Minimum coverings of the complete graph with 5-cycles

Salvatore Milici *
Dipartimento di Matematica e Informatica
Università di Catania
viale A. Doria, 6
95125 Catania, Italia
milici@dmi.unict.it

Abstract

Let K_v be the complete graph on v vertices, and C_5 be a cycle of length five. A simple minimum $(v, C_5, 1)$ -covering, is a pair (V, C) where $V = V(K_v)$ and C is a family of edge-disjoint 5-cycles of minimum cardinality which partition $E(K_v) \cup E$, for some $E \subset E(K_v)$. The collection of edges E is called the excess. In this paper we determine the necessary and sufficient conditions for the existence of a simple minimum $(v, C_5, 1)$ -covering. More precisely, for each $v \geq 6$, we prove that there is a simple minimum $(v, C_5, 1)$ -covering having all possible excesses.

1 Introduction

A G-design of order v or a G-decomposition of K_v is a pair (V, B), where V is a v-set and B an edge-disjoint decomposition of K_v into copies of a simple graph G. The existence of a G-design, with $V(G) \leq 5$, has been studied in the literature [3, 4, 5].

A simple covering of K_v with copies of G, denoted by (v, G, 1)-covering, is an ordered triple (V, C, E), where $V = V(K_v)$, $E \subset E(K_v)$ is called the padding or excess and G is a collection of edge-disjoint copies of G which partition $E(K_v) \cup E$. The number v is called the order of the covering. If E is as small as possible, then (V, C, E) is called a simple minimum covering. In the case that a G-design exists, the excess is empty.

A packing of K_v with copies of G, denoted by (v, G, 1)-packing, is an ordered triple (V, B, L), where $V = V(K_v)$, B is a collection of edge-disjoint copies of G, and L is the set of edges not belonging to a block of B. The number v is called the *order* of the packing and the set of unused edges L is called the *leave*. If B is as large as possible, then (V, B, L) is called a maximum packing.

^{*}Supported by INDAM (GNSAGA), Italy.

Maximum packings of K_v with copies of G have been considered in [25] for $G = K_3$; in [8] for $G = K_4$; in [22, 27, 28] for $G = K_5$; in [13] for $G = K_4 - e$. Various results on maximum packings of K_v with cycles can be found in [9, 10, 12, 14, 15, 24, 26] and with other graphs in [1, 6, 18, 23, 29].

Results concerning minimum coverings of K_{ν} with copies of G are given in [11] for $G = K_3$; in [20, 21] for $G = K_4$; in [17] for $G = K_4 - e$; in [12, 16] for $G = C_4$ and C_6 ; in [3, 4, 5] for the trees of order seven; in [23] for all graphs of four vertices or less and in [19] for graphs having at least one vertex of degree one and such that V(G) = E(G) = 5. Recently the existence of a minimum covering of K_{ν} with special 5-cycles (Steiner Pentagon Systems) has been investigated by Abel et al. in [2]. In [2] the authors established the existence of covering designs having only one possible excess and with some exceptions.

In this paper we prove that, for all $v \ge 5$, there is a simple minimum $(v, C_5, 1)$ -covering having all possible excesses.

2 Preliminaries and necessary conditions

In this section we determine the necessary conditions for the existence of a simple minimum $(v, C_5, 1)$ -covering with excess E.

Theorem 2.1. The only possible excesses E of a simple minimum $(v, C_5, 1)$ -covering, for all $v \ge 5$, are given in the following table:

Table 1	
v	excess
$\equiv 0 \pmod{10}$	a 1-factor
$\equiv 1,5 \pmod{10}$	empty set
$\equiv 7,9 \pmod{10}$	C_4
$\equiv 4,6 \pmod{10}$	$X_i, i = 1, 2, 3$
$\equiv 2,8 \pmod{10}$	$Y_i, i = 1, 2,7$
$\equiv 3 \pmod{10}$	$Z_i, i = 1, 2, 3, 4$
6	X_1
8	$Y_i, i = 1, 2, 3, 4$

Here C_4 is a cycle of length 4 and X_i , Y_i , Z_i , are given in Appendix I. **Proof.** Let (V, B) be a simple minimum $(v, C_5, 1)$ -covering with excess E. Since K_v has degree v-1 and every vertex in a 5-cycle has degree two, every vertex in E has even degree when v is odd, and odd degree when v is even. Then, for v even, E must be a spanning subgraph of K_v . Consider six cases.

Case 1: $v \equiv 0 \pmod{10}$. In this case, since $\frac{v(v-1)}{2} \equiv 0 \pmod{5}$, the smallest possible excess is a 1-factor.

- Case 2: $v \equiv 1,5 \pmod{10}$. In this case, since there exists a $(v, C_5, 1)$ -design, E is the empty set.
- Case 3: $v \equiv 7,9 \pmod{10}$. In this case we have $\frac{v(v-1)}{2} \equiv 1 \pmod{5}$, hence the smallest possible excess would have four edges. Then, since each vertex of E has even degree, the only such simple graph is a 4-cycle.
- Case $4: v \equiv 4, 6 \pmod{10}$. In this case we have $\frac{v(v-1)}{2} \equiv 1, 0 \pmod{5}$, hence the smallest possible excess would have $\frac{v}{2} + 2$ edges. Since the sum of the degrees of the vertices of E is v + 4, we obtain the following degree sequences for E: (5, 1, 1, ...1), (3, 3, 1, 1, ...1). In the first case we have $E = X_2$ and in the second case $E = X_1$ or X_3 . For v = 6, it is easy to see that the only possible excess is X_1 .
- Case 5: $v \equiv 2,8 \pmod{10}$. In this case, we have $\frac{v(v-1)}{2} \equiv 1,3 \pmod{5}$, hence the smallest possible excess would have $\frac{v}{2} + 3$ edges. Since the sum of the degrees of its vertices is v + 6, we obtain the following degree sequences for E: (7, 1, 1, ...1), (5, 3, 1, 1, ...1), (3, 3, 3, 1, 1, ...1). In the first case we have $E = Y_1$ and in the second case $E = Y_2$ or Y_5 . In the final case we have $E = Y_i$, i = 3, 4, 6, 7. For v = 8, it is easy to see that the only possible excesses are Y_i , i = 1, 2, 3, 4.
- Case 6: $v \equiv 3 \pmod{10}$. In this case we have $\frac{v(v-1)}{2} \equiv 3 \pmod{5}$, hence the smallest possible excess would have seven edges, with each vertex having even degree. Since the sum of the degrees of the vertices of E is 14, we obtain the following degree sequences for E:
 - (1) (2, 2, 2, 2, 2, 2, 2), (2) (2, 2, 2, 2, 2, 4),
 - (3) (2, 2, 2, 4, 4), (4) (2, 4, 4, 4).

In the first case we obtain $E=C_7=Z_1$ or $E=Z_2$. In the cases (2) and (3) $E=Z_3$ or Z_4 respectively. The final case is impossible.

We complete this section by collecting some definitions and results which will be useful later on.

A 5-cycle system of order v with a hole of size h is a triple (V, H, B), where $V = V(K_v)$, $H = V(K_h)$ with $H \subseteq V$ and B is an edge-disjoint decomposition of $K_v - K_h$ into 5-cycles.

We will also need the following auxiliary results

- **Lemma 2.2.** ([14]). If $k \geq 3$ is odd and $t \geq 3$, the complete multipartite graph $K_{2k,2k,...,2k}$ with t parts of sizes 2k can be decomposed into k-cycles.
- Lemma 2.3. ([24]). If $v \equiv 3 \pmod{10}$, there exists a $(v, C_5, 1)$ -packing of K_v which leave a triangle. If $v \equiv 7, 9 \pmod{10}$, there exists a $(v, C_5, 1)$ -packing of K_v which leave two vertex disjoint triangles.

Lemma 2.4. ([7]). There exists a $(v, C_5, 1)$ -design of order v with a hole of size u when $: (v, u) \in \{(13, 3), (17, 7), (19, 9), (23, 13), (27, 9), (29, 17)\}.$

Now we need to mention one auxiliary device.

Let $K_{2n} + I$ be the multigraph obtained by adding the edges of a 1-factor I to K_{2n} . Let $\bar{K_n}$ denote the complement of K_n . If G and H are two graphs, the join $G \vee H$ of graphs G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{uv : u \in V(G), v \in V(H)\}$.

Lemma 2.5. Let I be a 1-factor of K_{10} . If v is a positive even integer, $2 \le v \le 20$, then there is a decomposition of the graph $(K_{10} + I) \lor \bar{K}_v$ into 5-cycles.

Proof. Let (V, B) be a simple minimum $(10, C_5, 1)$ -covering (see Example 3.3), with $V = \{a_0, a_1, ...a_9\}$ and excess I. For $q \in \{1, 2, ..., 10\}$, let $c_s = (a_0, a_1, a_2, a_3, a_4)$, $0 \le s \le q - 1$, be a 5-cycle of B and x_{c_s} and y_{c_s} two new points. On $V \cup \{x_{c_s}, y_{c_s}\}$ define the following set of 5-cycles:

 $B(c_s, x_{c_s}, y_{c_s}) = \{(x_{c_s}, a_0, a_1, y_{c_s}, a_5), (x_{c_s}, a_1, a_2, y_{c_s}, a_6), (x_{c_s}, a_2, a_3, y_{c_s}, a_7), (x_{c_s}, a_3, a_4, y_{c_q}, a_8), (x_{c_s}, a_4, a_0, y_{c_s}, a_9)\}.$

Let $\bar{B} = (\bigcup_{s=0}^{q-1} B(c_s, x_{c_s}, y_{c_s})$. Then it is easy to se that $\bar{B} \cup (B - \{c_0, c_1, ..., c_{q-1}\})$ is a decomposition of $(K_{10} + I) \vee \bar{K}_{2q}$ into 5-cycles on $V \cup (\bigcup_{s=0}^{q-1} \{x_{c_s}, y_{c_s}\})$ and the proof is complete. \Box

3 Direct constructions

In this section, we present constructions for simple minimum $(v, C_5, 1)$ -coverings for certain small values of v.

Example 3.1. A simple minimum $(6, C_5, 1)$ -covering (V, B) with excess X_1 .

Elements: $V = Z_6$.

Blocks: $B = \{(0, 1, 2, 5, 3), (0, 2, 4, 3, 5), (0, 4, 1, 3, 2), (0, 4, 5, 1, 3)\}.$ The excess is $\{20, 04, 03, 31, 35\}.$

Example 3.2. Four simple minimum $(8, C_5, 1)$ -coverings (V, B_i) with excesses Y_i , i = 1, 2, 3, 4.

- 1. A simple minimum $(8, C_5, 1)$ -covering (V, B_1) with excess Y_1 . Elements: $V = Z_8$. Blocks: $B_1 = \{(0, 1, 2, 6, 7), (0, 1, 3, 2, 5), (0, 5, 1, 4, 2), (0, 6, 1, 7, 2), (0, 4, 6, 5, 3), (0, 6, 3, 7, 4), (0, 3, 4, 5, 7)\}$. The excess is $\{01, 02, 03, 04, 05, 06, 07\}$.
- 2. A simple minimum $(8, C_5, 1)$ -covering (V, B_2) with excess Y_2 .

Elements: $V = Z_8$.

Blocks: $B_2 = \{B_1 - \{(0,3,4,5,7)\}\} \cup \{(2,3,4,5,7)\}.$

The excess is $\{01, 02, 04, 05, 06, 27, 23\}$.

3. A simple minimum $(8, C_5, 1)$ -covering (V, B_3) with excess Y_3 .

Elements: $V = Z_8$.

Blocks: $B_3 = \{B_1 - \{(0,3,4,5,7), (0,6,3,7,4)\}\} \cup \{(2,3,4,5,7), (5,6,3,7,4)\}.$

The excess is $\{01, 02, 05, 54, 56, 27, 23\}$.

4. A simple minimum $(8, C_5, 1)$ -covering (V, B_4) with excess Y_4 .

Elements: $V = Z_8$.

Blocks: $B_4 = \{(0,1,5,7,2), (0,1,6,2,3), (0,2,1,6,4), (0,3,4,2,5), (0,6,2,5,7), (1,2,4,7,2), (1,4,5,6,7)\}$

(0, 6, 3, 5, 7), (1, 2, 4, 7, 3), (1, 4, 5, 6, 7). The excess is $\{16, 12, 10, 24, 20, 03, 57\}$.

Example 3.3 ([2]). A simple minimum $(10, C_5, 1)$ -covering (V, B) with excess E as in Table 1.

Elements: $V = Z_{10}$.

Blocks: $B = \{(1, 9, 4, 3, 5), (2, 0, 5, 4, 6), (4, 1, 7, 6, 8), (5, 2, 8, 7, 9), (6, 3, 9, 8, 0), (0, 7, 2, 1, 3), (1, 0, 7, 3, 8), (0, 4, 7, 5, 9), (5, 6, 9, 2, 8), (2, 4, 6, 1, 3)\}.$ The excess is $\{07,13,28,59,46\}$.

Example 3.4. Seven simple minimum $(12, C_5, 1)$ -coverings (V, D_i) with excesses Y_i , i = 1, 2, ..., a in Table 1.

Let (Z_8, B_i) , i = 1, 2, 3, 4, be the $(8, C_5, 1)$ -covering, with excess E_i , given in Example 3.2.

1. Four simple minimum $(12, C_5, 1)$ -coverings (V, D_i) with excesses Y_i , i = 1, 2, 3, 4.

Elements: $V = Z_8 \cup \{a, b, c, d\}$.

Blocks: $D_i=B_i \cup \{0, a, b, 1, c\}, (0, d, 1, a, b), (4, a, 5, c, d), (4, b, 5, d, c), (2, a, c, 3, d), (3, a, d, 7, b), (6, b, c, 7, a), (2, b, d, 6, c)\}, i = 1, 2, 3, 4.$

The excesses are $E_i \cup \{ab, cd\}, i = 1, 2, 3, 4$.

2. A simple minimum $(12, C_5, 1)$ -coverings (V, D_5) with excess Y_5 . Elements: $V = Z_8 \cup \{a, b, c, d\}$.

Blocks: $D_5 = \{D_1 - \{(0,3,4,5,7)\} \cup \{(a,3,4,5,7)\}.$

The excess is $\{01, 02, 04, 05, 06, ab, a3, a7, cd\}$.

3. A simple minimum $(12, C_5, 1)$ -covering (V, D_6) with excess Y_6 . Elements: $V = Z_8 \cup \{a, b, c, d\}$.

Blocks: $D_6 = \{D_5 - \{(0,1,3,2,5)\} \cup \{(b,1,3,2,5)\}.$

The excess is $\{02, 04, 06, ab, a3, a7, cd, b1, b5\}$.

4. A simple minimum $(12, C_5, 1)$ -covering (V, D_7) with excesses Y_7 .

Elements: $V = Z_8 \cup \{a, b, c, d\}$.

Blocks: $D_7 = \{D_5 - \{(0,1,3,2,5)\} \cup \{(c,1,3,2,5)\}.$

The excess is $\{02, 04, 06, ab, a3, a7, cd, c1, c5\}$.

Example 3.5. Three simple minimum $(14, C_5, 1)$ -coverings (V, M_i) with excesses X_i , i = 1, 2, 3.

Let (Z_{10}, B) be the simple minimum $(10, C_5, 1)$ -covering with excess E given in Example 3.3. Let $M = B - \{2, 4, 6, 1, 3\}$.

- 1. A simple minimum $(14, C_5, 1)$ -covering (V, M_1) with excess X_1 . Elements: $V = Z_{10} \cup \{a, b, c, d\}$. Blocks: $M_1 = M \cup \{(1, a, 2, 4, b), (a, 4, 6, c, 3), (a, 6, 1, d, 5), (1, 3, b, 5, c), (2, b, 6, d, 3), (0, c, 2, d, a), (0, b, c, 4, d), (b, c, a, 7, d), (0, b, d, 8, a), (a, b, 8, c, 9), (b, 7, c, d, 9)\}. The excess is <math>\{07, 0a, 0b, bc, bd, 13, 28, 59, 46\}$.
- 2. A simple minimum $(14, C_5, 1)$ -covering (V, M_2) with excess X_2 . Elements: $V = Z_{10} \cup \{a, b, c, d\}$. Blocks: $M_2 = \{M_1 \{(b, c, a, 7, d)\} \cup \{(0, c, a, 7, d)\}$. The excess is $\{07, 0a, 0b, 0c, 0d, 13, 28, 59, 46\}$.
- 3 A simple minimum $(14, C_5, 1)$ -covering (V, M_3) with excess X_3 . Elements: $V = Z_{10} \cup \{a, b, c, d\}$. Blocks: $M_3 = \{M_2 \{(0, c, a, 7, d)\} \cup \{(2, c, a, 7, d)\}$. The excess is $\{07, 0a, 0b, 13, 28, 2c, 2d, 59, 46\}$.

Example 3.6. Three simple minimum $(16, C_5, 1)$ -coverings (V, N_i) with excesses X_i , i = 1, 2, 3.

Let N be the block set of the decomposition of $(K_{10}+I)\vee \bar{K}_6$ into 5-cycles (see Lemma 2.5). Let $V_1=\{a_i,i\in Z_{10}\}$ and $I=\{a_0a_7,a_1a_3,a_2a_8,a_5a_9,a_4a_6\}$. Let (Z_6,B) be the simple minimum $(6,C_5,1)$ -covering, with excess $E=\{20,04,03,31,35\}$, given in Example 3.1. Let (a_0,a_7) be an edge of I. Define the following sets of blocks:

 $N_2 = \{B - \{(0,4,1,3,2),(0,1,2,5,3)\}\} \cup \{(a_0,4,1,3,2),(0,1,2,5,a_0)\} \cup N, N_3 = \{B - \{(0,4,1,3,2)\}\} \cup \{(a_0,4,1,3,2)\} \cup N.$

- 1. A simple minimum $(16, C_5, 1)$ -covering (V, N_1) with excess X_1 . Elements: $V = Z_6 \cup V_1$. Blocks: $N_1 = B \cup N$
- 2. A simple minimum (16, C_5 , 1)-covering (V,N_2) with excess X_2 . Elements: $V=Z_6\cup V_1$.

Blocks: N_2 .

The excess is $E \cup I$.

The excess is $I \cup \{a_04, a_02, a_00, a_05, 13\}$.

3. A simple minimum $(16, C_5, 1)$ -covering (V, N_3) with excess X_3 . Elements: $V = Z_6 \cup V_1$.

Blocks: N_3 . The excess is $I \cup \{a_04, a_02, 30, 13, 35\}$.

Example 3.7. Seven simple minimum $(18, C_5, 1)$ -coverings (V, S_i) with excesses Y_i , i = 1, 2, ..., 7, as in Table 1.

Let S be the block set of the decomposition of $(K_{10}+I)\vee \bar{K}_8$ into 5-cycles (see Lemma 2.5). Let $V_1=\{a_i,i\in Z_{10}\}$ and $I=\{a_0a_7,a_1a_3,a_2a_8,a_5a_9,a_4a_6\}$. Let (Z_8,B_i) be the simple minimum $(8,C_5,1)$ -coverings with excess $E_i,\ i=1,2,3,4,$ given in Example 3.2. Let (a_0,a_7) and (a_1,a_3) be two edges of I. Define the following sets of blocks:

 $S_5 = \{B_1 - \{(0,1,2,6,7)\}\} \cup \{(a_0,1,2,6,7)\} \cup S,$ $S_6 = \{S_5 - \{(0,4,6,5,3)\}\} \cup \{(a_7,4,6,5,3)\},$ $S_7 = \{S_5 - \{(0,4,6,5,3)\}\} \cup \{(a_1,4,6,5,3)\}.$

1. Four simple minimum $(18, C_5, 1)$ -coverings (V, S_i) with excesses Y_i , i = 1, 2, 3, 4.

Elements: $V = Z_8 \cup V_1$.

Blocks: $S_i = B_i \cup S$, i = 1, 2, 3, 4.

The excesses are $I \cup E_i$, i = 1, 2, 3, 4.

2. A simple minimum (18, C_5 , 1)-covering (V, S_5) with excess Y_5 .

Elements: $V = Z_8 \cup V_1$.

Blocks: S5.

The excess is $I \cup \{a_01, a_07, 02, 03, 04, 05, 06\}$.

3. A simple minimum $(18, C_5, 1)$ -covering (V, S_6) with excess Y_6 .

Elements: $V = Z_8 \cup V_1$.

Blocks: S6.

The excess is $I \cup \{a_01, a_07, 02, a_73, a_74, 05, 06\}$.

4. A simple minimum $(18, C_5, 1)$ -covering (V, S_7) with excess Y_7 .

Elements: $V = Z_8 \cup V_1$.

Blocks: S_7 .

The excess is $I \cup \{a_01, a_07, 02, a_13, a_14, 05, 06\}$.

Lemma 3.8. There exists a simple minimum $(v, C_5, 1)$ -covering, v = 22, 24, 26, 28, with excess as in Table 1.

Proof. Let v = 10+h, where h = 12, 14, 16, 18. Let I be a 1-factor of K_{10} . From Lemma 2.5, there exists a decomposition of $(K_{10} + I) \vee \bar{K}_h$, h = 12, 14, 16, 18, into 5-cycles. Now, replacing the hole of size h by a simple minimum $(h, C_5, 1)$ -covering with excess E as in Table 1 (such design has been given in Examples 3.4, 3.5, 3.6 and 3.7), we obtain the required designs with excess $E \cup I$. \Box

4 Main result

In this section we prove that the conditions of the Theorem 2.1 are sufficient for the existence of a simple minimum $(v, C_5, 1)$ -covering, $v \ge 6$, with excess E as in Table 1.

Lemma 4.1. If $v \equiv 3 \pmod{10}$, $v \ge 13$, then there exists a simple minimum $(v, C_5, 1)$ -covering with excess as in Table 1.

Proof. Let $v \equiv 3 \pmod{10}$. By Lemma 2.3, there exists a $(v, C_5, 1)$ -packing (V, B, L) of order v with leave a triangle L. Let $V = \{a, b, c, d, e, f, g, h\} \cup \{a_i, i = 1, 2, ..., v - 8\}$, $L = \{ab, bc, ac\}$. Let (a, d, e, f, g) be a 5-cycle of B. Define four sets of 5-cycles as follows:

 $B_1 = B \cup \{(a, b, c, d, e), (a, c, f, g, h)\},\$

 $B_2 = \{B - \{(a, d, e, f, g)\}\} \cup \{(a, b, d, g, f), (a, c, f, e, d), (a, g, b, c, e)\},\$

 $B_3 = B \cup \{(a, b, c, d, e), (a, c, e, f, g)\},\$

 $B_4 = B \cup \{(a, b, c, d, e), (a, c, e, b, d)\}.$

Then (V, B_i) , i = 1, 2, 3, 4, is a simple $(v, C_5, 1)$ -covering with excess Z_i as in Table 1. This completes the proof. \square

Lemma 4.2. If $v \equiv 7,9 \pmod{10}$, $v \geq 7$, then there exists a simple minimum $(v, C_5, 1)$ -covering with excess as in Table 1.

Proof. Let $v \equiv 7,9 \pmod{10}$. By Lemma 2.3, there exists a $(v,C_5,1)$ -packing (V,B,L) of order v with leave two vertex disjoint triangles L. Let $V = \{a,b,c,d,e,f\} \cup \{a_i,i=1,2,...,v-6\}, L = \{ab,bc,ac,de,df,ef\}$. Let $B_1 = B \cup \{(a,b,c,d,e),(a,c,e,f,d)\}$.

Then (V, B_1) is a simple $(v, C_5, 1)$ -covering with excess C_4 . This completes the proof. \Box

Lemma 4.3. If $v \equiv 2, 4, 6, 8 \pmod{10}$, $v \geq 12$, then there exists a simple minimum $(v, C_5, 1)$ -covering with excess as in Table 1.

Proof. Write v = h + 10n, where $h \in \{2, 4, 6, 8\}$. The designs of order v = 12, 14, 16, 18 are all given in Examples 3.4, 3.5, 3.6 and 3.7. The case n = 2 was solved in Lemma 3.8. Now let $n \ge 3$, X be a set of size 10n, H a h-set, $h \in \{2, 4, 6, 8\}$ with $X \cap H = \emptyset$, $H_r = Z_{10} \times \{r\}$, $r = 0, 1, \ldots, n - 1$, and $V(K_v) = (\bigcup_{i=0}^{n-1} H_i) \cup H$. Let I_r be a 1-factor on $V(H_r)$, where $r = 0, 1, \ldots, n - 1$. Now we obtain the required design on V as follows.

On the set $H \cup H_0$ place a simple minimum $(10 + h, C_5, 1)$ -covering of order 10+h, $h \in \{2,4,6,8\}$, and excess E. On the set $H \cup H_i$, $i=1,2,\ldots,n-1$ place a decomposition of the graph $(K_{10}+I) \vee \bar{K}_h$ into 5-cycles (see Lemma 2.4). On the 10n-set $X = H_0 \cup H_1 \cup \cdots \cup H_{n-1}$ place a decomposition of the complete n-partite graph $K_{10,10,\ldots 10}$ into 5-cycles (see Lemma 2.2). Now, making use of a simple minimum $(u, C_5, 1)$ -covering of order $u \in \{12, 14, 16, 18\}$ with excess

E as in Table 1, we obtain a simple minimum $(v, C_5, 1)$ -covering with excess $E \cup (\bigcup_{i=1}^{n-1} H_i)$ as in Table 1. This completes the proof. \square

Theorem 4.4. If $v \equiv 0, 2, 3, 4, 6, 7, 8, 9 \pmod{10}$, $v \geq 6$, then there exists a simple minimum $(v, C_5, 1)$ -covering with excess as in Table 1.

Proof. The case $v \equiv 0 \pmod{10}$ can be found in [2]. The designs of order v = 6, 8 are given in Examples 3.1 and 3.2. The other cases follow immediately from Lemmas 4.1, 4.2 and 4.3. \square

References

- [1] P. Adams and D.E. Bryant. Packing and covering the complete graph with cubes. Australas. J. Combin., 20 (1999), 267-288.
- [2] R.J.R. Abel, F.E. Bennett, H. Zhang and L. Zhu. Steiner pentagon covering designs. *Discrete Math.*, 231 (2001), 11-26.
- [3] J.C. Bermond, C. Huang, A. Rosa and D. Sotteau. Decomposition of complete graphs into isomorphic subgraphs with five vertices. *Ars Combin.*, 10(1980), 211-254.
- [4] J.C. Bermond, C. Huang and D. Sotteau. Balanced cycle and circuit designs: even cases. Ars Combin., 5 (1978), 293-318.
- [5] J.C. Bermond and J. Schönheim. G-decomposition of K_n , where G has four vertices or less. Discrete Math., 19 (1977), 113-120.
- [6] E.J. Billington and C.C. Lindner. Maximum packings of bowtie designs. J. Combin. Math. Combin. Comput. 27 (1988), 227-249.
- [7] D.E. Bryant, D.G. Hoffman and C.A. Rodger. 5-cycles systems with holes. Des. Codes Cryptogr. (8) 1-2 (1996), 227-249.
- [8] A.E. Brouwer. Optimal packings of K_4 's into K_n 's. J. Combin. Theory Ser. A, 26 (1979), 278-297.
- [9] A. Černý, P. Horák, A. Rosa and S. Znám. Maximal pentagonal packings. Acta Math. Univ. Comenianae, LXV, 2 (1996), 215-227.
- [10] S.I. El-Zanati. Maximum packings with odd cycles. Discrete Math. 131 (1994), 91-97.
- [11] M.K. Fort, Jr., and G.A. Hedlund. Minimal coverings of pairs by triples. *Pacific J. Math.*, 8 (1958), 709-719.

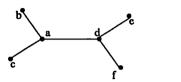
- [12] M. Grinstead. On coverings and packings of the complete graphs with cycles. Ars Combin., 3 (1977), 25-37.
- [13] D.G. Hoffman, C.C. Lindner, M.J. Sharry and A.P. Street. Maximum packings of K_n with copies of $K_4 e$. Aequationes Math. 51 (1996), 247-269.
- [14] D.G. Hoffman, C.C. Lindner and C.A. Rodger. On the construction of odd cycle systems. J. Graph Theory 13 (1998), 417-426.
- [15] J.A. Kennedy. Maximum packings of K_n with hexagons. Australas. J. Combin. 7 (1993), 101-110.
- [16] J.A. Kennedy. Minimum coverings of K_n with hexagons. Australas. J. Combin. 16 (1997), 295-303.
- [17] C.C. Lindner and A.P. Street. Simple minimum coverings of K_n with copies of $K_4 e$. Aequationes Math. 52 (1996), 284-301.
- [18] S. Milici. Coverings of a complete graph with five-vertex and five-edge graphs. *Discrete Math.*, 284 (2004), 225-229.
- [19] S. Milici. A note to maximum packings of K_v with a graph G of five vertices and five edges. *Utilitas Math.*, to appear.
- [20] W.H. Mills. On the covering of pairs by quadruples I. J. Combin. Theory, 13 (1972), 55-78.
- [21] W.H. Mills. On the covering of pairs by quadruples II. J. Combin. Theory, 15 (1973), 138-166.
- [22] R.C. Mullin and J. Yin. On packings of pairs by quintuples: $v \equiv 3, 9$ or 17 (mod 20) Ars Combin., 35 (1993), 161-171.
- [23] Y.Roditty. Packings and coverings of the complete graph with a graph G of four vertices or less. J. Combin. Theory Ser. A, 34 (1983), 231-248.
- [24] A. Rosa and S. Znám. Packing pentagons into complete graphs: how clumsy can you get? *Discrete Math.*, 128 (1994), 305-316.
- [25] J. Schönheim. On maximal systems of k-tuples. Studia Sc. Math. Hung., 1 (1966), 363-368.
- [26] J. Schönheim and A. Bialostocki. Packings and coverings of the complete graph with 4-cycles. Canad. Math. Bull., 18 (1975), 703-708.
- [27] J. Yin. Packings of pairs by quintuples. The case Zero congruence (mod 4) Appl. Math. J.C., 99 (1994), 401-404.

- [28] J. Yin and A.Assaf. Constructions of optimal packing designs. J. Combin. Designs, 6 (1998), 245-260.
- [29] S. Zhang and J. Yin. Packing of K_v with certain graphs of five vertices. J.Of Statist. Plann. and Infer., 106 (2002), 387-408.

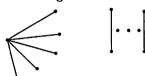
Appendix I

I.1 The excesses X_i , i=1,2,3, for $v\equiv 4,6\pmod{10}$, $n\geq 14$. For v=6, the excess is X_1 .

 X_1 A one factor on v-6 vertices and a graph $\{ab, ac, ad, de, df\}$.



 X_2 A one factor on v-6 vertices and a tree on 6 vertices with one vertex of degree 5.

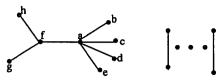


 X_3 A one factor on v-8 vertices and two trees each on 4 vertices with one vertex of degree 3.

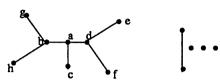
I.2 The excesses Y_i , i=1,2,...7, for $v\equiv 2,8$ (mod 10), $n\geq 12$. For v=8, the excesses are Y_i , i=1,2,3,4.

 Y_1 A one factor on v-8 vertices and a tree on 8 vertices with one vertex of degree 7.

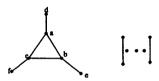
 Y_2 A one factor on v-8 vertices and a graph $\{ab, ac, ad, ae, af, fg, fh\}$.



 Y_3 A one factor on v - 8 vertices and a graph $\{ab, ac, ad, de, df, bg, bh\}$.

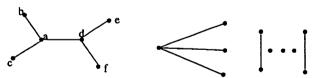


 Y_4 A one factor on v - 6 vertices and a graph $\{ab, ac, bc, ad, be, cf\}$.



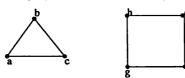
 Y_5 A one factor on v-10 vertices and two trees respectively on 4 vertices with one vertex of degree 3 and on 6 vertices with one vertex of degree 5.

 Y_6 A one factor on v-10 vertices, a tree on 4 vertices with one vertex of degree 3 and a graph $\{ab, ac, ad, de, df\}$.



 Y_7 A one factor on v-12 vertices and three trees each on 4 vertices with one vertex of degree 3.

- I.3 The excesses Z_i , i = 1, 2, 3, 4, for $v \equiv 3$ (mod 10).
- Z_1 A cycle of length 7.
- Z_2 A graph on seven vertices $\{ab, ac, bc, hd, df, fg, gh\}$.



 Z_3 A graph on six vertices $\{ab, ac, bc, cd, de, ef, fc\}$.

 Z_4 A graph on five vertices $\{ab, ac, bc, ad, db, af, bf\}$.

