici-
ties for each degree in D\ {d}. Then Lemma 2 and the main theorem imply:

Corollary 2. Let D be any finite set of positive integers with min(D) = 6,
and let G be a progenitor for D. If order (G)=n, then for everym > n
with m = n (mod 2) there is an (m, D)-graph H which is degree sequence
equivalent to G (mod §).
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