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Abstract

Let G be a graph of order n(G), minimum degree §(G), diameter
dm(G), and let G be the complement of the graph G. A vertex set
D is called a dominating set of G, if each vertex not in D has at
least one neighbor in D. The domination number v(G) equals the
minimum cardinality of a dominating set of G.

In this article we show the inequalities

* v(G) < |n(G)/3], if 6(G) 2 7,

* ¥(G) +%(G) £ [n(G)/3] +2, if §(G),5(G) > 7 and

e %0G) < ["‘—EZJ +1, if dm(G) = 2.

Using the concept of connectivity, we present some related upper
bounds for the domination number of graphs with dm(G) = 2 and
dm(G) = 3.
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1 Terminology and introduction

1.1 General introduction and notations

For graph-theoretical terminology and notation not defined here we follow
Chartrand and Lesniak [7]. We consider finite, undirected, and simple
graphs G with the vertex set V(G) and the edge set E(G). For each vertex
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v € V(G), the open neighborhood N(v) = Ng(v) of v is defined as the
set of all vertices adjacent to v, Nv] = N¢[v] = N(v) U {v} is the closed
neighborhood of v, and d(v) = |[N(v)| is the degree of v. We denote by §(G)
the minimum degree, by A(G) the mazimum degree and by n(G) = |V(G)|
the order of G.

If G is a connected graph, then the distance d(u, v) between two vertices
u and v is defined as the length of a shortest path from u to v, and the
diameter is the number dm(G) = max{d(u,v) : u,v € V(G)}. We define
Ny(u) = {z € V(G)|d(u,z) = p}. For two vertex sets X and Y let [X, Y] be
the set of edges with one endpoint in X and the other onein Y, and |[X, Y]|
denotes the cardinality of [X,Y]. If X C V(G), then let X = V(G) \ X,
and let G[X] be the subgraph induced by X. Furthermore, we write K, for
the complete graph of order p. The K, @ K, is the graph with 2p vertices
obtained by the vertex-disjoint union of two K, such that each vertex in
Kp ® K, has degree p.

1.2 Domination

A vertex set D is called a dominating set of G, if N[D] = V(G). The dom-
ination number v(G) of a graph G equals the minimum cardinality of a
dominating set over all dominating sets of G. A dominating set D satis-
fying |D] = 4(G) is called a v-set of G. If U C Na] for a vertex a and a
vertex set U, then we say that a dominates U and write a — U.

In the following we list some upper bounds for the domination number of
a graph G, depending on the order, the minimum degree and the diameter
of G and G. A general summary over the domination number can be found
in the textbook of Haynes, Hedetniemi and Slater {13].

1.2.1 Bounds in terms of order

Theorem 1.1 (Ore [19] 1962) If a graph G has no isolated vertices, then
7(G) < n(G)/2.

Theorem 1.2 (Reed [22] 1996) If G is a connected graph with §(G) >
3, then v(G) < 3n(G)/8.

In 1989, McCuaig and Sheperd [17] showed that ¥(G) < 2n(G)/5 for
any graph G with §(G) > 2, except a class of seven graphs.
Since v(G) < §(G)n(G)/(36(G) —1) is valid for any graph G with §(G) > 7
by Theorem 1.6, Haynes, Hedetniemi and Slater [13], p. 48 conjecture that
7¥(G) < 8(G)n(G)/(36(G) — 1) for any graph G with 4 < §(G) < 6.
In Section 1.2.2 we show that for 6(G) = 6 this conjecture follows directly
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from Theorem 1.7. In addition, in the diploma thesis by S. Niinning in
2000, supervised by D. Rautenbach and L. Volkmann, this conjecture was
proved for §(G) = 4. Hence, the question remains open for graphs G having
§(G)=5.

Theorem 1.3 (Cockayne, Ko, Shepherd [10] 1985) If & connected
graph G is claw-free and net-free, then v(G) < [n(G)/3].

In Section 2 we show that v(G) < |n(G)/3|, if §(G) > 7.

1.2.2 Bounds in terms of order and minimum degree
We only list a few of the known results in this area.

Theorem 1.4 (Arnautov [2] 1974 and Payan [20] 1975) If a graph
G has no isolated vertices, then

16 < (Pt ) nio.

Theorem 1.5 (Arnautov [2] 1974) If a graph G has no isolated ver-

tices, then
5(G)+1

1 1
Y(G) < (EZG)_+T 2 ;) n(G).
Theorem 1.6 (Caro, Roditty [5], [6] 1985, 1990) If G is a graph of
order n(G) and minimum degree §(G), then

1 14+1/6(G)
1(E) < [1 _§(c) (W) J n(©).

Theorem 1.7 (Clark, Shekhtman, Suen, Fisher [9] 1998) If G is a
graph without isolated vertices, then

§(G)+1
G<|1- G).
Y(G) ( g E’?{"SG_) n(G)

As a direct consequence of Theorem 1.7 we obtain the following corol-
lary, which shows that the conjecture ¥(G) < §(G)n(G)/(36(G) - 1) by
Haynes, Hedetniemi and Slater [13] is valid for §(G) = 6.

Corollary 1.1 If G is a connected graph with §(G) = 6, then

7G) S T2nlC).
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Proof: Applying Theorem 1.7 for §(G) = 6 leads to

IA

LA

le} 1- T —- | n(G
¥(G) ( I:Ilk +1 ) (&)
(1 - 0.661)n(G) = 0.339n(G) < 0.352n(G)

6

IA

IA

0

Theorem 1.8 (Clark, Dunning [8] 1997) The following table contains
upper bounds for v(G), if G is an arbilrary graph with n vertices and min-
imum degree 6.

n\d|1[2[3]4]5]|6[7[8] 9 [10]11 1213114 |15
2 |1

3 |1(1

4 |2[2]1

5 |2]12(1]1

6 [3]2[2]2]1

7 [(313|2]2]1]1

8 [4|43]2)12]2]1

9 |4(4[3[|3[2]2[1]1

10 [5]4)3}13[212}]2(21

11 |[5[5|4(3[3[|3]2]2[1]1

12 (66443 [3]2]2]2 2|1

13 |6(6[4[4[3 13322 }2(1]1

14 |[7]6[5]4]4[3[3[3]2|2[2[2]1

15 [7][7|5(5]4({34[3|3[23[2]j2]2[1]}]]1
16 |8|8([6[5[45]4[34[3]23[23]2[2]|2]2]1

1.2.3 Nordhaus-Gaddum type results

Results on the sum (product) of a parameter of G and the same parameter
of its complement G are called Nordhaus-Gaddum type results (see [18]).

Theorem 1.9 (Jaeger, Payan [14] 1972) For any graph G,

YGC)(G) < n(G).
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Theorem 1.10 (Jaeger, Payan [14] 1972) For any graph G,
7(G) +(G) < n(G) +1.

Theorem 1.11 (Joseph, Arumugam [15] 1995) Let G be an arbitrary
graph. If §(G), 8(G) 2 1, then v(G) +7(G) < [n(G)/2] + 2.

Theorem 1.12 (Dunbar, Haynes, Hedetniemi [11]) Let G be an ar-
bitrary graph. If §(G),8(G) 2 2, then v(G) +v(G) < |2n(G)/5] + 3.

Theorem 1.13 (Dunbar, Haynes, Hedetniemi [11]) If G and G are
connected graphs of order n(G) # 10 with §(G),8(G) > 3, and G # K3 x K3
(where K3x K3 is the cartesian product), then v(G)++(G) < |3n(G)/8]+2.

Theorem 1.14 (Payan [20) 1975) Let G be an arbitrary graph. If v(G)
> 3, then ¥(G) +v(G) < 6(G) + 3.

In Section 2 we prove the inequality ¥(G) + v(G) < |n(G)/3] + 2, if
§(G),6(G) = 7.

1.2.4 Bounds in terms of diameter

In a graph of diameter 2, the open neighborhood of any vertex v € V(G)
dominates G and the next upper bound is immediate.

Theorem 1.15 (Haynes, Hedetniemi, Slater [13], p. 55) If a graph
G has dm(G) = 2, then v(G) < §(G).

Theorem 1.16 (Brigham, Chinn, Dutton [4] 1988) If G is a graph
with v(G) > 3, then dm(G) < 2.

Theorem 1.17 (Haynes, Hedetniemi, Slater [13]) If G is a graph
without isolated vertices and dm(G) > 3, then v(G) = 2.

Theorem 1.18 (MacGillivray, Seyffarth [16] 1996) If G is a planar
graph with dm(G) = 2, then 4(G) < 3.

Theorem 1.19 (MacGillivray, Seyffarth [16] 1996) If G is a planar
graph with dm(G) = 3, then y(G) < 10.

In Section 3 we present some new results on the domination number for
graphs with diameter 2 and 3, respectively. Hereby, we will use the terms
of edge- and vertex-connectivity. Therefore we give a short introduction
into the concept of connectivity.

191



1.3 Connectivity

An edge-cut (vertez-cut) of a connected graph G is a set of edges (vertices)
whose removal disconnects G. The edge-connectivity A(G) is defined as the
minimum cardinality of an edge-cut over all edge-cuts of G and if G is
non-complete, then the vertez-connectivity x(G) is defined as the minimum
cardinality of a vertex-cut over all vertex-cuts of G. For the complete graph
K, we define x(K,) = n — 1. In 1932, Whitney [24] proved that x(G) <
A(G) < §(G) for every connected graph G.

Each edge-cut (vertex-cut) S satisfying |S| = A(G) (|S| = #(G)) is called
a minimum edge-cul (minimum vertez-cut). We call a graph G mazimally
edge-connected, if A\(G) = §(G), and a trivial edge-cut is an edge-cut which
consists only of edges adjacent to a vertex of minimum degree. We call a
graph G super-edge-connected, for short super-), if every minimum edge-
cut is trivial. Hence, every super-edge-connected graph is also maximally
edge-connected.

The following is known about edge-connectivity and super-edge-connec-
tivity in graphs of diameter 2.

Theorem 1.20 (Plesnfk [21] 1975) If G is a connected graph with
dm(G)< 2, then A(G) = §(G).

The super-edge-connected graphs of diameter 2 are characterized by
Wang and Li.

Theorem 1.21 (Wang, Li [23] 1999 ) A connected graph G with
dm(G) = 2 is super-A, if and only if G contains no induced complete graph
Ks(c) with all its vertices of degree §(G).

In 1992, Fiol 12} already showed that the condition in the characteri-
zation above is sufficient for graphs of diameter 2 to be super-A.

2 A Nordhaus-Gaddum type result

Theorem 2.1 IfG is a connected graph with §(G) > 7, then

v(G) £ |n(G)/3].

Proof: Let G be a connected graph with 6(G) > 7. If 6(G) = 7, then
Theorem 1.7 leads to

8

+(C) < (1 -TI; J’: l) n(G) < 0.312n(C) <

k=1 7

»(C)
=
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Since ¥(G) and n(G) are integers, we obtain the desired result ¥(G) <
n(C)/3].

Now we assume that §(G) > 8. Let f(z) = oh; L 3°%*1 1 be a function
in z € N, where z > 1. We will show that f(z) is monotonically decreasing.
Therefore we consider the difference f(z + 1) — f(x) and show that it is
negative.

z+2 z+ 1

z+2zk x+lzk

o 1 (2 zJ“:l
T (=+2)? " \z+2 :z:+1 ok

1 1 :z+ll
(z+2)2 (z+2)(z+1) &k

fz+1) - f(=)

1 z+2 z+1
- @+2? (x+2)2(z+1)zk

3 1 - x+2z+1_
T (z+2)2 z+1 &k

< 0

This observation and Theorem 1.5 leads to
) 50+
3G +1 ,‘; % | Q)

< lzg:l G) < 0.32n(G
s 5 z n( )< . n( )

k=1
n(G)
3

Again, since 7(G) and n(G) are integers, we obtain y(G) < |n(G)/3.0

v(G)

IA

<

Theorem 2.2 If G is a graph with §(G),8(G) > 7, then
=~ G
1@ ++(@) < | B2 +2.
Proof: Let G be a graph with §(G),8(G) > 7. If dm(G) > 3, then by

Theorem 1.17 4(G) < 2. Theorem 2.1 leads to 4(G) < |_n(G)/3 | and thus
7O ++(6) < [ 2] +2.
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Analogously, if dm(G) > 3, then v(G) < 2, and thus 4(G) + v(G) <
2 + |n(G)/3]. Since §(G),8(G) > 7 the case dm(G) = 1 or dm(G) = 1
cannot occur.

Now we consider the remaining case that dm(G) =dm(G) =
1: Let 4(G),v(G) > 6.

Theorem 1.9 leads to

102 2] < 2] wsr01< 40 <42

and thus ~
Y(G) +7(G) £2|n(G)/6] < |n(G)/3] +2.

2: Let v(G) = 5,4(G) < 5.
2.1: Let n(G) > 24.

In this case v(G) + v(G) £ 10 £ |n(G)/3} + 2, and thus we are done.
2.2: Let n(G) < 23.

2.2.1: Let v(G) = 5,7(G) = 5.

Applying Theorem 1.9, we deduce that the assumption v(G) = y(G) = 5
leads to a contradiction.
2.2.2: Let v(G) = 5,v(G) = 4.
2.2.2.1: Let n(G) > 21.

If n(G) > 21, then we are done, since Y(G) +v(G) < 9=7+2 <
[7(G)/3] +2.
2.2.2.2: Let n(G) < 19.

Theorem 1.9 implies that this case cannot occur.
2.2.2.3: Let n(G) = 20 and §(G) < 8.

Let u be an arbitrary vertex of minimum degree in G. Then u dominates
the vertex set V(G) — Ng(u) in G, and hence at most 8 vertices in G are
not dominated by u. Since v(G) = 5, each set of four vertices in G can be
dominated by one vertex. That implies v(G) < 3, a contradiction.
2.2.2.4: Let n(G) = 20 and 4(G) =

Let u be an arbitrary vertex of minimum degreein G andlet R = V(G)—
Nlu]. Since 4(G) = 4, each set of three vertices in G can be dominated by
one vertex. If there exists a vertex v € R, such that |[N(v) N R| > 3,
then 7(G) < 4, since u and v dominate 14 vertices and the remaining 6
vertices can be dominated by two vertices. Hence, this assumption leads
to a contradiction. Now we assume that no vertex in R has three or more
neighbors in R. Consequently, |N(v)NN(u)| > 7 for each vertex v € R, and
thus the set {u,a,b,c} is a dominating set for each three different vertices
a,b,cin N(u). This contradicts v(G) =
2.2.2.5: Let n(G) = 20 and §(G) > 10.

This case cannot occur, because n(G) = 20, §(G) > 10 and v(G) = 4
implies v(G) < 4, since a vertex of minimum degree dominates 11 vertices
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and the remaining 9 vertices can be dominated by three vertices.
2.2.3: Let v(G) = 5,4(G) = 3.

If n(G) > 18, then we are done, because in this case v(G) + v(G) <
6 + 2 < |n(G)/3] + 2. The assumption n(G) < 14 leads to a contradiction
to 6(G),8(G) > 1.

In the case 15 < n(G) < 16, we obtain a contradiction to the results in
Theorem 1.8.

It remains the case n(G) = 17. We define u and R as in Case 2.2.2.4.
It is easy to see that |R| < 9. If there exists a vertex v € R, such that
|N(v) N R| > 4, then the vertices u and v dominate at least 13 vertices.
Since dm(G) = 2, the remaining vertices can be dominated by two vertices.
Hence ¥(G) < 4, a contradiction.

Now we assume that |N(v) N R| < 3 for each vertex v € R. Since
3(G) > 7, we observe that |N(v) N N(u)| > 6(G) — 3 > 4 for each vertex
vE€R.

If there exists an arbitrary set {a, b, ¢} of three different vertices in N (u)
such that {a,b,c} — R, then v(G) < 4, a contradiction.

Now we assume that for each set {a,b,c} of three different vertices in
N(u), there exists a vertex v € R such that v ¢ N({a,b, c}). This implies
that for each set {z1, 22, ..., Z5(c)-3} of 6(G) — 3 different vertices in N (u),
there exists a vertex v € R, such that N(v) N N(u) = {z;, 23, ..., Zs5(G)-3}-
Since, there exist at least

(5(25)013) 2 (733) =35>9

sets of §(G) — 3 different vertices in N(u), we obtain a contradiction to
|R| <9.
2.2.4: Let v(G) = 5,7(G) < 2.
The desired result follows directly by Theorem 2.1.
3: Let v(G) = 5,7v(G) < 5.
This case can be treated in a similiar manner as Case 2.
4: Let v(G),v(G) < 4.
4.1: Let v(G), ¥(G) < 3.

If n(G) > 15, then we observe Y(G) +v(G) < 6 =4+2 < |n(G)/3| +2.
The case n(G) < 14 contradicts the assumption §(G),8(G) > 7, and thus
we are done.

4.2: Let v(G) = 4(G) = 4.
4.2.1: Let n(G) # 17 or n(G) =17 and §(G) = 7.

If n(G) < 15, then ¥(G)v(G) = 16 > n(G), a contradiction to Theorem
1.9. If n(G) > 18, then v(G) +¥(G) = 6 +2 < |n(G)/3] + 2, and thus we
are done.

Now we consider the remaining case that 16 < n(G) < 17.
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By using the results in Theorem 1.8 for n(G) = 16, we only have to
consider the case that §(G) = 7, if n(G) = 16.

We define R as above. We assume that there exists a vertex v € R
such that [Ng(v) N Ng(u)| < 3, and thus [Ng(v) N Ne(u)| > 4. Hence
|Ne(u) \ Na(v)] < 3 in G, and thus V(G) can be dominated by u,v and
a further vertex, since y(G) = 4. This contradicts ¥(G) = 4, and thus
|[N(v) N N(u)| > 4, for each v € R. Hence, we conclude that |[R, N(u)]] >
4|R|.

If there exists a vertex z € N(u), such that |N(z) N R| > |R| — 3, then
G can be dominated by the vertices v and z and a further vertex, since
7(G) = 4. This contradicts v(G) = 4, and thus |N(z) N R| < |R| - 4, for
each vertex z € N(u). This implies |[R, N(u)]] < 6(G)(|R| - 4).

Hence, we deduce that 4|R| < §(G)(|R|—4) = 7|R| — 28, a contradiction
to 8 < |R| <9.

4.2.2: Let n(G) = 17 and §(G) € {8,9}.

By the proof to Case 4.2.1, we observe that |[N(z) N R| < |R| — 4 for
each vertex z € N(u), and thus |[R, N(u)]| < 6(G)(|R| — 4). If there exists
a vertex v € R, such that |[N(v) N R| > |R| — 4, then u and v dominate at
least n(G) — 3 vertices. The remaining three vertices can be dominated by
one vertex, since y(G) = 4, a contradiction to ¥(G) = 4.
Hence, |N(v)NR| < |R|-5, which implies [N(v)NN(u)| > 6(G)—|R|+5 > 5
for each v € R and thus |[R, N(u)]| > 5|R|.
Since |[R, N(u)]| < 8(G)(|R| — 4), we obtain 5|R| < §(G)(|R| —4) = (16 —
|R])(|R| — 4), which is equivalent to 64 + |R|2 < 15|R], a contradiction for
7<|R| <8
4.2.3: Let n(G) =17 and 6(G) > 10.

This case cannot occur, since §(G) > 7.
4.3: Let v(G) = 4,9(G) < 3 or let v(G) £ 3,7(G) = 4.

If n(G) > 15, then v(G) +v(G) < 7 = 5+ 2 < |n(G)/3), our desired
result. Since §(G),d(G) > 7, the case n(G) < 14 cannot occur.
5: Let v(G) > 6,v(G) < 5.

5.1: Let v(G) = 5.

By using Theorem 1.9, we obtain v(G) < |n(G)/¥(G)] £ [n(G)/5) and
thus 4(G) +v(G) < |n(G)/5] +5 < |n(G)/3] +2, if n(G) > 30
If n(G) < 29, then v(G)¥(G) > 6-5 = 30 > 29 > n(G), a contradiction to
Theorem 1.9.

5.2: Let v(G) = 4.

Analogously to the proof of Case 5.1, we obtain ¥(G) < [n(G)/v(G)] <
[n(G)/4] and thus 1(G) +7(C) < |n(G)/4] +4 < [n(G)/3] +2, i n(G) 2
24. In the case n(G) < 23, we obtain the contradiction v(G)y(G) >6-4 =
24 > 23 > n(G).

5.3: Let v(G) = 3.
In this case we observe, by Theorem 1.9 that n(G) > 18, since v(G)v(G)
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=23.-6=18.

By Theorem 3.4, we have ¥(G) < [n(G)/4] + 1, and thus ¥(G) + v(G) <
|n(G)/4] +1+3 < |n(G)/3] +2, if n(G) > 21 or n(G) = 19 or n(G) = 18.
Now we consider the remaining case that n(G) = 20. Let u and R be defined
as above. Clearly, we obtain |R| < 12.

We assume that there exists a vertex v € R, such that [N(v) N R| >
|R|—7. Then V(G) can be dominated by u, v and three additional vertices,
since dm(G) = 2. This contradicts ¥(G) > 6, and so |[N(v) " R| < |R| - 8
for each v € R. Thus, |[N(v)NN(u)| > 6(G) —|R| +8 for each v € R. Hence
we obtain that

|[N(u), R]| 2 |R|-(6(G)~|R|+8) = |R|(20~|R|~1~|R|+8) = 27-|R|-2|R|*.

If there exists a vertex z € N(u) such that [N(z) N R| > |R| — 6, then
V(G) can be dominated by the vertices v and z and further three vertices,
since dm(G) = 2. This contradicts y(G) > 6, and thus |[N(z)NR| < |R|-7
for each vertex z € N(u). This implies

|[R, N(u)]| < 8(G)(IR| - 7) = (20~ 1~ |R|)(|R| - 7) = 26 - |R| — 133 — | R}?,
and thus
27|R| — 2|R|? < 26|R| — 133 — |R?

& |R|-|RP?<-133

& 0<|R?>-|R] - 133,
a contradiction to |R| < 12.
5.4: Let v(G) =2.

The desired result follows directly from Theorem 2.1.

6: Let v(G) <5,7(G) > 6.

This case can be proved in an analogous way to Case 5.
Since we have discussed all possible cases, the proof is complete. a

3 Domination number and diameter

We start with some simple connections between the domination number
and the diameter of the complementary graph. These results are supple-
ments to Theorem 1.16 and Theorem 1.17.

A dominating edge is an adjacent pair of vertices that dominate V(G).

Theorem 3.1 A graph G has ¥(G) = 1 or a dominating edge if and only
if dm(G) > 3.
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Proof: Let G be a graph such that v(G) < 2 and let D be a minimum
dominating set. Firstly, we assume |D| = 1, say a € D. Then, d(e,G) =
n(G) — 1, which implies that a is a isolated vertex in G, and thus dm(G) =
oo > 3. Now let |D| = 2, say a,b € D with ab € E(G). Since {a,b} is a
dominating set, N(a,G) N N(b,G) = 0 and ab € E(G) implies ab ¢ E(G).
Hence, d(a,b) > 3 in G, and thus dm(G) > 3.

Now let G be a graph satisfying dm(G) > 3. Firstly, let dm(G) =
which means that G is not connected. If there exists an isolated vertex m
G, then 7(G) = 1, and we are done. If there exist no isolated vertices in
G, then for each pair of two vertices a, b, which are in different components
in G, we observe that {a,b} — V(G) in G and ab € E(G), our desired
result. Secondly, let 3 < dm(G) < oo, and thus G is a connected graph.
Let a, b be two vertices of distance 3 in G. Then, a — Ng[b],b — Ng|a] and
a,b = V(G) \ (Ng[b) U Ngla)) in G and ab € E(G). If A(G) < n(G) —
then v(G) > 2, and thus {a, b} is a dominating edge of V(G) which lmphes

+(G) = 2. The case that A(G) = n(G) —1 cannot occur, since dm(G) < co.

Lemma 3.1 IfG is a graph, then v(G) > 3 if and only if Ng(a)NNg(b) #
@ for each pair of different vertices a,b € V(G).

Proof: Let G be a graph satisfying y¥(G) > 3. Since v(G) > 3, for each
pair of vertices a,b € V(G), a # b, we have Ng(a)U N (b) # V(G). Hence,
for each pair of vertices a, b in G, we observe Nz(a) N Ng(b) # 0.

Now let G be a graph satisfying Na(a) N Ng(b) # 0 for each pair of
vertices a, b € V(G), a # b. Hence, in G we have Ngla]U Ng(b] # V(G) for
each pair of vertices a, b, and thus v(G) > 3. m]

Corollary 3.1 Let G be graph. If ¥(G) > 3, then each edge lies on a
triangle in G.

Corollary 3.2 Let G be graph. If there ezists at least one edge in E(G),
which does not lie on a triangle, then v(G) < 2.

3.1 The domination number in graphs of diameter 2
The following theorem improves Theorem 1.15, if x(G) < &(G).
Theorem 3.2 IfG is a graph of diameter 2, then ¥(G) < k(G).

Proof: Let G be a graph of diameter 2 and let S be a minimum vertex-
cut. Furthermore, let X denote the vertex set of an arbitrary component
of G—Sandlet Y = V(G)\ (X US). Since G # Kn(c), we conclude that
Y #0.
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If each vertex not in S has at least one neighbor in S, then S is a
dominating set of G, and thus y(G) < |S| = «(G).

Now we assume that there exists at least one vertex u € V(G)\ S with
N(u)N S = §. Without loss of generality » € X. Then d(u,v) > 2 for all
v € S and thus d(u,w) > 3 for all w €Y, a contradiction. a

Theorem 3.3 Let G be a graph of diameter 2. If G is not super-), then
v(G) <3

Proof: Because of Theorem 1.21 there exists an induced Ky in G with
vertex set X such that d(z) = 6(G) for each vertex z € X. It is easy to
see that [X, X] is a minimum edge-cut. By X; C X we denote the set of
vertices in X = V(G) \ X with at least one neighbor in X. Furthermore,
let Xo =X\ X,.

If Xo = 0, then G is isomorphic to K| s(c) ® Ks(c), and thus v(G) < 2.

Now let Xo # @ and let v be an arbitrary vertex in Xp. If we assume
that there exists a vertex u € X, such that vu ¢ E(G), then d(v,v') > 3,
where v’ € N(u) N X. Hence uv € E(G) for all v € Xy and » € X,. By
using this fact, it is easy to prove that {u,v, w} is a dominating set for cach
veXo,ueXl and w € X, and thus ¥(G) < 3. o

By using Theorem 1.21, we can formulate the above theorem in the
following way.

Corollary 3.3 Let G be a graph of diameter 2. If G contains an induced
complete graph Ky with all its vertices of degree §(G), then v(G) < 3.

Theorem 3.4 Let G be a graph. If dm(G) = 2, then
7(G) £ |n(G)/4) + 1.

Proof: If 6(G) < |n(G)/4] + 1, then we obtain the desired result by
Theorem 1.15.

Now let 6(G) = |n(G)/4] + 2+ k, where k > 0 and let u be an arbitrary
vertex of minimum degree in V(G). Furthermore, we define R = V(G) —
N[u]. If [IN(v) N N(u)| > k + 3 for each vertex v € R, then

(N(w)\ {a1, a2, ..., ak+2}) = (V(G) — N[u})

for each k+-2 different vertices a1, a3, .., ax+2 € N(u), and thus {u}U(N(u)\
{a1,as,...,aks2}) is a dominating set. Since

{u}U(N@)\ {a1,02,...,ak12})| £ 1+ 8(G) — (k+2) =1+ |n(G)/4],

we obtain our desired result. Now we have to investigate the case that there
exists a vertex v € R, such that |[N(v)NN(u)| < k+2, and thus |[N(v)NR| >
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§(G)—(k+2) = |n(G)/4]. Consequently, v dominates |n(G)/4] +1 vertices
in R, and thus there exist at most |R| — |n(G)/4]| — 1 vertices, which are
not dominated by {u,v}. Since dm(G) = 2, they can be dominated by at
most, [&Lﬂg_ﬂj—_l'l vertices. Hence,

PR R S GTIEY
B "n(C) — 2|n(G)/4] —k —4
= 24 5 ] ,

and thus

24 '42—222-k-4'| <2+ 22-2::—4" <p+1
© < 2+ iLl—g_L"—_" <2+ 2}’—2"_—3 <2+p-1
v g4 [ter2=zpkot] <o [2k=2] <9y p oy

24 |dpt3-Zpckod] <oy [Zkoll <24 p—1

[n(G)/4] +1, ifn(G)=4p

|n(G)/4] +1, ifn(G)=4p+1

[n(G)/4]) +1, ifn(G)=4p+2

[n(G)/4] +1, ifn(G)=4p+3andk>1.

Now we consider the remaining case that n(G) = 4p+ 3 and k = 0,
which implies §(G) = p + 2 and the existence of a vertex v € R, such that
IN@)NN(u)| <2
Case 1: There exists a vertex w € R such that |[N(w) N N(u)| =1.

In this case we see that |[N(w)NR| > p+1 and thus |R—N[w]| < 2p-2 =
2(p —1). Since dm(G) = 2, the vertices in R — N(w] can be dominated by
p — 1 vertices. This leads to v(G) <2+p—1=p+1=|n(G)/4] +1.
Case 2: For each vertex w € R, we have |N(w) N N(u)| > 2.

If there exists at least one edge zy in N(u), then {z, a1, a3, a3, ...,ap} is
a dominating set of G, where a1, a2, a3, ..., ap are p different vertices in N(u)
and y # a;,i=1,2,3...,p+1. It remains the case E(G[N(u)]) = 0. If there
exists a vertex w € N(u) such that |N(w)NR| > p+2, then |V(G)\ (N[u]u
N[w])| € 2p—2. Since dm(G) = 2, the vertices in V(G)\ (N[u]U N[w}) can
be dominated by p — 1 vertices. This leads to ¥(G) £ 2+p—-1=p+1=
[7(G)/4} + 1, our desired result.

Now let |[N(w) N R| = p+ 1 for each vertex w € N(u). Let a be an
arbitrary vertex in N(u) and R’ = R\ N(a). If there exists a vertex z €
N(a)U N (u) with |[N(a)NR’| > 3, or a vertex € R’ with |[N(z)NR'| > 2,
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then V(G) can be dominated by {u,w,z} and further p — 2 vertices, and
thus v(G) <p+1.

In the remaining case we have |[N(z) N R’| < 2 for each vertex z €
N(u) U N(w) and [N(z) N R’| < 1 for each vertex z € R’, and thus
|[R', N(w) U N(u)]| < 2(p+ 1)+ 2(p + 2). Since |[N(z) N R| < 1 for each
vertex z € R’, we obtain [R', N(w)UN(u)]| > (p+1)|R'| = (p+1)(2p-1).
This leads to (p+1)(2p—1) < 2(p+ 1) +2(p+2), a contradiction, if p > 3.
By using the results of Theorem 1.8, we obtain the desired result for p < 2.
Since we have discussed all possible cases, the proof is complete. u]

The following example shows some graphs satisfying v(G) = |n(G)/4]+
1.

Example 3.1 All graphs with n(G) = 8 and G € B (see Figure 1) satisfy
¥(G) = |n(G)/4] + 1. Note that 5(G) = 3 for all these graphs.

For all 4-regular graphs G with dm(G) = 2 and n(G) = 10, we have ¥(G) >
3, and thus v(G) = |n(G)/4] + 1.

The following observation shows that there are a lot of graphs of diam-
eter 2 with v(G) < 6(G) — 1.

Observation 3.1 Let G be a graph of diameter 2.

If k(G) < 6(G), then v(G) < k(G) < §(G) — 1.

If 6(G) > 3 and dm(G) > 3, then ¥v(G) <2 < §(G) — 1.

If ¥(G) 2 4, then 4(G) < §(G) - 1.

If 6(G) 2 |n(G)/4]) + 2, then 4(G) < §(G) ~ 1.

If 5(G) > 4 and G is not super-), then v(G) <3 < §(G) — 1.

Proof: The observations are direct consequences of Theorems 3.2, 3.1,
1.14, 3.4 and 3.3. o

Now we present some further sufficient conditions for v(G) < 6(G) - 1
in graphs G with diameter 2.

Theorem 3.5 Let G be a graph of diameter 2. If there exists at least one
vertez u of minimum degree such that [N(u) N N(v)| > 3 for all v € Na(u),
then 4(G) < 6(G) — 1.

Proof: Firstly, remark that the hypothesis implies §(G) > 3.

Let u be a vertex of minimum degree satisfying the conditions of the
theorem and let X be an arbitrary subset of N(u) of cardinality §(G) — 2.
By our hypothesis, each vertex in V(G)\ N[u] has at least one neighbor in
X and thus X U {u} is a dominating set, which leads to 4(G) < §(G) — 1.
=]
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Corollary 3.4 Let G be a graph of diameter 2. If [N(u) N N(v)| > 3 for
all u € V(G) and v € Na(u), then ¥(G) < 8(G) — 1.

Theorem 3.6 Let G be a graph of diameter 2. If there exists at least
one vertex v of minimum degree such that there exists at least one edge
ab € N(v) with N(z)N N(v) # {a}, for each z € N(a)\ N[v], then v(G) <
(G) -1.

Proof: Let u be a vertex of minimum degree and ab be an edge in the
neighborhood of u satisfying the conditions of the theorem. We define X =
N(u)\ {a}. By dm(G) = 2 and our hypothesis for the vertex a, each vertex
in V(G) \ N[u] has at least one neighbor in X and thus X is a dominating
set, where the vertex e is dominated by b. Thus, ¥(G) < 6(G) — 1.

Corollary 3.5 Let G be a graph of diameter 2. If there exists at least one
vertez u of minimum degree such that |N(u) NN (v)| > 2 for all v € Na(u),
and N(u) is not independent, then v(G) < §(G) - 1.

The cardinality of a maximum independent vertex set in a graph G is
called the independence number of G and is denoted by a(G).

Corollary 3.6 Let G be a graph of diameter 2. If [IN(u) N N(v)| > 2 for
all v € V(G) and u € N2(v) and a(G) < 8(G) — 1, then v(G) < §(G) — 1.

Corollary 3.7 Let G be a connected graph of diameter 2 and 8(G) > 3. If
G is claw-free and paw-free, then v(G) < §(G) — 1.

The next observation describes some properties of graphs G of diameter
2 satisfying v(G) = §(G).

Observation 3.2 Let G be a graph of diameter 2.
If §(G) > 4 and ¥(G) = 6(G), then

o G 13 super-),

e dm(G) < 2,
If v(G) = 6(G), then
e x(G) = §(G)

o §(C) < |n(C)/4) +1

o for each vertex u of minimum degree, there ezist at least one vertez v

where v € No(u) such that [N(u) N N(v)| < 2.
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If ¥(G) = 6(G) and there erists a vertez u of minimum degree such that
IN(@)NN(v)| > 2 for allu,v € V(G),v € Np(u), then N(u) is independent.

If ¥(G) = 6(G) and for each vertez u of minimum degree there erists
at least one vertez v € Na(u) such that [N(u) N N(v)| = 1, and N(u) is
not independent, then there exist vertices a’,b’ € Na(u) such that |[N(a’) N
N(u)| = {a} and |[N(b') N N(u)| = {b}, for each vertices a,b € N(u) where
ab € E(G).

Problem 3.1 Characterize the graphs G of diameter 2 with v(G) = §(G).

Theorem 2.1 is only shown for graphs with minimum degree greater or
equal 7. With the help of Theorem 3.4 and the above observation, we can
show that: For all graphs of diameter 2, except the graphs in B (see Figure
1), we have ¥(G) < |[n(G)/3].

O < 9 ©
NSRS AR

Figure 1: Graphs in family B

Observation 3.3 Let G be a graph in B with 8 vertices. For each graph
G’ = G + e, where e = ab, a,b € V(G),ab ¢ E(G), we have v(G') = 2 or
G' eB.

Proof: If we add an edge, such that there exists a vertex v of degree 5 in G’,
then v dominates 6 vertices and the remaining 2 vertices can be dominated

by one vertex, since dm(G) = 2. Hence y(G’) = 2. In the remaining case,
one can check the result by trying. o

- Theorem 3.7 Let G be a graph with dm(G) = 2 and n(G) > 3. If G is
not isomorhic to a graph of the family B, then

7(G) < |n(G)/3].

Proof: If n(G) > 9 or 6 < n(G) < 7, then |n(G)/4} + 1 < |n(G)/3] and
thus, by Theorem 3.4, we have v(G) < |n(G)/3].
1: Let n(G) = 3.
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It is easy to prove that y(G) = 1, and thus 4(G) < |n(G)/3].
2: Let n(G) =4.

If G ¢ B, then it is easy to prove that 4(G) = 1, our desired result.

3: Let n(G) =5.
3.1: Let n(G) =5,6(G) =1 or n(G) = 5,A(G) =4.

If 6(G) = 1, then v(G) = 1 = |n(G)/3]. If A(G) = 4, then one vertex
of maximum degree dominates all vertices in G and thus y(G) = 1 =
[n(G)/3).

3.2: Let n(G) = 5,8(G) = 2 and A(G) < 3. For all the graphs G satisfying
the condition of this case we observe that G € B.
4: Let n(G) = 8.
4.1: Let n(G) =8 and §(G) < 2.
Theorem 1.15 leads directly to the desired result.
4.2: Let n(G) =8 and 6(G) = 3.

In the following cases, let u be a vertex of minimum degree such that
| E(G[N(w)])| is maximal. Furthermore, let N(u) = {z,y,2}, R = V(G) \
N{u] and R = {a,b,c,d}.

4.2.1: Let [N(u)N N(v)| > 2 for each v € R.

If N(u) is not independent, then we are done by using Corollary 3.5.
Now let N(u) be independent. Since |N(u) N N(v)| > 2 for each v € R, we
have |[N(u), R]| > 8. Hence, there exists a vertex in N(u) with at least 3
neighbors in R, say a,b,c € N(z). If zd € E(G), then {u, z} is a dominating
set, and thus y(G) = 2.

If zd ¢ E(G), then dy,dz € E(G), and thus {d,z} is a dominating set,
which implies y(G) = 2.

4.2.2: There exists a vertex w € R, such that |[N(u) N N(w)| = 1.
4.2.2.1: Let |E(G[N(u)])| = 2.

Let without loss of generality zy,yz € E(G). If we assume that there
exists a vertex v € N(u) such that for each v’ € N(v) N R then we obtain
|N(v")NN ()| > 2. Hence N(u)\{v} is a dominating set and thus y(G) = 2.

Now we assume that for each vertex v € N(u), there exists a vertex
v’ € N(v)NR such that N(v')NN(u) = {v} and, without loss of generality,
N(a) N N(u) = {z}, N(b) " N(u) = {y}, N() N N(u) = {2}.

If ab ¢ E(G), then ac,ad € E(G), and hence {a,y} is a dominating
set of V(G). Analogously, if ac ¢ E(G), then ab,ad € E(G), and hence
{a, 2} is a dominating set of V(G). It remains the case that ab, ac € E(G).
Clearly, if ad € E(G), then we are done. Now let ad ¢ E(G).

We consider the cases cd ¢ E(G) or cd € E(G). If cd ¢ E(G), then cb €
E(G), because N(c) N N(u) = {z} and d(c) > 3. Since d(d) > 3, we
observe that d has at least one neighbor in N(u), say v. Thus there exists
a dominating set {v, v}, where v’ € {a,b,c}, and thus y(G) < 2.

If cd € E(G), then {c,u} is a dominating set and thus y(G) < 2.

4.2.2.2: Let |[E(G[N(w)))|=1.
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Let, without loss of generality, zy € E(G). By Theorem 3.6, we know
that there must exist two vertices v,v' € R, v # v’ such that N(v)NN(u) =
{z} and N(v') N N(u) = {y}. Otherwise, V(G) can be dominated by two
vertices in N(u), our desired result.

Without loss of generality, N(a)NN(u) = {z}, N(b)NN(u) = {y}. Then,
since d(z) > 3, we observe zc, zd € E(G). If ab ¢ E(G), then ac,ad € E(G)
and bc, bd € E(G). This graph is isomorphic to a graph in B, a contradiction.
If we add a further edge, then we obtain by Observation 3.3 a graph with
domination number 2 or a graph in B.

Now let ab € E(G). Then, without loss of generality, ac € E(G). If
cd € E(G), then {c,y} is a dominating set and thus y(G) < 2.cc

If cd ¢ E(G) and ad € E(G), then a — R, and thus we are done. If
cd ¢ E(G) and ad ¢ E(G), then we have to discuss the cases dz € E(G)
or dy € E(G). If dy € E(G), then {y,c} is a dominating set, and thus
G) <2

If dz € E(G),dy ¢ E(G), then bd € E(G), since d(d) > 3. If bc € E(G),
then {w, b} is a dominating set. If bc ¢ E(G), then cz € E(G) or cy € E(G),
since d(c) > 3. In the case cz € E(G), we see that d(z) = 5 and thus V(G)
can be dominated by z and a further vertex, since dm(G) = 2. lf cz ¢ E(G),
but cy € E(G), then G € B, a contradiction.
4.2.2.3: Let E(G[N(u)]) = 0.

Let, without loss of generality, N(a)NN(u) = {z} and yb, yc, zc € E(G).
4.2.2.3.1: Let 2d € E(G).
4.2.2.3.1.1: Let ac € E(G).

Since d(a) > 3, we have ab € E(G) or ad € E(G), say ab € E(G).
Furthermore, d(z) > 3 implies zb € E(G) or zc € E(G) or zd € E(G).

If ad € E(G), then a — R, and thus we are done. Now let ad ¢ E(G)
and thus d(a) = 3. By our choice of the vertex u, we have E(G[N(a)]) = 0,
and thus the cases zb € E(G), zc € E(G) or bc € E(G) cannot occur.

Hence zd € E(G). Since d(d) > 3, we have to discuss the three cases
db € E(G) or dc € E(G) or dy € E(G). By our choice of u, the assumption
dc € E(G) implies db € E(G) or dy € E(G). Hence, it is sufficient to
consider the cases db € E(G) or dy € E(G). Firstly, let db € E(G). Then
G € B, a contradiction.

Secondly, let db ¢ E(G), but dy € E(G). Since d(b) > 3, we have
bz € E(G). Again, we deduce that G € B, a contradiction.
4.2.2.3.1.2: Let ac ¢ E(G).

In this case ab,ad € E(G) and zb,zd,bd ¢ E(G). Furthermore, since
d(z) > 3, we conclude that zc € E(G). Let us consider the cases dy € E(G)
or dy ¢ E(G).

If dy ¢ E(G), then dc € E(G), because of d(d) > 3. Since dz, dy, db ¢
E(G), we deduce that d(d) = 3, a contradiction to the choice of u.

If dy € E(G), we have to consider the cases bz € E(G) or bz ¢ E(G).
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If bz € E(G), then G is isomorph to a graph in B, a contradiction.

If bz ¢ E(G), then bc € E(G), because of d(b) > 3. Since bz, bd ¢ E(G),
we obtain d(b) = 3, but G[N(b)] # @, a contradiction.
4.2.2.3.2: Let 2d ¢ E(G).

In this case, we observe that zb € E(G).
4.2.2.3.2.1: Let ad € E(G).

If d(a) = 4, then @ — R, and thus we are done. Now let d(a) = 3 and
thus we have ab € E(G) or ac € E(G), say ab € E(G) and ac ¢ E(G).
By our choice of u, we observe zb, zd, bd ¢ E(G). Since d(d) > 3, we have
dy,dc € E(G) and d(d) = 3, a contradiction to the choice of u.
4.2.2.3.2.2: Let ad ¢ E(G).

Again, we assume that d(a) = 3, because otherwise ¥(G) < 2. Then
ab, ac € E(G), zb,zc,bc ¢ E(G) and since d(z) > 3, we deduce zd € E(G).
Now we have to consider the cases dy € E(G) or dy ¢ E(G). If dy € E(G),
then db,dc € E(G), since d(d) > 3 and the choice of u. Hence G € B, a
contradiction.

If dy ¢ E(G), then db,dc € E(G), and thus G € B, a contradiction.
4.3: Let n(G) = 8 and §(G) > 4.

If 8(G) > 4, then we are done by Theorem 1.8.

Since we have discussed all possible cases, the proof is complete.

O
Corollary 3.8 Let G be a graph of diameter 2. If n(G) > 9, then ¥(G) <
[»(G)/3].

Corollary 3.9 The two 3-regular graphs in B are the only 3-regular graphs
with 8 vertices and diameter 2.

Proof: We assume that there exists a 3-regular graph G, such that G ¢ B,
n(G) = 8 and dm(G) = 2. Since G ¢ B, we obtain v(G) = 2. Let {a, b} be
a y-set. By using the fact d(a) = d(b) = 3 and ¥(G) = 2, we observe that a
and b are not adjacent and do not have a common neighbor, a contradiction
to dm(G) = 2. O

3.2 Domination in graphs of diameter 3
Theorem 3.8 Let G be a graph of diameter 3.
i) If \(G) < 8(G), then v(G) < 2X\(G) < 25(G).

1) If M(G) = §(G) and there exists an induced complete subgraph H
of order §(G) in G such that d(z) = §(G) for all x € V(H), then
¥(G) < §(G) + A(G) — 1 < 2A(G) - 1.

11) If M(G) = §(G) and G is not super-\ and there does not exist induced
complete subgraph H of order 8(G) in G such that d(z) = §(G) for
all x € V(H), then v(G) < 26(G).
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Proof: i) Let G be a graph satisfying A(G) < §(G) and let S be a mini-
mum edge-cut. Furthermore, let X be a minimum vertex sets of the com-
ponents from G — S. Since A\(G) < §(G) we observe | X| > 2. By degree-
considerations for the vertices in X, we obtain |X| > §(G) + 1. We denote
by X; € X and X; C X the sets of vertices which are incident to at least
one edge in [X, X] Furthermore, let Xo = X \ X; and Xo = X \ X;. It
follows that |X,],|X;] < A(G) and |X], |Xo| > 1. Since dm(G) = 3, each
vertex in Xo has at least one neighbor in X; and each vertex in X, has at
least. one neighbor in X;. Hence, D = X; U X, is a dominating set with
| D] < 2X(G) and thus v(G) < 2X(G).

ii) Now let G be a graph satisfying the condition in i) and let X = V(H)
and X = V(G)\ X. Then, |[X, X]| is a minimum edge-cut such that | X| =
| X1| = 6(G), where X, X, is defined as above, and thus the graph G is not
super-. Let u be an arbitrary vertex in X, and let ' € N(u)NX. Now we
will show that D = N(u)U (X \ {u}) is a dominating set. Since G[X] is
isomorphic to K;(¢c), we observe that v € N{u'] for each v € X. If we assume
that there exists a vertex v € X such that v ¢ N[D], then d(u’,v) > 4, a
contradiction. Because of | X \ {u}| < 6(G) — 1 and |[N(u) \ X;| < A(G),
it follows the desired result.

iii) Let G be a graph satisfying the conditions in iii), and let S be
a minimum edge-cut. Furthermore, let X, X, Xo, X1, X1, Xo be defined
as in the proof of i). Clearly, |X| < §(G). The hypotheses implies that
|X| > 6(G) + 1, which leads to |X| > 6(G) + 1, and thus Xp, Xo # 0. As
in the proof of i), we can show that X; U X; is a dominating set and thus
Y(G) < |X1 U Xy < 26(G). o

Corollary 3.10 Let G be a graph of diameter 3.
If A(G) > 6(G) and G is not super-A, then v(G) < 2A —1.
If A(G) = 6(G) and G is not super-A, then v(G) < 2.

Lemma 3.2 Let G be a graph of diameter 8. For each vertexz v, the vertez
sets Na(v) U {v} and N;(v) U N3(v) are dominating sets.

Proof: Firstly, we prove that N[Nz(v)U {v}] = V(G). Since the vertex set
Ni(v) = N(v) is dominated by v, and the vertex set N3(v) is dominated by
Na(v), the vertex set Nao(v) U {v} is a dominating set. Now we prove that
Ni(v) U N3(v) is a dominating set. Since the vertex v and the vertex set
N(v) are dominated by N,(v), the vertex set N;(v)UN3(v) is a dominating
set. a

By using Lemma 3.2, the two following corollaries are obviously.
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Corollary 3.11 If G is a connected graph of diameter 3, then
(@) <min{ min, (sl + (o)), min, (@) - INa()] — de)} ).

Corollary 3.12 Let G be a connected graph of diameter 3. If there erists
a vertez v in V(G) such that N3(v) =9, then v(G) < d(v).
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