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Abstract

A strong k-edge-coloring of a graph G is an assignment of k colors
to the edges of G in such a way that any two edges meeting at a
common vertex, or being adjacent to the same edge of G, are assigned
different colors. The strong chromatic index of G is the smallest
number k for which G has a strong k-edge-coloring. A Halin graph
is a planar graph consisting of a tree with no vertex of degree two
and a cycle connecting the leaves of the tree. A caterpillar is a tree
such that the removal of the leaves becomes a path. In this paper,
we show that the strong chromatic index of cubic Halin graph is at
most 9. That is, every cubic Halin graph is edge-decomposable into
at most 9 induced matchings. Also we study the strong chromatic
index of a cubic Halin graph whose characteristic tree is a caterpillar.
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1 Introduction and notations

All graphs in this paper are finite and simple. All undefined symbols
and concepts may be looked up from [2]

For k being a positive integer, let [k] = {1,2,...,k}. A strong k-edge-
coloring of a graph G = (V, E) is a mapping ¢ : E — [k] in such a way
that any two edges meeting at a common vertex, or being adjacent to the
same edge of G, are assigned different values (colors). The strong chromatic
indez of G, denoted by sx’(G), is the smallest number k for which G has a
strong k-edge-coloring. A matching in a graph G is induced if no two edges
in the matching are joined by an edge in G. So sx'(G) < k if and only if
G is edge-decomposable into k induced matchings.

A Halin graph G = T UC is a plane graph that consists of a plane
embedding of a tree T and a cycle C' connecting the leaves (vertices of
degree 1) of the tree such that C is the boundary of the exterior face and
the degree of each interior vertex (also called node) of T is at least three.
The tree T and the cycle C are called the characteristic tree and the adjoint
cycle of G, respectively.
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A tree is called a (3,1)-tree if the degree of each node is 3. A (3,1)-
caterpillar T is a (3, 1)-tree if the removal of the leaves (together with their
incident edges) becomes a path which is called the spine of T'. In this paper,
“caterpillar” means (3, 1)-caterpillar.

Suppose G is a Halin graph of order 2h + 2 with a caterpillar T as its
characteristic tree, » > 1. We name the vertices along the spine Pj by 1,
2, ..., h. The vertices adjacent with 1 are named by 0 and 1’. The vertices
adjacent with h are named by A + 1 and A’. Other leaf adjacent with 4
is named by i/, 2 < i < h — 1. Note that 0,1',...,h',h + 1 are vertices
lying on the adjoint cycle Cp.2. We shall use this vertex labeling through
this paper. Let G, be the set of all cubic Halin graphs whose characteristic
trees are caterpillars of order 2h + 2. Figure 1.1 shows all graphs in G,.
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Figure 1.1. All two graphs in G4: (a) Ne4, (b) another graph in Gq.

Let G € G,. If {0,1'}, {V,2}, ..., {(h = 1),R'}, {W,h + 1}, and
{h+1,0} are edges of the adjoint cycle of G (i.e., vertices 0,1'--- ,h',h+1
in Cp42 are in order), then G is called a necklace. It is denoted by Ney
(see Figure 1.2). It is easy to see that, G, = {Nep} for A =1,2,3.

h+1

v 2 3 (h=2) (h—1) W

Figure 1.2. Necklace Nep.

In this paper, we investigate the strong chromatic index of a cubic Halin
graph whose characteristic tree is a caterpillar.
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2 Conjectures and Known Results

We use A to denote the maximum degree of a graph G. J. L. Fouquet
and J. L. Jolivet (7, 8] first studied the strong edge-coloring of cubic pla-
nar graphs. In 1988, P. Erdés and J. Nesetfil [4, 5] posed the following
conjecture.

Conjecture 1 [4, 5]: For any simple graph G,

5 A2 if A is even;
’ ]
SX(G)S{ §A2—%A+% if A is odd.

Faudree, Gyérfds, Schelp and Tuza [6] asked in 1990 whether sx'(G) < 9
if G is cubic and planar. The upper bound is attained by the complement
of Cs. So if the upper bound is valid, it would be the best possible. The
problem is still open. The following theorem can be found in [6, 8].

Theorem 2.1 [6, 8] sx'(G) <24(4A -1).

On the other hand, a trivial upper bound for the strong chromatic index
of G is given by sx'(G) < 2A%2—2A+1 (see [9]). This inequality only shows
that the conjecture of Erdds and NeSetfil is true for A < 2.

If A = 3, then sx’'(G) < 10 by Conjecture 1. This result was proved
by L. Andersen (1], and independently, Hordk, Qing and Trotter [9]. For
A = 4, by Conjecture 1 that sx’(G) < 20. Recently, Cranston [3] obtained
that sx'(G) < 21 for A = 4.

In [6], an obvious lower bound for the strong chromatic index of G is
given by the inequality sx'(G) > max {deg(u) + deg(v) — 1}. The equality

holds for trees.

Theorem 2.2 [6] If G is a tree, then sx'(G) = max {deg(u) + deg(v) — 1}.

3 Main Results

In the following, we consider the strong chromatic index of a cubic Halin
graph whose characteristic tree is a caterpillar. Also we find sharp bounds
for the strong chromatic index of cubic Halin graphs.

It is easy to check that sx'(Ne;) = 6 (see Figure 3.2). It is straightfor-
ward to see that all edges of Ne; must be assigned distinct colors. Hence,
sx'(Nez) = 9 (see Figure 3.3). Also we shall show in Theorem 3.3 that

213



sx'(Ne3) = 6 (see Figure 3.1). It suffices to consider the strong chromatic
index graphs in Gy, for h > 4.

Figure 3.1. Nes. Figure 3.2. Ne;. Figure 3.3. Nes.

Theorem 3.1 For h > 4 and G € Gy, we have 6 < sx'(G) < 8.

Proof: Suppose G € G,. It is easy to see N
that there are at least two triangles con-
tained in G when h > 1 (readers may also

find the proof from Theorem 2.2 of [10]). 1
So G contains a subgraph isomorphic to the
graph W (see Figure 3.4). In fact, G con- O A O o)

tains only two such subgraphs. It is easy Us U2 U3 Vs
to see that sx'(W) = 6. Hence sx'(G) > 6. Figure 3.4. The graph W.
Now we are going to give a strong 8-
edge-coloring of G. For convenience, we let
0’ =0 and (h + 1) = A + 1. Consider the subgraph W that contains the
triangle 011’ first. Let the third vertex adjacent with 0 be r’ (r # 1), and
the third vertex adjacent with h+1bem' (m #h). Ifv; =1, v20 =0
and v3 = 1’, then vy = 2 and is adjacent with either v5 or vg. If vg = 2/,
then vs = 7/ (r # 2). If vs = 2/, then rename v3 as 0 and v as 1’ such
that vg = ' (r # 2). By a similar argument, the other subgraph which is
isomorphic to W can be named by v; =h,v2 =h+1,v3=h,v4=h—-1,
vs =m' (m # h—1) and vg = (h—1)". So G is described as either Figure 3.5
or Figure 3.6. If G is the graph in Figure 3.5, then either 7 = m = 0 (or
h+1) or 3 <r <m < h—2. For the latter case, it implies that h > 5. If
G is the graph in Figure 3.6, then 3<r<h—1and 2 <m < h—2. First
we are going to color the edges of

& = G={{h=1,h}, {n, h+1}, {h=1, (h=1)'}, (b, K}, {(A=1Y, '}, {H', h+1} }
by using the color set [7]. First we use 6 colors to color the edges {0,1},

{1,1'}, {0,1'}, {1,2}, {1’,2'}, {0,r'} arbitrarily. By the construction of G,
G contains a subgraph H (Figure 3.7) for0<j<i<k<h+1.
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Figure 3.5.
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Figure 3.6.
For 2 < i < h — 2, suppose {i — 1,i} and i-1 i i+l

{3',#'} of H have been colored. We color the
remaining edges of H in such a way that {i,i'}
is the first edge to be colored, follow by the
edges {i,i+1} and then {¢/, k'}. Then at most i
six colors are forbidden for each of the edges  Figure 3.7. The graph H.
{i,#'}, {i,i + 1} and {#/,k¥'}. So we have a
strong 7-edge-coloring for G.

To color the remaining edges of G, we look at three cases. We consider
G as in Figure 3.5 first. Let ¢ be the strong edge-coloring of G defined
above.

Case 1: If m = h — 2 (Figure 3.8), then we color the edges in the following
order: {h—1,(h—1)}, {h—1,h}, {(h—1Y,h'}, {h,h+1}, {h, R},
{F';h + 1}. Then at most six colors are forbidden for both {h —
1,(h — 1)} and {h — 1, k}; at most seven colors are forbidden for
{(h—1),n’}, {h,h+1} and {h,h’}. Finally, assign c({h—2,h—1})
to {h',h + 1}. Hence, all edges of G require at most eight colors.
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h+1

1 o (h—-1Y &'
Figure 3.8.

Case 2: Suppose 0 < m < h —3 (Figure 3.9). By the above assignment we
have used 1,2,...,7 to color the edges of G. Let I be the vertex
adjacent with m’, 0 < I < m — 1. Without loss of generality,
we may assume c({h — 2,h —1}) = 1, c({h - 2,(h - 2)'}) = 2,
c({(h-2Y,(h—1)'}) = 3, c({p', (h—2)'}) = 4, where2 < p < h-3,
c({h—3,h —2}) = 5. Let ¢({m',h + 1}) =z, c({!',m'}) = y and
c({m,m'}) = z, where z,y,2 € [7].

' ?
...... A
1 2 3 m~-1 !z h
o O—O—0O—0O -+ O0—0O- C h+1
m
1 2/
Figure 3.9

Case 2-1: Suppose z = 7. Then y, z € [6]. Define
c({h=1,(h=1)'}) = 7, c({(h—1)', h'}) = 5, c({h, h'}) =
2and c({h—1,h})=4.

(a) If 1 ¢ {y, 2z}, then assign 2 to {h',h + 1} and 8 to
{h,h +1}.

(b) If 1 € {y, 2}, then assign 8 to {k',h + 1} and either
3 or 6 to {h,h + 1} depending on the values of y
and z.

Case 2-2: Suppose z # 7.

(a) If 1 ¢ {y,z2}, then define ¢({h — 1,(h — 1)’'}) = 6,
c{(h - 1),h'}) = 7, c({h,h +1}) = 1 and
¢({h — 1,h}) = 8. At most 7 colors are forbidden
for {h,h + 1}. After coloring {h,h + 1}, at most 6
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colors are forbidden for {h,h'}. So we can color G
by 8 colors.

(b) If 1 € {y, z}, then recolor {h — 1,k — 2} by 8. De-
fine c¢({h - 1,(h — 1)'}) = 6, c({(h — 1)',A'}) = 1,
c({W,h+1}) = 8and ¢({h — 1,h}) = 7. Now the
edge {h, h’} may be colored by 2, 4 or 5 depending
on the values of z,y, z (note that 1 € {y, z}). Simi-
larly the edge {h,h + 1} may be colored by at least
one color from {2, 3,4, 5}.

So, at most eight colors are used to color all the edges of G in this
case.

Case 3: If m = 0, then G = Ney,. To finish the coloring, follow Case 2 and
replace {I',m'}, {m,m'} and p’ by {0,1'}, {0,1} and O respectively
in Case 2. Actually, we can find the strong chromatic index of Ney,.
Please see Theorem 3.3.

Similarly, we have a strong 8-edge-coloring in both Cases 1 and 2 for G

in Figure 3.6.
Consequently, we find a strong 8-edge-coloring for G. Therefore, 6 <
sx'(G) £ 8. O

In fact, Theorem 3.1 gives a strong edge-coloring of necklace. In the
following, we will provide another coloring for necklace and determine the
strong chromatic index of it.

Lemma 3.2 Suppose G is a graph with sx'(G) > 6. Let two adjacent
vertices A and B of G be of degree 3. Let X,Y and Z,W be the other two
neighbors of A and B, respectively (X,Y, Z,W are not necessarily distinct).
Let G be a graph obtained from G by replacing the edge-induced subgraph
G[{AB}] by a ladder graph of length 4 (see Figure 8.10). Then sx'(G) <
sx'(G).

X 546 Y X 5 A1g Aag Az, Ay Asg Y

O ............. O O. ............. O
1 _— 1 f2 1 |2 |1

Figure 3.10.

Proof: Figure 3.10 shows that sx'(G) does not exceed sx'(G). 0
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Theorem 3.3 Suppose h > 1.

6 if his odd,
sx'(Nep) = g :; Z E i and is even,
9 if h=2.

Proof: For h being odd, it suffices to give a strong 6-edge-coloring for
Ney. It is shown in Figures 3.2 and 3.1 that sx'(Nep) = 6 for h = 1 and
3, respectively. Applying Lemma 3.2 repeatedly we get sx’(Nep) = 6 for
all odd positive integers h.

For h being even, we have seen that
sx'(Ne2) = 9. So we may assume h > 4.
The edges {1,1'}, {h + 1,0}, {0,1}, {1,2},

{0,1’} and {1’,2’} must be colored in dif- . ,
ferent colors. Without loss of generality, we Figure 3.11. The graph H'.
may assume they are colored by 1, 2, 3, 4,
5 and 6, respectively. Since the edges of a subgraph H’ (see Figure 3.11)
of Ney require all six colors, the edges {2,3}, {2/,3'} and {2,2'} must re-
ceive colors 5, 3 and 2 respectively. Continuing in this fashion, we see that
the edge {j, 7'}, where 1 < j < h—1is 1 or 2, according to whether j is
odd or even, respectively. In particular {h — 1,(h — 1)’} is colored by 1.
We can also see that {h — 1,h} and {(h — 1), h’} are either colored by 4
and 6 respectively, or the other way round. So the remaining three edges
{h,h+1}, {#',h+1} and {h,h'} cannot be properly colored by six colors.
Thus, sx'(Ney) > 7 for h > 4.

To color Ney, we first note that it has 15 edges. It is also straightforward
to verify that no color may be used for three times. Therefore sx’(Nes) > 8.
A strong 8-edge-coloring of Ne, is given in Figure 1.1.

7

Figure 3.13. A strong 7-edge-coloring for Nes.
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To prove sx'(Nep) = 7 for even h > 6, it suffices to find a 7-edge-
coloring for Nep. It is shown in Figures 3.12 and 3.13 that sx'(Nep) =7
for h = 6 and 8, respectively. Applying Lemma 3.2 repeatedly we get
sx'(Nep) =7 for all even positive integers h which are greater than 4. [0

We illustrate a strong 6-edge-coloring of Nes in Figure 3.14.

Figure 3.14. A strong 6-edge-coloring for Nes.

We are now going to find general bounds for the strong chromatic index
of cubic Halin graphs. We have mentioned that any cubic Halin graphs G
contains at least two triangles. It is easy to see that G € G, for some h > 2
if and only if G contains only two triangles.

Theorem 3.4 If G is a cubic Halin graph, then 6 < sx'(G) < 9 and the
bounds are sharp.

Proof: As mentioned before, every cubic
Halin graph G contains a subgraph isomor-
phic to the subgraph W (Figure 3.4). Since
the edges of W must be assigned distinct col-
ors, we have sx'(G) > sx'(W) =6

Let G = TUC, where T is a (3, 1)-tree and
C = C,,. Let vy,vs,...,v, be vertices lying in
C, clockwisely. Let e; be edge in T which is
incident with v;, 1 <i < n.

If G contains two triangles sharing an edge,
then G = K4. Hence sx/(G) = 6. If G con-
tains only two triangles, G € G, for some
h > 2. By Theorem 3.1 sx/(G) < 9. Thus
from now on, we assume that G contains at least three triangles. Then
n 2> 6. When n = 6, the characteristic tree of G is a complete cubic tree
of height 2 (Figure 3.15). Then sx'(G) < 7 (actually sx'(G) =7, see [11]).
So we assume n > 7. The number of leaves is two more than the number
of nodes in a (3,1)-tree T. So |V(T')| > 12 and even. By Theorem 2.2
sx'(T) = 5. Let ¢y be a strong 5-edge-coloring for T. We shall extend ¢
to be a strong 9-edge-coloring of G.

Figure 3.15.
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Since n > 7, either there is an edge e;, for some ¢, that is not an edge
of any triangle or G contains at least four triangles. For the first case,
after renumbering the vertices in C,, we may assume ¢t = n and {v1,v2}
is an edge of a triangle. We shall use notation A, to denote the triangle
containing the edge {vs,vs4+1}, 1 <s<n—-1.

Suppose A, is a triangle in G. If 1 < s < n—2, then by exchanging the
colors of e, and e, if necessary, we may assume co(e,—1) # co(es) (where
€0 = e,). Note that, co(en—2) may equal to co(en—1) if €qn—1 and e, are
edges of the triangle A,_;.

First we perform the change colors procedure below (we shall call this
procedure CCP):

Starting from j=2toj=n-—1,
if co(e;) = co(ej+1), then we redefine co(e;+1) by 6.

Note that after performing CCP, no two consecutive edges are recolored.
Let the new coloring be denoted by c. Then c is still a proper coloring of T'.
We can see that the edges of triangles in T are not colored by 6 except en—1
may be. Without loss of generality, we may assume c(e1) = 1, c(e2) = 2.
Also we may assume A, A; and A; are three consecutive triangles along
the adjoint cycle Cp, 3<4,i+2<j<n—2.

Case 1: Suppose n = 0 (mod 3). We color the edges of C, starting at
{v1,v2} clockwisely by the colors 7, 8, 9 cyclically.

Case 2: Suppose n =1 (mod 3). We have the following cases:

Case 2-1: Suppose c(e3) # 6and c(e,) # 6. Then define c({v1,v2})
= 6 and color the remaining edges of C, starting at
{v2,v3} clockwisely by the colors 7, 8, 9 cyclically.

Case 2-2: Suppose c(e3) # 6 and c(e,,) = 6. It means that c(e3) #
2. We redefine c(ez) = 6 and define ¢({v1,v2}) = 2. And
then color the remaining edges of C, starting at {v2,v3}
clockwisely by the colors 7, 8, 9 cyclically.

Case 2-3: Suppose c(e3) = 6 and c(en) # 6. We redefine c(e1) = 6
and define c({v1,v2}) = 1. The rest is same as Case 2-2.

Case 2-4: Suppose c(es) = 6 and c(e;) = 6. Consider A;. If
c(e;—1) # 6, then the case can be referred to Case 2-1 or
2-3. If c(e;—1) = 6, then change back the original color
assigned to ey for 3 < k < i—1 first. And then exchange
the colors of e; and ez. Perform CCP for edges from e3
to e;. Then the case can be referred to Case 2-2.
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Case 3: Suppose n = 2 (mod 3). From Case 2 we can see that the recol-
oring procedure only influences the edge {v;,v2} and edges e; for
1 £ k £ i. Thus we apply the recoloring procedure described in
Case 2 from A; to A; and from A; to A; (anti-clockwisely). The
new coloring is still denoted by c.

After that we have colored the {v;,v2}, {v;,vj+1} and edges ex
for 1 < k < j+1 by colors in [6]. But the new colors assigned to
e; and e;4; may be the same and equal to 6. If it happens, then
it means that the previous colors assigned to e;—; and ¢; are the
same, also the previous colors assigned to e;;; and e;.o are the
same. Since e; and e;+; are adjacent, the previous colors assigned
to e; and e;y; are different. Recolor e; by c¢(e;12) and e;4; by
c(ei-1)-

Up to now, there are n — 2 edges in C,, that have not been colored.
Color those edges starting at any edge clockwisely by the colors
7,8, 9 cyclically.

So we get a strong 9-edge-coloring for G. The proof is complete. O

Remark: From Theorem 3.4 we get that every cubic Halin graph is edge-
decomposable into at most 9 induced matchings.

6 ~ 4
3
2 4 2 4,\115,\
6
N3 3 Is 413 Z
N/ NS
5 5 2 1

Figure 3.16. Strong 6-edge-colorings of the other two graphs in Gs

There are only two (non-isomorphic) graphs contained in G4. We showed
in Figure 1.1 that sx'(G) = 7, where G is described in Figure 1.1(b). Also
there are only three graphs contained in Gs. We show in Figures 3.14
and 3.16 that sx'(G) = 6 for G € Gs. It can be checked that Gg has 6
members. The strong chromatic indices of 5 graphs in G are 7 and the
strong chromatic index of the remaining one is 6. We wonder whether the
graphs in G, are strong 7-edge-colorable for k > 5. So we conclude by
presenting the following conjectures:

Conjecture 2: For h > 5, sx'(G) < 7 for any G € Gy,.

Conjecture 3: For h>5 and h odd, sx'(G) =6 for any G € Gj.
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Conjecture 4: Suppose G = T U C is a Halin graph. Then sx'(G) <
sx'(T) + 4.
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