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ABSTRACT. We prove in this note that certain caterpillars with diameter 4 or 5 do
not factorize complete graphs. This together with results by Kovarova (2,3] and
Kubesa [5] gives the complete characterization of the caterpillars with diameter 4
that factorize the complete graph K2,. For diameter 5, we again complement results
by Kovarova [4] and Kubesa [6-9] to give the complete characterization for certain
class of caterpillars.

1. INTRODUCTION

We say that a tree T with 2n vertices factorizes the complete graph Koy, if
there exists a collection Ty, T,. .., T, of trees, all isomorphic to T, such that each
edge of K3, belongs to exactly one T;. Until recently, almost nothing was published
on factorizations of complete graphs into isomorphic spanning trees. It is probably
hopeless to expect a complete characterization any time soon. First attempts show
that even for very simple classes of trees like caterpillars and lobsters the task is
very complex. So far, T. Kovarova [2-4] and M. Kubesa [5-9] began investigating
caterpillars with small diameters. They proved existence of factorizations for infi-
nite classes of caterpillars with diameter 4, and with diameter 5 and at least one
vertex of degree 2. However, there were still some classes in doubt. We show in
this note that these classes do not allow factorizations and therefore complement
their results to obtain the complete characterization for the above mentioned types
of caterpillars.

A caterpillar is a tree in which each vertex of degree 1 is adjacent to a vertex of
a path of length at least one. The path is then called the spine of the caterpillar. The
spine of a caterpillar with diameter 4 will always consist of vertices 4, b, C and edges
Ab, bC; the spine of a caterpillar with diameter 5 will consist of vertices 4, a, b, B
and edges Aa,ab,bB. By a (d,dz, ds)-caterpillar or (d;,ds, ds, ds)-caterpillar we
mean a caterpillar with deg(A) = dy > 2,deg(b) = da,deg(C) = d3 > 2 or with
deg(A) = di > 2,deg(a) = da,deg(b) = ds,deg(B) = dy > 2, respectively. By a
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[t1, t2, ta]-caterpillar (where ¢; > t; > t3 > 2) we mean any (t;,t;,tx)-caterpillar
where {1, j,k} = {1,2,3}. The same convention holds for [¢;,t2, t3, t4]-caterpillars.

2. CATERPILLARS WITH DIAMETER 4

An easy computation shows that a complete graph with an odd number of
vertices cannot be factorized into isomorphic trees. It is also obvious that if T
factorizes K5, then no vertex of T' can be of degree more than n. There are n
factors and every vertex is in each factor of degree at least one. If a vertex v is of
degree n+ 1 or more in T} and of degree at least one in each of T3, T3, ..., Ty, then
its total degree in K5, is at least 2n, which is absurd. In the following lemma we
prove that every caterpillar with diameter 4 that factorizes the complete graph K>,
must have one vertex of degree n. This also proves that the there are no caterpillars
factorizing K3, besides those shown by Kovarova and Kubesa.

Lemma 1. Let Ry, be a [, t2, t3]-caterpillar with 2n vertices and diameter 4 that
factorizes the complete graph Ka,. Then t; =n.

Proof. There are n copies of Re,, that factorize Ko,, call them Fy, Fy,..., F,. For
a vertex v we denote the degree of v in F; by deg;(v). We assume that deg,(z) =
t1,deg, (y) = ta,deg,(2) = ts. We have shown above that deg,(z) = t; < n. Now
we show that ¢{; = n. Suppose to the contrary that ¢;, < n. Because we have
Y&, degi(z) = 2n — 1, there must be a factor Fj, say F3, such that degy(z) > 2,
otherwise we again get a contradiction. Then deg,(z) = t2 or degy(z) = t3. In
both cases we have

Mm—-1= Zdegi(z) >t +t3+2deg,~(:c) Stttz +(n—-2)

i=1 =3

and n + 1 > t; + t3. But the sum of all degrees of vertices of Ry, is 4n — 2 and
hence

hh+to+ta+(2n—-3)=4n-2,

which yields
th+ita+ta=2n+1.

Since we have shown above that ¢ + t3 < n + 1, it follows that t; > n, which
contradicts our assumption that n > ¢, > ;. O

It was proved by Eldergill [1] that a (d),2, d3)-caterpillar of diameter 4 does
not factorize K3, for any n. He also showed that the (2,3, 2)-caterpillar does not
factorize Kg. On the other hand, the following result was proved by Kubesa [5] for
n odd and by Kovarova [2,3] for n even.

Theorem 2. (Kovarova, Kubesa) Let n > 4. Then every (n,ds,ds)-caterpillar

with 3 < d; £ n—1 and dp +d3 = n+ 1 and every (dy,n,d3)-caterpiller with
2<d; <n-1andd; +dz =n+1 factorizes Ko,,.

So the following holds.

Theorem 3. A [t1,12, t3)-caterpillar with diameter 4 factorizes Ko, if and only if
ty =n > 4 and it is not the (n,2,n — 1)-caterpillar.
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3. CATERPILLARS WITH DIAMETER 5

In the following lemmas we show two classes of caterpillars of diameter 5
that do not factorize the complete graphs Kj,. This result completes the results
by Kovarova and Kubesa on the characterization of caterpillars with diameter 5
and at least one vertex of degree 2 that factorize complete graphs.

There is no tree with less than 6 vertices of diameter 5 and the only caterpillar
of diameter 5 with 6 vertices is the path P that clearly factorizes K. Therefore,
we will further assume that n > 4. We also observe that if a caterpillar Ry, with
diameter 5 factorizes K, and n > 5, then there are at least two vertices in Ry, of
degree more than 2. In the opposite case the only vertex of degree more than 2 has
degree 2n — 4 > n, which is impossible.

Lemma 4. Let Ry be an (n,2,2,n — 2)-caterpillar with 2n vertices, n > 5. Then
Ry, does not factorize Koy,.

Proof. We proceed by contradiction. Suppose it is not the case and there exists a
factorization into factors Fy, Fs, ..., F,.

For n = 4 and 5 the result was proved by Eldergill [1]. Hence, we suppose that
n > 6. Let deg; () = n and deg,(y) = n—2. Then z and y are not adjacent in F}.
Because 37| deg,(z) = 2n — 1, obviously deg;(z) = 1 for i = 2,3,...,n. Similarly,
as 30, degy(y) = 2n—1 and n— 2 > 2, we can see that 37, deg;(y) = n+1, and
because y is never isolated in any factor, it follows that deg;(y) < 3 for i > 2. But
in each factor every vertex of degree one is adjacent either to a vertex of degree n
or of degree n — 2 > 4. Since z is in each of the factors Fy, F3, ..., F, of degree 1
while y is there of degree less than n — 2, they can never be adjacent in any of these
factors. We have noticed above that they are not adjacent in F either and hence
the edge zy does not appear in any factor. This is a contradiction and the proof is
complete. [J

Lemma 5. Let Ry, be an (n,2,n—m, m)-caterpillar with the spine A, a,b, B where
2<m<n-3andn >4. Then Ry, does not factorize Ko, .

Proof. For n = 4,5 the result was proved by Eldergill [1]. Hence, we assume n > 6.
Suppose such a factorization exists and the factors are F}, Fy, ... P

Clearly, each vertex can be of degree n only in one of the factors Fy, F, ...,
F,,.. Therefore, let z,,z,,...,z, be vertices such that deg;(z;) = n. Forevery j # i
it follows that deg;(z;) = 1. Hence, the edge z;z can only appear in either F;
or in Fx. If it is not the case and z;z belongs to F,s # i,k, then deg,(z;) =
deg,(z«) = 1 and F; is disconnected, which is impossible. Let Y1,Y2,--.,Yn be the
remaining vertices of Ko,.

We define ¢; to be the mapping that takes R,, onto F and assume that
#i(A) = z;. Now we define for every vertex ¥j»J = 1,2,...,n, an (unordered)
multiset P(y;) of all pre-images of y; in the mappings ¢;,i = 1,2,...,n. Clearly,
each P(y;) can contain only vertices a,b, B and vertices of degree 1. If some P(y;)
does not contain B, then another one, Pk, contains B at least twice. The same
holds for b. We now prove several claims related to this property.

Claim 1. If Iy, F,..., F, is the desired factorization, then there is no P(y;) that
contains B exactly twice while b ¢ P(y;).

Suppose the contrary and assume without loss of generality (WLOG) that
$1(B) = ¢2(B) = 1 and recall that ¢1(A) = z1,¢$2(4) = z2. Every edge ziy; of
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Ks,, is in each factor an image of one of the edges Aa, AA',bb’, BB’, where each of
A', ¥, B’ is a vertex of degree one in R2,. Obviously, z 31 ¢ F; and hence it cannot
be an image of Aa or AA’. As y, is not an image of b in any factor, z,y, cannot
be the image of bb’ either. Hence, it must be the image ¢2(BB’). So z,y; € Fs.
Therefore, F> cannot contain the edge z;z2, as ; is of degree 1 in F5. Similarly,
zoty ¢ F» and therefore it is not an image of Aa or AA’. Again it is not an image
of bb’ since b is never a pre-image of y;. Thus zoyn = ¢1(BB’) € F;. As above,
F\ cannot contain the edge z1z2. Now the edge z)z2 is neither in F) nor in F5.
This is impossible, because in all other factors both z; and z» are of degree 1 and
T1z2 would have to be isolated in whatever factor it would belong to. Therefore,

no vertex y; can be an image of B in exactly two factors unless it is also an image
of b.

Claim 2. If Fy, F3, ..., Fy, is the desired factorization, then there is no P(y;) that
contains b exactly twice while B ¢ P(y;).

Repeating the same argument as above, we can show that the same holds
for an image of b.

Claim 3. Let m > [§] + 1. Then every P(y;) contains each of the vertices a, b, B
exactly once.

Obviously, no vertex y; can be of degree m (that means, an image of B) in
two or more different factors, for if it were, then there would be at most n — 3 edges
incident with y; in Ko, left for the remaining n — 2 factors, which is impossible.
Hence, each y; is of degree m in exactly one factor. If then y; is not of degree n—~m
in another factor, we must have a vertex y, such that it is of degree m in one factor
and of degree n —m (and therefore, an image of ) in at least two factors. But then
again there are at most (2n —1)—m—2(n—m) = m ~1 < n - 4 edges left for the
remaining n—3 factors, which is a contradiction. It follows that if m > [2]+1, then
for each y; the set P(y;) contains each of the vertices b, B exactly once. Because
then we need to distribute the remaining (2n — 1) —m — (n — m) = n — 1 edges
among the remaining n — 2 factors, clearly y; must be of degree 2 in exactly one of
them, which proves the claim.

Claim 4. Let m < | 3] — 1. Then every P(y;) contains each of the vertices a,b, B
exactly once.

The argument is similar as above, since then n —m > [3] + 1.

Now we need to treat the cases when |§] <m < [3].

Claim 5. If F1,F5,..., F, is the desired factorization, n = 2m and m = %, then
every P(y;) contains each of the vertices a, b, B exactly once.

Because n = 2m, it follows that n — m = m and each factor contains two
vertices of degree m. Hence, there must be a vertex y; that is of degree m in at
least two factors. On the other hand, no vertex can be of degree m in three or more
factors, otherwise there is not enough edges in K>, for the remaining factors at that
vertex. Therefore, each vertex y; is of degree m in exactly two factors. According
to Claims 1 and 2, this can happen only when y; is once the image of b and once of
B. There are still n — 1 unused cdges to be distributed among the n — 2 remaining
factors. It follows that y; must be exactly once the image of @ since a has degree 2.

Claim 6. If Fy, F5, .. ., F,, is the desired factorization, nisodd and [}| < m < [%],
then every P(y;) contains each of the vertices a, b, B exactly once.
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First assume that m = |2]. Then n = 2m + 1 and (n,2,n — m,m) =
(n,2,m+1,m) which yields deg(h) = m+1 = [%]. If we assume that m = [$], then
n=2m—1and (n,2,n—-m,m) = (n,2,m~ 1,m) which yields deg(B) =m = 31
In either case we have one of b, B of degree [3].

Suppose then that a vertex y; is of degree [%] more than once. Then of
course it can happen at most twice as otherwise there is not enough edges for the
remaining factors incident with y;. If y; is of degree [3] in exactly two factors,
then in each of the remaining n — 2 factors y; is of degree 1, since we have used
2[3] = n+1 edges already. But this is impossible by Claims 1 and 2. Hence, every
yj is of degree [4] in one factor and of degree | 2] in another. The remaining n — 1
edges incident with y; can be distributed into the n — 2 remaining factors only such
that y; is of degree 2 in exactly one factor and the claim is proved.

By now we have shown that if the desired factorization exists, then in any
case every P(y;) contains each of the vertices a,b, B exactly once. In the following
claim we show that even then the existence of such a factorization is impossible.

Claim 7. Let Fy,Fy,...,F, be factors of Kj,, all isomorphic to the caterpillar
Ran as described in the assumption of this lemma. Let every P(y;) contain each
of the vertices a,b, B exactly once. Then the factors Fy, F, ..., F, do not form a
factorization of Ks,.

Let again Rj, be the (n,2,n — m,m)-caterpillar with the spine A, aq,b, B,
edges Aa,ab,bB, and deg(A) = n. Denote by b,k = 1,2,...,n — m — 2 the
neighbors of b of degree 1. Since m < n — 3, at least one such bj. exists. Similarly
denote by B;,t = 1,2,...,m—1 the neighbors of B of degree 1. Since m > 2, at least
one such Bj exists. We suppose that ¢;(4) = z; and ¢;(b) = y; fori = 1,2,...,n.
Then of course z;y; ¢ F; for any i. We can also WLOG assume that the factors
are ordered such that ¢,(B) = y; and in general ¢;(B) = y;4; and ¢,(B) = y,, for
some s < n. We observe that s > 3, since if s = 2 then the edge y,y2 appears in
two factors F] and F5.

Because every vertex z; is of degree 1 in each factor except for F, it is clear
that the edge z,z2 must belong to either F} or to F;. For the same reason, every
edge r;y; must be an image of the edge BB, for some t. But the vertex yo is
an image of B exactly once, namely in F}, and hence F; contains the edge Zayo.
Therefore, F; does not contain z;z; and it must belong to 3. Now we will see
that there is no factor that contains the edge z,y,. This edge cannot belong to F,
because z; = ¢;(A) and ¥, = ¢(B) and A and B are not adjacent in Ra,. In all
other factors z; is of degree 1 and therefore z;y, can only be the image of one of
the edges bb}, BB;. Because y, is the image of B only in F; and we have shown
that z1y2 cannot belong to F, it must be the image of bb.. But y; is the image of
bonly in F3. At the same time in F; there is the edge z;z2 and therefore z; cannot
be incident with another edge. Therefore, z,y, is not contained in any factor and
the claim is proved.

So we have shown in Claim 6 that if there is a factorization of Ko, into n
copies of Rpn, then each vertex y; is an image of each of a,b, B in exactly one
factor. On the other hand, in Claim 7 we have proved that if there are factors
Ry, F,...,F, such that every y; is an image of each of a,b, B in exactly one of
them, then the factors Fy, F,...,F, do not form a factorization of Ks,. This
contradiction concludes the proof of the Lemma. 0O

We can summarize the above two lemmas into one result.
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Theorem 6. An (n,2,n — m, m)-caterpillar with 2n vertices and2 <m <n-—2
does not factorize Koy, for any n.

For n odd it was also shown by Kubesa [6,7,8] that all caterpillars of diameter
5 with one vertex of degree n and one or two vertices of degree 2 different from
the ones in Theorem 6 factorize Ks,. Analogical result for n even was proved by
Kovarova [4]. We include their results in one theorem.

Theorem 7. (Kovarova, Kubesa) Let n > 5,n # 2% and Ry, be an [n,t2,13,2]-
caterpillar with 2n vertices and t3 > 3. Then R, factorizes Koy, if it is not an
(n,2,n — m,m)-caterpillar for2<m <n-—2.

Therefore, the following corollary holds.

Corollary 8. An [n,t2,t3,2]-caterpillar Ry, with diameter 5 and n > 5,n # 2%,
factorizes Ko, into n isomorphic copies if and only if Ron is not an (n,2,n—m,m)-
caterpillar for2<m <n-2.

It was also shown by Kovarova (4] and Kubesa [9] that all [n — 1,25, 3,2]-
caterpillars factorize K, for any admissible pair t2 > t3> 2.

Theorem 9. (Kovarova, Kubesa) All [» — 1,t2,13,2]-caterpillars with 2n vertices
factorize Koy, for every n > 3,n # 2F.

By proving the following lemma we show that Theorems 8 and 9 actually
give the complete characterization of [t, 2,13, 2]-caterpillars with with 2n vertices
that factorize Kon.

Lemma 10. If a {t, t2, 3, 2]-caterpillar Ry, factorizes Kon, thent; > n —1.

Proof. For n = 3 the assertion is obvious. Therefore, we assume now that n > 4.
Let z1,x2,...,Zon be the vertices of Ry,. Then indeed E?;l deg(z;) =t +t2 +
t3+ 2+ (2n — 4) = 4n — 2, which yields t; + t2 + t3 = 2n. Therefore, t; > 2n/3 and
no vertex x; can be of degree ¢; in more than one factor. We can suppose WLOG
that deg;(z;) =t fori =1,2,...,n.

Suppose now to the contrary that ¢; < n~2. Then we can assume t; = n—g,
where ¢ > 2. Because ¢t < t), then ) + 2 < 2n —~ 2¢ and hence {3 > 2q. It follows
that no vertex z; for j < n can be of degree ¢z or {3 in any factor, otherwise
Y degi(z;) = (n—q) + 29+ (n~2) = 2n+ g — 2 2 2n, which is impossible.
Because deg,(z1) = n — ¢ < n — 2, there must be at least two factors in which z;
is of degree 2, otherwise Y ..  degi(z1) <n—-q+2+(n—-2)=2n—-qg< 2n -2,
a contradiction. But if z; is of degree 2 in two or more factors, another vertex
zj € {x2,%3,...,2n} is in F; of degree ¢ = n—g < n—2 and in all n—1 remaining
factors of degree 1. Thus 3_;.., deg;(z;) = (n — ¢) + (n — 1) < 2n — 3, which is the
final contradiction showing that the maximum degree ¢; must be at least n—1. O

The characterization mentioned above immediately follows.
Theorem 11. A [t1,12,t3,2]-caterpillar Ry, with n > 3, n # 25,8 > 5 > t3 and

diameter 5 factorizes Ko, into n isomorphic copies if and only if t; +t2 +t3 = 2n,
n >t >n-1, and Ry, is not an (n,2,n — m, m)-caterpillar with2 <m <n-2.
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4. CONCLUDING REMARKS

The resaerch dealing with the remaining class of caterpillars with diameter
5, namely the caterpillars with no vertices of degree 2, is still in progress. However,
we restrict here the class of possible candidates by proving the following lemma.

isomorphic copies, then eitherty =n andty+iz+ty=n+2o0rt)+t4 =to+tz =
n+1.

Lemma 12. If a [t1,12,1s,t4)-caterpillar Ry, with ty > 3 factorizes Ko, into n

Proof. Obviously, ¢t > 3 yields n > 5. We can suppose that there is a vertex z,
such that deg; ) = t; and deg;z, > deg;,,z; for i = 1,2,...,n — 1. By the
necessary condition, t; < n. If ¢; = n, then obviously ty + t3 + t4 = n + 2, since
ti+ta+ta+ts+(2n—4) =4n—2. Let ¢; <n - 1. Hence, deg, z; > 2, otherwise
Yoy degi(z1) = t; + (n — 1) £ 2n — 2, which is impossible. Since there is no
vertex of degree 2 in our Ry,, we have deg, z; > t4. If now t; + t4 > n + 2, then
Yimpdegi(z1) > t1 + t4 + (n — 2) > 2n, which is again a contradiction.

Therefore, ¢ +ty < n+ 1. If t) +t4 < n, then of course ts + 3 > n + 2,
and consequently ¢; + £ > t; +t3 > n + 2. In that case, if deg;z; = i3 or
ts for some i, we again get 3 ., deg;(z1) > t; + t3 + (n — 2) > 2n, the same
contradiction as above. More generally, no vertex can be of degree #; in one factor
and of degree more than ¢4 in another. So we must have deg,z; = t; and also
degz z; = t4. But then there is another vertex, say z, such that it is of degree
t1 < n —1in one factor and of degree 1 in all remaining factors, having the total
degree 3, deg;(z2) = t; + (n — 1) < 2n—2, which is the final contradiction. The
only remaining possibility is ¢; +¢4 = n+1, which instantly yields ta+t5 = n+1. O

We remark that for diameter 5 there are still two gaps to be filled. The
caterpillars with 2¥ vertices in general, and the caterpillars with no vertex of degree
2. These classes are currently being studied but the results are too incomplete to
be stated here.
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