Large Scale Linear and Mesh
Network of PCs Connected by SCSI

G. Young
Computer Science Department
California State Polytechnic University
Pomona, CA, USA

B Cong
Computer Science Department
California State University, Fullerton
Fullerton, CA, USA

P.Ng
Computer Science Department
The Chinese University of Hong Kong
Hong Kong

Abstract - High-performance computers have been in great demand for
applications in different areas. The increase in the processing power of
processors cannol solely satisfy our demand. Parallel computers are made to
overcome this technology limitation. In the last decade, research topics on
parallel computer using network-connected multicomputer have been studied
extensively. A cost-efficient high-speed multicomputer system was built using the
SCSI bus for the network connection, and it has been shown that it can reduce
the communication overheads and hence increase the overall performance [5].
In order to build highly scalable multiple computers based on this design, we
have to take into consideration of different network topologies. Since SCSI bus
[2.3] possesses some unique properties, it induces some inleresting properties
on the design of the network topology. In this paper, we evaluate the
performance of the large scale SCSI networks with linear and mesh structures.
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1 Introduction

Parallel computer system using network-connected multicomputers have
been a popular alternative solution for the high performance computing
world in recent years[4). An example of such a low cost system, which
makes use of off-the- shelf hardware products, was built by several
Pentium based PCs running Unix and SCSI buses. It has been shown to
have better performance when compared with the PVM system
connected by Ethernet [1,6]. So, it is necessary to consider building
large scale SCSI networks. Several network topologies of SCSI network
have been proposed before [6]. In this paper, we study the linear and
mesh SCSI networks

In Section 2, we describe message passing in SCSI network, and we
identify the unique properties of SCSI network in the next section. In
Sections 4 and 5, we give our results of the linear and mesh SCSI
networks. Finally, we give some concluding remarks in the last section.

2 SCSI Network

In a SCSI network computers are connected by SCSI buses, and we refer
to such computers as hosts. Every host can be connected by more than
one SCSI bus. When one host wants to pass a message to another host on
the same SCSI bus, message can be passed directly through that bus.
However, when a host wants to send a message to another host on a
different bus but these two buses share a common host, the message can
first be passed to the common host, then the common host in turn passes
the message to the destination host through the other SCSI bus. In this
case, this common host is called a router. In the description above so far,
it is similar to the conventional network. However, we will soon see the
difference in the next section.

3 Unique Properties of SCSI Network

Computers in the SCSI network are connected by the SCSI buses and
this off-the-shell SCSI bus possesses some unique properties:
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1. Each SCSI bus can only connect up to sixteen hosts.

2. Each router in SCSI network can only connect up to four SCSI
buses.

3. No host can access the others within a SCSI link if the link
failed.

One may immediately notice that a conventional hypercube of dimension
greater than four cannot be constructed because such structure has degree
greater than four for every node that contradicts the second property
mentioned above. On the other hand, message passing between hosts
connected by a single SCSI bus is much faster than that between hosts on
different SCSI buses through routers. This unique feature gives SCSI
network a totally different performance consideration even for some
familiar network topologies such as linear and mesh structures.

In the following sections, when considering some large scale SCSI
network topologies, we do not restrict our numbers 16 and 4 in properties
1 and 2 above. Instead, we generalize the properties 1 and 2 as follows:

1. Each SCSI bus can only connect up to 6+1 hosts.
2. Each router in SCSI network can only connect up to 6 SCSI
buses.

where o and 0 are some fixed integers.

4 Large Scale Linear SCSI Networks

Figure 1 Linear SCSI Network

As in figure 1, the simplest linear SCSI network consists of simply one
SCSI link connecting 16 hosts. This simple network has size 16, cost 1,
degree 1 and arc connectivity 1. Since every node pairs can access each
other directly, every shortest path has length 1. And hence both its
diameter and average distance are 1. For other conventional linear
network of the same size, for example, node 0 need to pass through 14
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routers in order to reach node 15, hence this path has length 15 which is
much greater than that of SCSI one. One can immediately see that it has
much lower cost, diameter and average distance than that of conventional
linear non-SCSI network of the same size.

The above simple linear structure can be easily extended to linear
structure of scale n. A linear SCSI network of scale 3 is given in figure 2.

1 O -0—0—0—0—0—-0-0~0—0 -0-0-0 -0
2

Figure 2 Linear SCSI Network of scale 3
In the above linear structure, adjacent SCSI links are connected by
common hosts which serve as routers. For a linear network of scale n,
the size is on + 1 and the cost is n. Every non-router host has degree 1
while every router has degree 2. This large scale network also has arc
connectivity as there exist degree 1 hosts in the network.

Labeling: We label the hosts by ascending integers running from zero,
ie.0,1,23, ..., that is, every router has label ck wherek=0,1, ... n.

Now, we state and prove several simple but useful lemmas.

Lemma 1: For a non-router host a € (o(i-1), ai) and a host b € (o(j-1),
gj] where a < b and 1 <i <j <n, i.e. they are in the ith and jth SCSI
links respectively, the length of the shortest path between them, denoted
byd(a b), isj—i+ I

Proof: There is an obvious shortest path from a to b

a—oci—>o(+])—>..->0(-1)>b
which has path length j —i + 1.

Corollary 2: For i = j in the above lemma, i.e. a and b are connected by
the same SCSI link, d(a, b) is always 1.
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Lemma 3: IFor a router a = oi and a host b in the interval (ofj-1), gj]
where 0 <i <j <n (hence a < b), we have d(a,b) =j —I.

Proof: There is an obvious shortest path fromato b
a=ci—>o(i+l)—-...>0(-1)>b
which has path length j —i.

Now, we state the routing algorithm that can get the above shortest path
for the linear SCSI network.

Routing Algorithm for linear SCSI network: Find the shortest path P
from hosts x; to x;

begin
P=¢;
if (xi # x) then
k=[x /o)l
if (x2 ko) then
P={(x1,x2)};
else
P = {(x1, ko)};
k=k+1;
do while (ko < x,)
P=Pu {((k-1)o, ko)};
k=k+1;
enddo
P=Pu {((k-1)o, x2)};
endif
endif
end

Next, we give results for network diameter and average distance of the
network.
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Theorem 4: Network diameter of linear SCSI network of scale n is n.

Proof: By Lemmas 1 and 2, we see that one of the longest shortest path
between all host pairs is 0 > 6 — 20 — ... —> no, that has path length n
-0=n

Theorem 5: Network average distance of linear SCSI network of scale n
is

(=D +3n-D+n+1)(n+2)
3(on+l)

Proof: First of all, we need to find out the total distance of all host pairs.
We divide all the host pairs (a, b) into three cases:

Case I: a,b e ((i-1)o, ic] where1 €£i<n

There are totally ;C; = o(c - 1) / 2 such host pairs. By corollary 2. d(a.
b) = 1. Since there arc n connccted SCSI links, the total distance between
these host pairs is n ;Ca.

Case 2: a € ((i-1)o. i) and b € ((j-1)0. jo] where 1 <i<j<n
For each fixed i, j € [1, n], there are (o - 1) such host pairs. By lemma
1. d(a. b) = j — i +1 so the total distance is

o(o-1) Y. d(a,b)

1<i<jsn
=o(o~-1) D (j-i+])
1Si<jsn
_ o(oc-Dn(n-1)(n+4)
6

Case 3: a=icand b € ((j-1)o, jo] where 0<i<j<n
For each fixed i € [0, n], j € [1, n], there are o such host pairs. By
lemma 3, d(a, b) =j — i so the total distance is
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o > d(a,b)

0<i<j<n
=o Y .(j-0)
0si<j<n
_on(n+1)(n+2)
6

Since the above three cases cover all the situations, the total distance
between all host pairs is the sum of distances obtained from the 3 cases,
ie.

o(oc-1) + o(o-Dn(n-D(n+4) . on(n+)(n+2)
2 6 6

=%[(a—- D(r? +3n=1)+ (n+1)(n+2)]

Now, there are totally 5n+/C, host pairs, therefore the network average
distance of linear SCSI network of scale n is

%[(G ~D(n* +3n-D+@+D(n+ 2)]

on(on+1)
2
(o=-D*+3n-D+@n+1)(n+2)
B 3(on+1)

This completes our proof of the theorem.
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5 Large Scale Mesh SCSI Networks

Mesh is a very popular topology since it possesses rather good network
parameters. So, we build our SCSI network using this topology and
hence we have the simple mesh SCSI network.

Column Link 0 Column Link §

Rowlink0 —>

Rowlinki —

Figure 3 Simple Mesh Network

As in figure 3, this simple network has size 256 (i.e. 16%), cost 32 (16
row links, 16 column links) and degree 2. It is obvious that failure of
any one link cannot disconnect the network. Since there are hosts of
degree 2, the arc connectivity is 2 for this simple mesh network. This
topology has some interesting properties, that is, all hosts are also
routers.

Labeling: For the sake of clear description, we label the hosts as
coordinates (i, j) where i, j €[0,...,15].

In order to determine the diameter and average distance, we first give
some lemmas.
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Lemma 6:  For two hosts a, b having the same x- or y-coordinate, d(a,
b) =1

Proof: Suppose a = (x, y)) and b = (x, y,) having the same x-coordinate.
Then in fact a and b are on the same row SCSI link x, hence a can
directly access b without passing through any router. Therefore d(a, b) =
1. The case of hosts having the same y-coordinate is similar.

Lemma 7: For two hosts a, b having different x- and y-coordinates, d(a,
b) =2

Proof: Suppose a = (x), y1) and b = (x;, y;) where x; # x; and y; # y,.
Obviously, they are connected by different links. In order to reach each
other, they must pass through at least one router, so d(a, b) > 1. Now
consider the following path

a=(x;,y) > (x1,y2) > b=(x2,¥2)

which has path length 2 and hence the result follows.

Theorem 8: Network diameter of simple mesh SCSI network is 2.

Proof: Result follows from lemma 6 and 7.

Theorem 9: Network average distance of simple mesh SCSI network is
1.882.

Proof: Suppose a = (x, y1) and b = (x,, y;) where x, X3, y). ¥2 €
[0....15]. We divide the situations into two cases.

Case 1: a, b having the same x- or y-coordinate

For cach fixed a, there are 15 hosts on the same column link and 15 hosts
on the same row link. Since there are 256 hosts in the network, the total
number of host pair is 30 x 256 / 2 =3840. By lemma 3.4.1,d(a, b) = 1,
the total distance between these host pairs is 3840.

Case 2: a, b having different x- or y-coordinate
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In this case, the total number of host pair is 15C, - 3840 = 28800. By
lemma 3.4.2, d(a, b) = 2, the total distance between these host pairs is
28800 x 2 = 57600,

By the result of the two cascs, d(a, b) = (3840 + 57600) / 25sC, = 1.882.

In view of thc above rcsults, the diamcter and avcrage distance of this
mesh SCSI network has a much better performance than that of
conventional mesh network. It is really an interesting result and mainly
due to the unique propertv of SCSI link that any of the 16 hosts
connected by a single SCSI link can access each other without passing
through any router. So, the message transmission time will be largely
saved and hence we have no reason to limit this mesh topology to the

{aon e 0 ek Uind Soundvry (chova Led

1 1 l

Molrk 0 —

-

size of 256. Now, we will demonstrate the scalability of this mesh
topology.

Figure 4 Mesh SCSI Network of scale 2
Similar to large scale linear SCSI network, we can connected four simple

mesh SCSI networks, in the obvious way, into a larger mesh SCSI
network as in figure 4.
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Following the same ideas, we can repeatedly compose n® simple mesh
SCSI network into a large scale mesh SCSI network or a mesh SCSI

Lerge Scide fesh S(S) Network

R—

n ¥ n connected simple mesh SCS] netuxrks

network of scale n,
Figure 5 Mesh SCSI Network of scale n

We define the mesh SCSI network of scale n as the interconnection
network of n” simple mesh SCSI networks as shown in figure 5. This
giant network topology has size (on + 1)* and cost 2(on+1). With the
same rcason as in the case of simple mesh network, the arc connectivity
of the network is also 2. Moreover, all the hosts function as routers and
we also label each host according to its x-, y-coordinates. Those hosts
connecting two or more simple mesh networks have degree 3 or 4. Note
that degree 4 is the upper limit of SCSI network. So, we cannot build 3D
mesh SCSI network by the conventional way because it will produce a
degree 5 host which is not possible by the off-the-shelf SCSI adapter.
Although we may do so by some tricky way, that is, connecting the third
dimension simple SCSI network by some degree 2 routers instead of
degree 3 ones, we are not going to discuss this in detail in this report.
Now we call these hosts/routers together with those hosts in the network
physical boundary the boundary hosts/routers. Then all the non-
boundary hosts/routers still have degree 2. Now we are going to
determine the network diameter and average distance which is non-trivial
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in this case. Besides, we will see that the calculation of average distance
is in fact similar to that of large scale linear SCSI network. As in the
previous cases, we first give some useful lemmas.

Labeling: Similar to the simple mesh network, we label the hosts as
coordinates (x, y) where x, y € [0,...,na]. Then a host (x, y) is also a
router if and only ifx = iocandy = jo for some integers i, j.

Lemma 10: Given two hosts a = (x;,y;) and b = (x3, y2). The path

a —(ai, y) = (ofi+1), y)) = ... = (%2 y) = (%2 g) = (x2 of+1)) =
)

is always a shortest path from host a to host b where (x2, gf) and (di, y1)
are all the boundary routers between a = (x), y;) and (x5, y;) in the same
horizontal level and between (x3, yi) and b = (xa, y2) in the same vertical
level respectively.

Proof: The above lemma may seem complicated at the first sight but in
fact we just take the most straight forward path as shown in figure 6.

0> - & — ¢-50
: b4
l
l
bi ® Bounduy HostRocter
O  Non-bounduy HostfRouter

Figure 6 Shortest Path in Mesh Topology

If a and b are in the same simple mesh network, the result follows from
the proofs of lemmas 6 and 7. Now suppose that they are in different
simple mesh network. No matter which path we choose, a must pass
through all boundary column links and boundary row links in between in
order to reach b. Then it is obvious that the above path has the minimum
necessary length and hence it is a shortest path.
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Corollary 11: dfa, b) = dyfx;, x3) + d(y), y2) which are the lengths of
shortest paths between host pairs x), x; and y,, y, respectively regarded
as hosts in the large scale linear SCSI networks described in the previous
section.

Proof: In the shortest path given in lemma 10, when we only consider
the hosts having fixed x-coordinate x,, it is equivalent to the linear SCSI
network of scale n. Since the path portion

a=(x,y1)) = (o1, y1) = (©@+1), y1) > ... = (X2, 1)

falls completely into this sub-network, its path length must be dy(x,, x;).
Similarly, the remaining path portion

(X2, Y1) = (x2, 0J) > (%, 6G+1)) > ... > b=(x2, y2)

must have path length dy(y), y2). Hence the result follows.

We know what a shortest path looks like. We now give the routing
algorithm that can find the path.

Routing Algorithm for mesh SCSI network: Find the shortest path P
Jfrom hosts (x,, y,) 1o (x2, y2).

begin
Pe=¢:
Py =¢;
if (x) # x2) then
By fixing the y-coordinate y, we can apply the Routing Algorithm for
linear network to get the shortest path Py from (x), y1) to (X3, y1);
endif
if (1 = y») then
By fixing the x-coordinate x, we can apply the Routing Algorithm for
linear network to get the shortest path Py from (x», y1) (o (X2, y2);
endif
P=P,UP,
end

Here we give the network diameter and average distance of the network.

Theorem 12: Network diameter of mesh SCSI network of scale n is 2on.
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Proof: 1t is obvious that the hosts a = (0,0), b = (on,on) are one of the
most distant pairs in the network. By corollary 11, d(a, b) = dy(0, on) +
de(0,on)=n+n=2n.

Theorem 13: Network average distance of mesh SCSI network of scale n
is

D [ +3n -1+ + 16 +2)]

3
(on+1)|(on +1)* -1
2
2 i
3o o -D0rt +3n-1)+ (n+1)(n +2)]

Proof: We first determine the total distance between all distinct host
pairs. Suppose that we consider all possible host pairs including those of
the form (a, b), (b, a) and (a, a). For the (a, a), d(a, a) = 0, so it won’t
affect the total distance. Besides, since d(a, b) = d(b, a) by symmetry, we
just double the total distance. Hence the total distance is

Z d(a,b)

on+l

Z d((x,.x;).(y1,¥,)) where a=(x,x,), b=(y,y,)
X% 01002

ontl

z dy(xlx2)+dx(yl’y2)
X1 X251 2

2 on+l
== Y d,(xx) bysymmetry

X X2,082
zoml

=(on+1)?). d,(xx)

1k
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on+|

=2on+1)’ Y, d(xx) bysymmetry

= 2(om +1)* x total distance of linear SCSI netowork of scale n
=2(om+1)? x 963[(0 —1)(r +3n=1) + (n+ 1)(n +2))

=TT [ 1)+ 3D+ -+ 0+ )]

Since there are totally (on+1) @n+1yC2 distinct host pairs, the network
average distance is
on(on+1)

: ko~ +3n-D+ @+ D +2)]

(on+1)*{(on+1)* ~1]
2

(o -1 +3n =D+ (n+D(n+2)]

2
3(on+2)

This completes the proof of the theorem.

6 Conclusion

In this paper, we introduce and give results for the large scale linear and
mesh SCSI Networks. For future research, other large scale SCSI
networks, such as tree, ring, torus and hypercube, could be built and
studied. Also we can simulate these giant SCSI networks based on the
statistical information taken from the smaller systems. Another
interesting research direction is on the embedding issues of SCSI
networks.
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