On the Order of a Graph with a given Degree Set

Tarandeep Singh Ahuja 1

29 Public Park, Sri Ganganagar - 335 001, Rajasthan, India e-mail: tarandeepsingh@yahoo.com

and

Amitabha Tripathi²

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India e-mail: atripath@maths.iitd.ac.in

Abstract

The degree set of a finite simple graph G is the set of distinct degrees of vertices of G. For any given finite set \mathcal{D} of positive integers, we determine all positive integers n such that \mathcal{D} is the degree set of some simple graph with n vertices. This extends a theorem of Kapoor, Polimeni & Wall (1977) which shows that the least such n is $1 + \max(\mathcal{D})$.

2000 Mathematics Subject Classification: 05C07

Keywords: Degree sequence, degree set, graphic sequence, matching

A finite sequence d_1, d_2, \ldots, d_n of nonegative integers is said to be graphic if there exists a finite simple graph G with vertices v_1, v_2, \ldots, v_n such that each v_i has degree d_i . Two obvious necessary conditions for such a sequence to be graphic are: (1) $d_i < n$ for each i, and (2) $\sum_{i=1}^n d_i$ is even. However, these two conditions together do not ensure that a sequence will be graphic. Necessary and sufficient conditions for a sequence of nonnegative integers to be graphic are well known. Two such characterizations of graphic sequences are a rather involved explicit characterization by Erdös & Gallai [4], and an elegant recursive characterization by Havel [5] and

²Corresponding Author

¹ This work was done when the first author was at the Department of Mathematics, IIT, Delhi

later, but independently, by Hakimi [6].

The degree set of a simple graph G is the set $\mathcal{D}(G)$ comprising the distinct degrees of vertices in G, that is, $\mathcal{D}(G) = \{d : deg v = d \text{ for some vertex } v \text{ in } G\}$. In fact it has long been known that every finite simple graph G of order $n \geq 2$ must have two vertices of the same degree [1], so $|\mathcal{D}(G)| < n$ when $n \geq 2$. Moreover, there is an explicit characterization of graphic degree sequences which utilizes a proper subset of the Erdös-Gallai conditions, one condition for each member of the degree set ([3],[8]). It is natural to ask when a set of positive integers forms the degree set of a graph, and then to investigate the order and size of such graphs. A significant step in that direction is the result

Theorem KPW (Kapoor, Polimeni & Wall [7]) For each nonempty finite set $\mathfrak D$ of positive integers, there exists a finite simple graph G for which $\mathfrak D(G)=\mathfrak D$. Moreover, there is always such a graph of order $\Delta+1$, where $\Delta=\max(\mathfrak D)$, and there is no such graph of smaller order.

We say that a graph G is an (n, \mathcal{D}) -graph if has order n and degree set \mathcal{D} . Our goal here is to determine all n for which there exists an (n, \mathcal{D}) -graph corresponding to a given finite set \mathcal{D} of positive integers. The main result is the following.

Theorem. Let \mathcal{D} be any nonempty finite set of positive integers, and let $\Delta = \max(\mathcal{D})$. Then \mathcal{D} is the degree set of infinitely many distinct finite simple graphs. If all members of \mathcal{D} are odd, there exists an (n, \mathcal{D}) -graph if and only if $n > \Delta$ and n is even; otherwise, there exists an (n, \mathcal{D}) -graph if and only if $n > \Delta$, provided also that $n \neq \Delta + 2$ in the special case where $\mathcal{D} = \{1, \Delta\}$ for any even integer $\Delta \geq 4$.

We need two lemmas to prove our theorem. First recall that a matching in a graph is any collection of edges no two of which have a vertex in common. A matching is maximal if it is not properly contained in any larger matching in the graph.

Lemma 1. Every maximal matching in a simple graph with minimum degree δ has size at least $\lceil \delta/2 \rceil$.

Proof. Any matching \mathcal{M} of size less than $\lceil \delta/2 \rceil$ is incident with fewer than δ vertices. The graph has at least $\delta + 1$ vertices; choose any vertex v not incident with any edge in \mathcal{M} . Since v has degree at least δ , it has at least one neighbour w which is not incident with any edge in \mathcal{M} . Then $\mathcal{M} \cup \{vw\}$ is a matching that properly contains \mathcal{M} , so \mathcal{M} is not maximal. \square

Lemma 2. Let \mathcal{D} be any nonempty finite set of positive integers, with $\delta = \min(\mathcal{D})$, and suppose there exists an (n, \mathcal{D}) -graph. If δ is even there exists an $(n+1, \mathcal{D})$ -graph, while if δ is odd there exists an $(n+2, \mathcal{D})$ -graph. Moreover, if δ is odd and $\delta + 1 \in \mathcal{D}$, there exists an $(n+1, \mathcal{D})$ -graph.

Proof. Let G be an (n, \mathcal{D}) -graph. By Lemma 1, G has a matching \mathcal{M}^* of size $\lceil \delta/2 \rceil$. Construct the graph G^* from G by adjoining a new vertex u to $G \setminus \mathcal{M}^*$ and adjoining the new edges $\{uv: v \text{ is incident with some edge in } \mathcal{M}^*\}$. This preserves the degrees of all vertices that were in G, and u has even degree, either δ or $\delta+1$. Thus G^* is an $(n+1,\mathcal{D})$ -graph if δ is even or if δ is odd and $\delta+1\in\mathcal{D}$. Now let us further consider the case when δ is odd, regardless of whether or not $\delta+1\in\mathcal{D}$. Since $(\delta-1)/2<\lceil \delta/2\rceil$, Lemma 1 ensures that G has a matching \mathcal{M} of size $(\delta-1)/2$. Then $G\setminus \mathcal{M}$ has minimum degree δ or $\delta-1$, so has a matching \mathcal{M}' of size $(\delta-1)/2$, by Lemma 1. Construct G'' from $G\setminus (\mathcal{M}\cup\mathcal{M}')$ by adjoining new vertices u and u', and adding the edges $\{uv: v \text{ is incident with some edge in } \mathcal{M}\}$, $\{u'v: v \text{ is incident with some edge in } \mathcal{M}'\}$, and uu'. (If $\delta=1$ then \mathcal{M} and \mathcal{M}' are empty, so $G''=G\cup K_2$.) This preserves the degrees all vertices from G, while u and u' have degree δ , so G'' is an $(n+2,\mathcal{D})$ -graph. \square

Lemma 3. Let $\mathcal{D} = \{1, 2, 2m - 1\}$, where $m \geq 2$. There exists an (n, \mathcal{D}) -graph with unique vertex of degree 1 if and only if $n \geq 2m$.

Proof. The necessity for $n \ge 2m$ follows from Theorem KPW. For any such n, let S be the sheaf of cycles formed from m-2 cycles of order 3 and one cycle of order n-2m+3, by identifying a single vertex x in each of these cycles. Then S has order n-1, the degree of x is 2m-2, and all other vertices have degree 2. Finally form the graph G from S by attaching a pendant vertex g by the single edge g. Then g is an g-graph, and g is its unique vertex of degree 1.

Proof of Theorem. Let \mathcal{D} be any nonempty finite set of positive integers, with $\delta = min(\mathcal{D})$ and $\Delta = max(\mathcal{D})$.

- (1) Theorem KPW ensures there is a $(\Delta+1, \mathcal{D})$ -graph but no (n, \mathcal{D}) -graph with $n \leq \Delta$. If δ is even, or δ is odd and $\delta+1 \in \mathcal{D}$, it follows from Lemma 2 that there is an (n, \mathcal{D}) -graph if and only if $n \geq \Delta+1$.
- (2) Next consider the case when all members of \mathcal{D} are odd. If G is any (n, \mathcal{D}) -graph then n is even since the sum of degrees of G is necessarily even, whence Theorem KPW and Lemma 2 imply that there is an (n, \mathcal{D}) -graph if and only if $n \geq \Delta + 1$ and n is even.

- (3) For the rest of the proof we may assume that δ is odd, $\delta + 1 \notin \mathcal{D}$ and \mathcal{D} has at least one even member.
- (4) Let us begin with $|\mathfrak{D}| = 2$, so $\mathfrak{D} = \{\delta, \Delta\}$, with δ odd, Δ even, and $\Delta > \delta + 3$.
- (4a) Suppose $\delta=1$, so $\mathcal{D}=\{1,\Delta\}$ with even $\Delta\geq 4$. Any $(\Delta+2,\mathcal{D})$ -graph must have an even number of vertices of degree 1 since the sum of degrees is necessarily even. But $\Delta+2$ is even, so the number of vertices of degree Δ is even. Any two vertices u and v of degree Δ must be adjacent, for otherwise the remaining Δ vertices would all be in the common neighbourhood of u and v, so there could not be any vertices of degree 1. Hence exactly two vertices have degree 1; one is adjacent to u, the other is adjacent to v. It follows that are the only two vertices of degree Δ . But this forces $\Delta=2$, contrary to the condition $\Delta\geq 4$, so there is no $(\Delta+2,\mathcal{D})$ -graph. On the other hand, by (1) there is a $(\Delta+2,\{\Delta\})$ -graph G, and the disjoint union $G\cup K_2$ is a $(\Delta+4,\mathcal{D})$ -graph. From Theorem KPW and Lemma 2, it now follows that there is an (n,\mathcal{D}) -graph if and only if $n>\Delta$ and $n\neq\Delta+2$.
- (4b) For all instances of $\mathcal D$ remaining in this proof it suffices to show that there is a $(\Delta+2,\mathcal D)$ -graph, for then Theorem KPW and Lemma 2 combine to ensure hat there is an $(n,\mathcal D)$ -graph if and only if $n>\Delta$.
- (4c) Now suppose $\mathcal{D} = \{\delta, \Delta\}$ with odd $\delta \geq 3$, Δ even, and $\Delta \geq \delta + 3$. By (2) there is a $(\Delta, \{\delta-2\})$ -graph G. Let $G \vee 2K_1$ be the graph resulting from G by adjoining two new vertices u and u', and adding the edges $\{uv, u'v : v \text{ is a vertex of } G\}$. Then $G \vee 2K_1$ is $(\Delta + 2, \mathcal{D})$ -graph and (4b) applies.
- (5) Next consider $|\mathcal{D}| = 3$. We may assume $\mathcal{D} = \{\delta, d, \Delta\}$ with odd δ , $d \geq \delta + 2$, and at least one of d and Δ even.
- (5a) Suppose $\delta=1$. If d is odd then Δ must be even, so in any case (1) and (2) ensure the existence of a $(\Delta, \{d-2\})$ -graph G. Let $G \vee^* P_4$ be the graph formed by adjoining an order 4 path P_4 with internal vertices u and u', and adding the edges $\{uv, u'v : v \text{ is a vertex of } G\}$. Then $G \vee^* P_4$ is a $(\Delta+2, \mathcal{D})$ -graph and (4b) applies.
- (5b) Now suppose $\delta \geq 3$, and assume inductively that the theorem holds for any degree set with exactly 3 elements and odd minimum element less than δ . Let $\mathcal{D}^* = \{\delta 2, d 2, \Delta 2\}$. If d is odd then Δ must be even, so in any case by hypothesis there is a (Δ, \mathcal{D}^*) -graph G. Then $G \vee 2K_1$ is a $(\Delta + 2, \mathcal{D})$ -graph, so (4b) applies. We have now shown that the theorem holds for every degree set with at most 3 elements.
- (6) Now suppose $|\mathcal{D}| = k \geq 4$, and assume inductively that the theorem holds for all degree sets with fewer than k elements. Let \mathcal{D} be a set of k positive integers with δ odd, $\delta + 1 \notin \mathcal{D}$ and at least one even member.
- (6a) Suppose k = 4, $\delta = 1$ and $\mathcal{D} = \{1, 3, 2m, \Delta\}$, where $4 \leq 2m < \Delta$. Let $\mathcal{D}' = \{1, 2, 2m 1\}$. By Lemma 3 there is a $(\Delta + 1, \mathcal{D}')$ -graph G with

exactly one vertex y of degree 1. Then there is a $(\Delta + 2, \mathcal{D})$ -graph $G \vee^* K_1$ formed from G by adjoining a single vertex u and adding the edges $\{uv : v \text{ is a vertex of } G, v \neq y\}$. Now (4b) applies.

(6b) Suppose $k \geq 4$, $\delta = 1$ and \mathcal{D} is not of the form $\{1, 3, 2m, \Delta\}$, where $4 \leq 2m < \Delta$. Let $\mathcal{D}' = \{d-2 : d \in \mathcal{D}, 1 < d < \Delta\}$. Since Δ must be even if all members of \mathcal{D}^* are odd, in all cases it follows from the induction hypothesis that there is a $(\Delta-2, \mathcal{D}')$ -graph G. Then $G \vee^* P_4$ is a $(\Delta+2, \mathcal{D})$ -graph, and (4b) applies.

(6c) Finally suppose $k \geq 4$ and $\delta \geq 3$. Assume the theorem holds for all degree sets with exactly k elements and odd smallest member less than δ , with base case guaranteed by (6a) and (6b). Now let $\mathcal{D}^* = \{d-2 : d \in \mathcal{D}\}$. By hypothesis, there is a (Δ, \mathcal{D}^*) -graph G. Then $G \vee 2K_1$ is a $(\Delta+2, \mathcal{D})$ -graph, and (4b) applies.

An (n, \mathcal{D}) -graph G is a *progenitor* for the degree set \mathcal{D} if there is no (m, \mathcal{D}) -graph with m < n and $m \equiv n \pmod{2}$. Note that there is an (m, \mathcal{D}) -graph for every m > n with $m \equiv n \pmod{2}$, by Lemma 2.

Corollary 1. Every nonempty finite set of positive integers $\mathbb D$ with $\max(\mathbb D)=\Delta$ has a progenitor of order $\Delta+1$. Moreover $\mathbb D$ has a progenitor of order $\Delta+2$, with the following exceptions: (a) if all members of $\mathbb D$ are odd, it has no progenitor of odd order; (b) if $\mathbb D=\{1,\Delta\}$, with even $\Delta\geq 4$, then $\mathbb D$ has a progenitor of order $\Delta+4$.

If G and H are two graphs with the same degree set, $\mathcal{D}(G) = \mathcal{D}(H)$, their degree sequences can only differ with regard to the multiplicity with which any degree $d \in \mathcal{D}$ occurs. In particular, G and H are degree sequence equivalent (mod d) for some $d \in \mathcal{D}$ if G and H have the same multiplicities for each degree in $\mathcal{D}\setminus\{d\}$. Then Lemma 2 and the main theorem imply:

Corollary 2. Let \mathcal{D} be any finite set of positive integers with $\min(\mathcal{D}) = \delta$, and let G be a progenitor for \mathcal{D} . If order (G)=n, then for every m > n with $m \equiv n \pmod{2}$ there is an (m, \mathcal{D}) -graph H which is degree sequence equivalent to G (mod δ).

Acknowledgement. The authors are most grateful to the referee for having pointed out a gap in the proof of Lemma 2, for suggesting the addition of Lemma 3 and the two corollaries, for numerous suggestions regarding the presentation of this paper.

References

- [1] M.Behzad and G.Chartrand, No graph is perfect, Amer. Math. Monthly, 74 (1967), 962-963.
- [2] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs, Wadsworth International Group, Belmont, CA, First Reprinted Edition, 1981.
- [3] R.B. Eggleton, Graphic sequences and graphic polynomials: a report, Infinite and Finite Sets, 1, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, 10(1975), 385-392.
- [4] P. Erdös and T. Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat. Lapok, 11 (1960), 264-274.
- [5] V. Havel, A remark on the existence of finite graphs (Czech), Časopis Pěst. Mat., 80 (1955), 477-480.
- [6] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962), 496-506.
- [7] S.F. Kapoor, A.D. Polimeni and C.E. Wall, Degree sets for graphs, Fund. Math., 95 (1977), 189-194.
- [8] A. Tripathi and S. Vijay, A note on a theorem of Erdős and Gallai, Discrete Math., 265(3) (2003), 417-420.