NOTE ON FACTORIZATION OF COMPLETE GRAPHS INTO CATERPILLARS WITH SMALL DIAMETERS

DALIBOR FRONCEK University of Minnesota Duluth

November 2004

ABSTRACT. We prove in this note that certain caterpillars with diameter 4 or 5 do not factorize complete graphs. This together with results by Kovarova [2,3] and Kubesa [5] gives the complete characterization of the caterpillars with diameter 4 that factorize the complete graph K_{2n} . For diameter 5, we again complement results by Kovarova [4] and Kubesa [6-9] to give the complete characterization for certain class of caterpillars.

1. Introduction

We say that a tree T with 2n vertices factorizes the complete graph K_{2n} if there exists a collection T_1, T_2, \ldots, T_n of trees, all isomorphic to T, such that each edge of K_{2n} belongs to exactly one T_i . Until recently, almost nothing was published on factorizations of complete graphs into isomorphic spanning trees. It is probably hopeless to expect a complete characterization any time soon. First attempts show that even for very simple classes of trees like caterpillars and lobsters the task is very complex. So far, T. Kovarova [2-4] and M. Kubesa [5-9] began investigating caterpillars with small diameters. They proved existence of factorizations for infinite classes of caterpillars with diameter 4, and with diameter 5 and at least one vertex of degree 2. However, there were still some classes in doubt. We show in this note that these classes do not allow factorizations and therefore complement their results to obtain the complete characterization for the above mentioned types of caterpillars.

A caterpillar is a tree in which each vertex of degree 1 is adjacent to a vertex of a path of length at least one. The path is then called the *spine* of the caterpillar. The spine of a caterpillar with diameter 4 will always consist of vertices A, b, C and edges Ab, bC; the spine of a caterpillar with diameter 5 will consist of vertices A, a, b, B and edges Aa, ab, bB. By a (d_1, d_2, d_3) -caterpillar or (d_1, d_2, d_3, d_4) -caterpillar we mean a caterpillar with $\deg(A) = d_1 \geq 2, \deg(b) = d_2, \deg(C) = d_3 \geq 2$ or with $\deg(A) = d_1 \geq 2, \deg(a) = d_2, \deg(b) = d_3, \deg(B) = d_4 \geq 2$, respectively. By a

¹⁹⁹¹ Mathematics Subject Classification. 05C70, 05C78.

Key words and phrases. Graph factorization, spanning trees.

Research for this article was supported by the University of Minnesota Duluth Grant 177-1009.

 $[t_1, t_2, t_3]$ -caterpillar (where $t_1 \ge t_2 \ge t_3 \ge 2$) we mean any (t_i, t_j, t_k) -caterpillar where $\{i, j, k\} = \{1, 2, 3\}$. The same convention holds for $[t_1, t_2, t_3, t_4]$ -caterpillars.

2. CATERPILLARS WITH DIAMETER 4

An easy computation shows that a complete graph with an odd number of vertices cannot be factorized into isomorphic trees. It is also obvious that if T factorizes K_{2n} , then no vertex of T can be of degree more than n. There are n factors and every vertex is in each factor of degree at least one. If a vertex v is of degree n+1 or more in T_1 and of degree at least one in each of T_2, T_3, \ldots, T_n , then its total degree in K_{2n} is at least 2n, which is absurd. In the following lemma we prove that every caterpillar with diameter 4 that factorizes the complete graph K_{2n} must have one vertex of degree n. This also proves that the there are no caterpillars factorizing K_{2n} besides those shown by Kovarova and Kubesa.

Lemma 1. Let R_{2n} be a $[t_1, t_2, t_3]$ -caterpillar with 2n vertices and diameter 4 that factorizes the complete graph K_{2n} . Then $t_1 = n$.

Proof. There are n copies of R_{2n} that factorize K_{2n} , call them F_1, F_2, \ldots, F_n . For a vertex v we denote the degree of v in F_i by $\deg_i(v)$. We assume that $\deg_1(x) = t_1, \deg_1(y) = t_2, \deg_1(z) = t_3$. We have shown above that $\deg_1(x) = t_1 \le n$. Now we show that $t_1 = n$. Suppose to the contrary that $t_1 < n$. Because we have $\sum_{i=1}^n \deg_i(x) = 2n - 1$, there must be a factor F_j , say F_2 , such that $\deg_2(x) \ge 2$, otherwise we again get a contradiction. Then $\deg_2(x) = t_2$ or $\deg_2(x) = t_3$. In both cases we have

$$2n-1 = \sum_{i=1}^{n} \deg_{i}(x) \ge t_{1} + t_{3} + \sum_{i=3}^{n} \deg_{i}(x) \ge t_{1} + t_{3} + (n-2)$$

and $n+1 \ge t_1 + t_3$. But the sum of all degrees of vertices of R_{2n} is 4n-2 and hence

$$t_1 + t_2 + t_3 + (2n - 3) = 4n - 2$$

which yields

$$t_1 + t_2 + t_3 = 2n + 1.$$

Since we have shown above that $t_1 + t_3 \le n + 1$, it follows that $t_2 \ge n$, which contradicts our assumption that $n > t_1 \ge t_2$. \square

It was proved by Eldergill [1] that a $(d_1, 2, d_3)$ -caterpillar of diameter 4 does not factorize K_{2n} for any n. He also showed that the (2, 3, 2)-caterpillar does not factorize K_6 . On the other hand, the following result was proved by Kubesa [5] for n odd and by Kovarova [2,3] for n even.

Theorem 2. (Kovarova, Kubesa) Let $n \geq 4$. Then every (n, d_2, d_3) -caterpillar with $3 \leq d_2 \leq n-1$ and $d_2+d_3=n+1$ and every (d_1, n, d_3) -caterpillar with $2 \leq d_1 \leq n-1$ and $d_1+d_3=n+1$ factorizes K_{2n} .

So the following holds.

Theorem 3. A $[t_1,t_2,t_3]$ -caterpillar with diameter 4 factorizes K_{2n} if and only if $t_1 = n \ge 4$ and it is not the (n,2,n-1)-caterpillar.

3. CATERPILLARS WITH DIAMETER 5

In the following lemmas we show two classes of caterpillars of diameter 5 that do not factorize the complete graphs K_{2n} . This result completes the results by Kovarova and Kubesa on the characterization of caterpillars with diameter 5 and at least one vertex of degree 2 that factorize complete graphs.

There is no tree with less than 6 vertices of diameter 5 and the only caterpillar of diameter 5 with 6 vertices is the path P_6 that clearly factorizes K_6 . Therefore, we will further assume that $n \geq 4$. We also observe that if a caterpillar R_{2n} with diameter 5 factorizes K_{2n} and $n \geq 5$, then there are at least two vertices in R_{2n} of degree more than 2. In the opposite case the only vertex of degree more than 2 has degree 2n-4>n, which is impossible.

Lemma 4. Let R_{2n} be an (n, 2, 2, n-2)-caterpillar with 2n vertices, $n \geq 5$. Then R_{2n} does not factorize K_{2n} .

Proof. We proceed by contradiction. Suppose it is not the case and there exists a factorization into factors F_1, F_2, \ldots, F_n .

For n=4 and 5 the result was proved by Eldergill [1]. Hence, we suppose that $n\geq 6$. Let $\deg_1(x)=n$ and $\deg_1(y)=n-2$. Then x and y are not adjacent in F_1 . Because $\sum_{i=1}^n \deg_i(x)=2n-1$, obviously $\deg_i(x)=1$ for $i=2,3,\ldots,n$. Similarly, as $\sum_{i=1}^n \deg_i(y)=2n-1$ and n-2>2, we can see that $\sum_{i=2}^n \deg_i(y)=n+1$, and because y is never isolated in any factor, it follows that $\deg_i(y)\leq 3$ for $i\geq 2$. But in each factor every vertex of degree one is adjacent either to a vertex of degree n or of degree $n-2\geq 4$. Since x is in each of the factors F_2, F_3, \ldots, F_n of degree 1 while y is there of degree less than n-2, they can never be adjacent in any of these factors. We have noticed above that they are not adjacent in F_1 either and hence the edge xy does not appear in any factor. This is a contradiction and the proof is complete. \square

Lemma 5. Let R_{2n} be an (n, 2, n-m, m)-caterpillar with the spine A, a, b, B where $2 \le m \le n-3$ and $n \ge 4$. Then R_{2n} does not factorize K_{2n} .

Proof. For n = 4,5 the result was proved by Eldergill [1]. Hence, we assume $n \ge 6$. Suppose such a factorization exists and the factors are F_1, F_2, \ldots, F_n .

Clearly, each vertex can be of degree n only in one of the factors F_1, F_2, \ldots, F_n . Therefore, let x_1, x_2, \ldots, x_n be vertices such that $\deg_i(x_i) = n$. For every $j \neq i$ it follows that $\deg_j(x_i) = 1$. Hence, the edge $x_i x_k$ can only appear in either F_i or in F_k . If it is not the case and $x_i x_k$ belongs to $F_s, s \neq i, k$, then $\deg_s(x_i) = \deg_s(x_k) = 1$ and F_s is disconnected, which is impossible. Let y_1, y_2, \ldots, y_n be the remaining vertices of K_{2n} .

We define ϕ_i to be the mapping that takes R_{2n} onto F_i and assume that $\phi_i(A) = x_i$. Now we define for every vertex $y_j, j = 1, 2, \ldots, n$, an (unordered) multiset $P(y_j)$ of all pre-images of y_j in the mappings $\phi_i, i = 1, 2, \ldots, n$. Clearly, each $P(y_j)$ can contain only vertices a, b, B and vertices of degree 1. If some $P(y_j)$ does not contain B, then another one, P_k , contains B at least twice. The same holds for b. We now prove several claims related to this property.

Claim 1. If F_1, F_2, \ldots, F_n is the desired factorization, then there is no $P(y_j)$ that contains B exactly twice while $b \notin P(y_j)$.

Suppose the contrary and assume without loss of generality (WLOG) that $\phi_1(B) = \phi_2(B) = y_1$ and recall that $\phi_1(A) = x_1, \phi_2(A) = x_2$. Every edge $x_i y_j$ of

 K_{2n} is in each factor an image of one of the edges Aa, AA', bb', BB', where each of A', b', B' is a vertex of degree one in R_{2n} . Obviously, $x_1y_1 \notin F_1$ and hence it cannot be an image of Aa or AA'. As y_1 is not an image of b in any factor, x_1y_1 cannot be the image of bb' either. Hence, it must be the image $\phi_2(BB')$. So $x_1y_1 \in F_2$. Therefore, F_2 cannot contain the edge x_1x_2 , as x_1 is of degree 1 in F_2 . Similarly, $x_2y_1 \notin F_2$ and therefore it is not an image of Aa or AA'. Again it is not an image of bb' since b is never a pre-image of y_1 . Thus $x_2y_1 = \phi_1(BB') \in F_1$. As above, F_1 cannot contain the edge x_1x_2 . Now the edge x_1x_2 is neither in F_1 nor in F_2 . This is impossible, because in all other factors both x_1 and x_2 are of degree 1 and x_1x_2 would have to be isolated in whatever factor it would belong to. Therefore, no vertex y_j can be an image of B in exactly two factors unless it is also an image of b.

Claim 2. If F_1, F_2, \ldots, F_n is the desired factorization, then there is no $P(y_j)$ that contains b exactly twice while $B \notin P(y_j)$.

Repeating the same argument as above, we can show that the same holds for an image of b.

Claim 3. Let $m \ge \lceil \frac{n}{2} \rceil + 1$. Then every $P(y_j)$ contains each of the vertices a, b, B exactly once.

Obviously, no vertex y_j can be of degree m (that means, an image of B) in two or more different factors, for if it were, then there would be at most n-3 edges incident with y_j in K_{2n} left for the remaining n-2 factors, which is impossible. Hence, each y_j is of degree m in exactly one factor. If then y_j is not of degree n-m in another factor, we must have a vertex y_t such that it is of degree m in one factor and of degree n-m (and therefore, an image of b) in at least two factors. But then again there are at most $(2n-1)-m-2(n-m)=m-1\leq n-4$ edges left for the remaining n-3 factors, which is a contradiction. It follows that if $m\geq \lceil \frac{n}{2}\rceil+1$, then for each y_j the set $P(y_j)$ contains each of the vertices b,B exactly once. Because then we need to distribute the remaining (2n-1)-m-(n-m)=n-1 edges among the remaining n-2 factors, clearly y_j must be of degree 2 in exactly one of them, which proves the claim.

Claim 4. Let $m \leq \lfloor \frac{n}{2} \rfloor - 1$. Then every $P(y_j)$ contains each of the vertices a, b, B exactly once.

The argument is similar as above, since then $n-m \ge \lceil \frac{n}{2} \rceil + 1$. Now we need to treat the cases when $\lfloor \frac{n}{2} \rfloor \le m \le \lceil \frac{n}{2} \rceil$.

Claim 5. If F_1, F_2, \ldots, F_n is the desired factorization, n = 2m and $m = \frac{n}{2}$, then every $P(y_i)$ contains each of the vertices a, b, B exactly once.

Because n=2m, it follows that n-m=m and each factor contains two vertices of degree m. Hence, there must be a vertex y_j that is of degree m in at least two factors. On the other hand, no vertex can be of degree m in three or more factors, otherwise there is not enough edges in K_{2n} for the remaining factors at that vertex. Therefore, each vertex y_j is of degree m in exactly two factors. According to Claims 1 and 2, this can happen only when y_j is once the image of b and once of b. There are still b-1 unused edges to be distributed among the b-1 remaining factors. It follows that b-1 must be exactly once the image of b since b-1 has degree 2.

Claim 6. If F_1, F_2, \ldots, F_n is the desired factorization, n is odd and $\lfloor \frac{n}{2} \rfloor \leq m \leq \lceil \frac{n}{2} \rceil$, then every $P(y_j)$ contains each of the vertices a, b, B exactly once.

First assume that $m = \lfloor \frac{n}{2} \rfloor$. Then n = 2m + 1 and (n, 2, n - m, m) = (n, 2, m+1, m) which yields $\deg(b) = m+1 = \lceil \frac{n}{2} \rceil$. If we assume that $m = \lceil \frac{n}{2} \rceil$, then n = 2m - 1 and (n, 2, n - m, m) = (n, 2, m - 1, m) which yields $\deg(B) = m = \lceil \frac{n}{2} \rceil$. In either case we have one of b, B of degree $\lceil \frac{n}{2} \rceil$.

Suppose then that a vertex y_j is of degree $\lceil \frac{n}{2} \rceil$ more than once. Then of course it can happen at most twice as otherwise there is not enough edges for the remaining factors incident with y_j . If y_j is of degree $\lceil \frac{n}{2} \rceil$ in exactly two factors, then in each of the remaining n-2 factors y_j is of degree 1, since we have used $2\lceil \frac{n}{2} \rceil = n+1$ edges already. But this is impossible by Claims 1 and 2. Hence, every y_j is of degree $\lceil \frac{n}{2} \rceil$ in one factor and of degree $\lceil \frac{n}{2} \rceil$ in another. The remaining n-1 edges incident with y_j can be distributed into the n-2 remaining factors only such that y_j is of degree 2 in exactly one factor and the claim is proved.

By now we have shown that if the desired factorization exists, then in any case every $P(y_j)$ contains each of the vertices a, b, B exactly once. In the following claim we show that even then the existence of such a factorization is impossible.

Claim 7. Let F_1, F_2, \ldots, F_n be factors of K_{2n} , all isomorphic to the caterpillar R_{2n} as described in the assumption of this lemma. Let every $P(y_j)$ contain each of the vertices a, b, B exactly once. Then the factors F_1, F_2, \ldots, F_n do not form a factorization of K_{2n} .

Let again R_{2n} be the (n,2,n-m,m)-caterpillar with the spine A,a,b,B, edges Aa,ab,bB, and $\deg(A)=n$. Denote by $b'_k,k=1,2,\ldots,n-m-2$ the neighbors of b of degree 1. Since $m \leq n-3$, at least one such b'_k exists. Similarly denote by $B'_i,t=1,2,\ldots,m-1$ the neighbors of B of degree 1. Since $m\geq 2$, at least one such B'_i exists. We suppose that $\phi_i(A)=x_i$ and $\phi_i(b)=y_i$ for $i=1,2,\ldots,n$. Then of course $x_iy_i\notin F_i$ for any i. We can also WLOG assume that the factors are ordered such that $\phi_1(B)=y_2$ and in general $\phi_i(B)=y_{i+1}$ and $\phi_s(B)=y_1$, for some $s\leq n$. We observe that $s\geq 3$, since if s=2 then the edge y_1y_2 appears in two factors F_1 and F_2 .

Because every vertex x_i is of degree 1 in each factor except for F_i , it is clear that the edge x_1x_2 must belong to either F_1 or to F_2 . For the same reason, every edge x_iy_i must be an image of the edge BB'_t for some t. But the vertex y_2 is an image of B exactly once, namely in F_1 , and hence F_1 contains the edge x_2y_2 . Therefore, F_1 does not contain x_1x_2 and it must belong to F_2 . Now we will see that there is no factor that contains the edge x_1y_2 . This edge cannot belong to F_1 , because $x_1 = \phi_1(A)$ and $y_2 = \phi_1(B)$ and A and B are not adjacent in R_{2n} . In all other factors x_1 is of degree 1 and therefore x_1y_2 can only be the image of one of the edges bb'_k , BB'_i . Because y_2 is the image of B only in B'_1 and we have shown that B'_1 cannot belong to B'_1 , it must be the image of B'_1 . But B'_2 is the image of B'_1 only in B'_2 . At the same time in B'_2 there is the edge B'_1 and therefore B'_1 cannot be incident with another edge. Therefore, B'_1 is not contained in any factor and the claim is proved.

So we have shown in Claim 6 that if there is a factorization of K_{2n} into n copies of R_{2n} , then each vertex y_j is an image of each of a, b, B in exactly one factor. On the other hand, in Claim 7 we have proved that if there are factors F_1, F_2, \ldots, F_n such that every y_j is an image of each of a, b, B in exactly one of them, then the factors F_1, F_2, \ldots, F_n do not form a factorization of K_{2n} . This contradiction concludes the proof of the Lemma. \square

We can summarize the above two lemmas into one result.

Theorem 6. An (n, 2, n-m, m)-caterpillar with 2n vertices and $2 \le m \le n-2$ does not factorize K_{2n} for any n.

For n odd it was also shown by Kubesa [6,7,8] that all caterpillars of diameter 5 with one vertex of degree n and one or two vertices of degree 2 different from the ones in Theorem 6 factorize K_{2n} . Analogical result for n even was proved by Kovarova [4]. We include their results in one theorem.

Theorem 7. (Kovarova, Kubesa) Let $n \geq 5, n \neq 2^k$ and R_{2n} be an $[n, t_2, t_3, 2]$ -caterpillar with 2n vertices and $t_2 \geq 3$. Then R_{2n} factorizes K_{2n} if it is not an (n, 2, n - m, m)-caterpillar for $2 \leq m \leq n - 2$.

Therefore, the following corollary holds.

Corollary 8. An $[n, t_2, t_3, 2]$ -caterpillar R_{2n} with diameter 5 and $n \geq 5, n \neq 2^k$, factorizes K_{2n} into n isomorphic copies if and only if R_{2n} is not an (n, 2, n-m, m)-caterpillar for $2 \leq m \leq n-2$.

It was also shown by Kovarova [4] and Kubesa [9] that all $[n-1,t_2,t_3,2]$ -caterpillars factorize K_{2n} for any admissible pair $t_2 \ge t_3 \ge 2$.

Theorem 9. (Kovarova, Kubesa) All $[n-1, t_2, t_3, 2]$ -caterpillars with 2n vertices factorize K_{2n} for every $n \geq 3, n \neq 2^k$.

By proving the following lemma we show that Theorems 8 and 9 actually give the complete characterization of $[t_1, t_2, t_3, 2]$ -caterpillars with with 2n vertices that factorize K_{2n} .

Lemma 10. If a $[t_1, t_2, t_3, 2]$ -caterpillar R_{2n} factorizes K_{2n} , then $t_1 \geq n-1$.

Proof. For n=3 the assertion is obvious. Therefore, we assume now that $n\geq 4$. Let x_1,x_2,\ldots,x_{2n} be the vertices of R_{2n} . Then indeed $\sum_{i=1}^{2n} \deg(x_i) = t_1 + t_2 + t_3 + 2 + (2n-4) = 4n-2$, which yields $t_1 + t_2 + t_3 = 2n$. Therefore, $t_1 > 2n/3$ and no vertex x_i can be of degree t_1 in more than one factor. We can suppose WLOG that $\deg_i(x_i) = t_1$ for $i=1,2,\ldots,n$.

Suppose now to the contrary that $t_1 \leq n-2$. Then we can assume $t_1 = n-q$, where $q \geq 2$. Because $t_2 \leq t_1$, then $t_1 + t_2 \leq 2n - 2q$ and hence $t_3 \geq 2q$. It follows that no vertex x_j for $j \leq n$ can be of degree t_2 or t_3 in any factor, otherwise $\sum_{i=1}^n \deg_i(x_j) \geq (n-q) + 2q + (n-2) = 2n + q - 2 \geq 2n$, which is impossible. Because $\deg_1(x_1) = n - q \leq n - 2$, there must be at least two factors in which x_1 is of degree 2, otherwise $\sum_{i=1}^n \deg_i(x_1) \leq n - q + 2 + (n-2) = 2n - q \leq 2n - 2$, a contradiction. But if x_1 is of degree 2 in two or more factors, another vertex $x_j \in \{x_2, x_3, \ldots, x_n\}$ is in F_j of degree $t_1 = n - q \leq n - 2$ and in all n - 1 remaining factors of degree 1. Thus $\sum_{i=1}^n \deg_i(x_j) = (n-q) + (n-1) \leq 2n - 3$, which is the final contradiction showing that the maximum degree t_1 must be at least n - 1. \square

The characterization mentioned above immediately follows.

Theorem 11. A $[t_1, t_2, t_3, 2]$ -caterpillar R_{2n} with $n \geq 3$, $n \neq 2^k, t_1 \geq t_2 \geq t_3$ and diameter 5 factorizes K_{2n} into n isomorphic copies if and only if $t_1 + t_2 + t_3 = 2n$, $n \geq t_1 \geq n - 1$, and R_{2n} is not an (n, 2, n - m, m)-caterpillar with $2 \leq m \leq n - 2$.

4. CONCLUDING REMARKS

The resaerch dealing with the remaining class of caterpillars with diameter 5, namely the caterpillars with no vertices of degree 2, is still in progress. However, we restrict here the class of possible candidates by proving the following lemma.

Lemma 12. If a $[t_1, t_2, t_3, t_4]$ -caterpillar R_{2n} with $t_4 \ge 3$ factorizes K_{2n} into n isomorphic copies, then either $t_1 = n$ and $t_2 + t_3 + t_4 = n + 2$ or $t_1 + t_4 = t_2 + t_3 = n + 1$.

Proof. Obviously, $t \geq 3$ yields $n \geq 5$. We can suppose that there is a vertex x_1 such that $\deg_1 x_1 = t_1$ and $\deg_i x_1 \geq \deg_{i+1} x_1$ for $i = 1, 2, \dots, n-1$. By the necessary condition, $t_1 \leq n$. If $t_1 = n$, then obviously $t_2 + t_3 + t_4 = n + 2$, since $t_1 + t_2 + t_3 + t_4 + (2n - 4) = 4n - 2$. Let $t_1 \leq n - 1$. Hence, $\deg_2 x_1 \geq 2$, otherwise $\sum_{i=1}^n \deg_i (x_1) = t_1 + (n-1) \leq 2n - 2$, which is impossible. Since there is no vertex of degree 2 in our R_{2n} , we have $\deg_2 x_1 \geq t_4$. If now $t_1 + t_4 \geq n + 2$, then $\sum_{i=1}^n \deg_i (x_1) \geq t_1 + t_4 + (n-2) \geq 2n$, which is again a contradiction.

Therefore, $t_1+t_4 \le n+1$. If $t_1+t_4 \le n$, then of course $t_2+t_3 \ge n+2$, and consequently $t_1+t_2 \ge t_1+t_3 \ge n+2$. In that case, if $\deg_i x_1=t_2$ or t_3 for some i, we again get $\sum_{i=1}^n \deg_i (x_1) \ge t_1+t_3+(n-2) \ge 2n$, the same contradiction as above. More generally, no vertex can be of degree t_1 in one factor and of degree more than t_4 in another. So we must have $\deg_2 x_1=t_4$ and also $\deg_3 x_1=t_4$. But then there is another vertex, say x_2 , such that it is of degree $t_1 \le n-1$ in one factor and of degree 1 in all remaining factors, having the total degree $\sum_{i=1}^n \deg_i (x_2) = t_1+(n-1) \le 2n-2$, which is the final contradiction. The only remaining possibility is $t_1+t_4=n+1$, which instantly yields $t_2+t_3=n+1$.

We remark that for diameter 5 there are still two gaps to be filled. The caterpillars with 2^k vertices in general, and the caterpillars with no vertex of degree 2. These classes are currently being studied but the results are too incomplete to be stated here.

REFERENCES

- P. Eldergill, Decompositions of the complete graph with an even number of vertices (1997), M.Sc. Thesis, McMaster University, Hamilton.
- T. Kovarova, Fixing labeling and factorizations of complete graphs into caterpillars with diameter four, submitted.
- T. Kovarova, Spanning tree factorizations of complete graphs, Ph.D. Thesis, VSB-TU Ostrava (2004).
- 4. T. Kovarova, manuscript.
- M. Kubesa, Spanning tree factorizations of complete graphs, JCMCC 52 (2005), 33-49.
- M. Kubesa, Factorizations of complete graphs into [r, s, 2, 2]-caterpillars of diameter 5, to appear in JCMCC 54 (2005).
- M. Kubesa, Factorizations of complete graphs into [n, r, s, 2]-caterpillars of diameter 5 with maximum end, submitted.
- M. Kubesa, Factorizations of complete graphs into [n,r,s,2]-caterpillars of diameter 5 with maximum center, AKCE International Journal of Graphs and Combinatorics 2 (2005), 109– 133.
- 9. M. Kubesa, Factorizations of complete graphs into [n-1, r, s, 2]-caterpillars of diameter 5, submitted.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF MINNESOTA DULUTH, 1117 UNIVERSITY Dr., DULUTH, MN 55812-3000, U.S.A.

e-mail: dalibor@d.umn.edu