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Abstract

Let K, be the complete graph on v vertices, and C5 be a cycle of length
five. A simple minimum (v,Cs, 1)-covering, is a pair (V,C) where V =
V(K.) and C is a family of edge-disjoint 5-cycles of minimum cardinality
which partition E(K,) U E, for some E C E(K,). The collection of
edges E is called the excess. In this paper we determine the necessary
and sufficient conditions for the existence of a simple minimum (v, Cs, 1)-
covering. More precisely, for each v > 6, we prove that there is a simple
minimum (v, Cs, 1)-covering having all possible excesses.

1 Introduction

A G-design of order v or a G-decomposition of K, is a pair (V, B), where V
is a v-set and B an edge-disjoint decomposition of K, into copies of a simple
graph G. The existence of a G-design, with V(G) < 5, has been studied in the
literature (3, 4, 5].

A simple covering of K, with copies of G, denoted by (v, G, 1)-covering, is
an ordered triple (V, C, E), where V = V(K,), E C E(K,) is called the padding
or excess and C is a collection of edge-disjoint copies of G which partition
E(K,)UE. The number v is called the order of the covering. If E is as small as
possible, then (V,C, E) is called a simple minimum covering. In the case that
a G-design exists, the excess is empty.

A packing of K, with copies of G, denoted by (v, G, 1)-packing, is an ordered
triple (V, B, L), where V = V(K,,), B is a collection of edge-disjoint copies of
G, and L is the set of edges not belonging to a block of B. The number v is
called the order of the packing and the set of unused edges L is called the leave.
If B is as large as possible, then (V, B, L) is called a mazimum packing .
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Maximum packings of K, with copies of G have been considered in [25]
for G = Kj; in (8] for G = Kj; in [22, 27, 28] for G = Kg; in [13] for G =
K4 — e. Various results on maximum packings of K, with cycles can be found
in [9, 10, 12, 14, 15, 24, 26] and with other graphs in [1, 6, 18, 23, 29].

Results concerning minimum coverings of K, with copies of G are given in
[11] for G = Kg; in [20, 21] for G = Kj; in [17] for G = K4 —¢; in [12, 16] for
G = C,4 and Cg; in 3, 4, 5] for the trees of order seven; in {23] for all graphs of
four vertices or less and in [19] for graphs having at least one vertex of degree one
and such that V(G) = E(G) = 5. Recently the existence of a minimum covering
of K, with special 5-cycles (Steiner Pentagon Systems) has been investigated
by Abel et al. in [2]. In [2] the authors established the existence of covering
designs having only one possible excess and with some exceptions.

In this paper we prove that, for all v > 5, there is a simple minimum
(v, Cs, 1)-covering having all possible excesses.

2 Preliminaries and necessary conditions

In this section we determine the necessary conditions for the existence of a
simple minimum (v, Cs, 1)-covering with excess E.

Theorem 2.1. The only possible ezcesses E of a simple minimum (v,Cs,1)-
covering, for all v > 5, are given in the following table:

Table 1

v excess
=0 (mod 10) a I-factor
=1,5 (mod 10) | empty set
=17,9 (mod 10) C4
=4,6 (mod 10) | X;,:1=1,2,3
=2,8 (mod 10) | ¥;,i=1,2,..7
= 3 (mod 10) Z;,i=1,2,3,4
6 X
8 Y,i=1,23,4

Here C; is a cycle of length 4 and X;, Y;, Z;, are given in Appendix I.
Proof. Let (V, B) be a simple minimum (v, Cs, 1)-covering with excess E. Since
K, has degree v — 1 and every vertex in a 5-cycle has degree two, every vertex
in E has even degree when v is odd, and odd degree when v is even. Then, for
v even, E must be a spanning subgraph of K,. Consider six cases.

Case 1 : v = 0 (mod 10). In this case, since 1("2—"12 = 0(mod 5), the smallest
possible excess is a 1-factor.
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Case 2 : v=1,5 (mod 10). In this case, since there exists a (v, Cs,1)-design,
E is the empty set.

Case 3 : v =7,9 (mod 10). In this case we have 1("2"—11 = 1 (mod §), hence the
smallest possible excess would have four edges. Then, since each vertex of
E has even degree, the only such simple graph is a 4-cycle.

Case 4 : v =4,6 (mod 10). In this case we have 1’-(".;—11 = 1,0 (mod 5), hence
the smallest possible excess would have % + 2 edges. Since the sum of
the degrees of the vertices of E is v + 4, we obtain the following degree
sequences for E: (5, 1, 1, ...1), (8, 3, 1, 1,...1). In the first case we have
E=X5 and in the second case E=X, or X3. For v = 6, it is easy to see
that the only possible excess is X;.

Case 5 : v = 2,8 (mod 10). In this case, we have -'1(3;—12 = 1,3 (mod 5), hence
the smallest possible excess would have § + 3 edges. Since the sum of the
degrees of its vertices is v + 6, we obtain the following degree sequences
for E: (7,1,1,..1), (5,3, 1, 1,...1), (3, 3, 3, 1, 1,...1).

In the first case we have £ = Y] and in the second case E=Ys or Y5. In
the final case we have E = Y;, i = 3,4,6,7. For v = 8, it is easy to see
that the only possible excesses are Y;, i =1, 2, 3, 4.

Case 6 : v =3 (mod 10). In this case we have 1(”2—"-)- = 3 (mod 5), hence the
smallest possible excess would have seven edges, with each vertex having
even degree. Since the sum of the degrees of the vertices of E is 14, we
obtain the following degree sequences for E:
1)(22,2,22,22), (2(222224),
3)(2,2,2,4,4), (4)(2,4,4,4).

In the first case we obtain E=C7=2Z; or E = Z3. In the cases (2) and (3)
E=2Z5 or Z4 respectively. The final case is impossible.0

We complete this section by collecting some definitions and results which
will be useful later on.

A 5-cycle system of order v with a hole of size A is a triple (V, H, B), where
V =V(K,), H=V(K,) with H CV and B is an edge-disjoint decomposition
of K, — K}, into 5-cycles.
We will also need the following auxiliary results

Lemma 2.2. ({14]). If k > 3 is odd and t > 3,the complete multipartite graph
Kok 2k,....2c with t parts of sizes 2k can be decomposed into k-cycles.

Lemma 2.3. ({24]). If v=3 (mod 10), there ezists a (v, Cs, 1)-packing of K,
which leave a triangle. Ifv=7,9 (mod 10), there exists a (v, Cs, 1)-packing of
K, which leave two vertex disjoint triangles.
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Lemma 2.4. ([7]). There ezists a (v,Cs,1)-design of order v with a hole of
size u when : (v,u) € {(13,3),(17,7), (19, 9), (23,13), (27,9), (29, 17)}.

Now we need to mention one auxiliary device.

Let Ko, + I be the multigraph obtained by adding the edges of a 1-factor
to Kan. Let K,, denote the complement of K,,. If & and H are two graphs, the
Jjoin GV H of graphs G and H is the graph with vertex set V(G) UV (H) and
edge set E(G)U E(H)U {uwv:ue V(G),v e V(H)}.

Lemma 2.5. Let I be a I-factor of Kip. If v is a positive even integer, 2 <
v £ 20, then there is a decomposition of the graph (K10 + 1)V K, into 5-cycles.

Proof. Let (V,B) be a simple minimum (10, Cs, 1)-covering (see Example
3.3), with V = {ao,a1,...ag} and excess I. For q € {1,2,...,10}, let ¢, =
(a0, @1,a2,03,84), 0 < s < g — 1, be a 5-cycle of B and z., and y., two new
points. On V U {z.,,v.,} define the following set of 5-cycles:

B(C,, l'c.,‘yc.) = {(.'Ec. 1305 @1, Ye, ) 05)' (zC. 1Q1, 82, Ye, aG)r (zc.y @2, 03,Yc,, 67),
(Ic.)aﬂt @4, Y tas): (ZC,:a4x ao’yc,,a@)}' _

Let B = (U5 B(cs, Zc, , yc, ). Then it is easy to se that BU(B—{co, c1, ..., ¢g—1})
is a decomposition of (Ko + I) V Ky, into 5-cycles on V U (U3 {z.,, ., } and
the proof is complete. O

3 Direct constructions

In this section,we present constructions for simple minimum (v, Cs, 1)-coverings
for certain small values of v.

Example 3.1. A simple minimum (6, Cs, 1)-covering (V, B) with excess X;.

Elements: V = Zs.
Blocks: B = {(0,1,2,5,3),(0,2,4,3,5),(0,4,1,3,2),(0,4,5,1,3)}.
The excess is {20, 04, 03, 31, 35}.

Example 3.2. Four simple minimum (8, Cs, 1)-coverings (V, B;) with excesses
Y;,i=1,2,3,4.

1. A simple minimum (8, Cs, 1)-covering (V, B;) with excess Y.
Elements: V = Zg.
Blocks: B, = {(0,1,2,6,7),(0,1,3,2,5), (0,5,1,4,2), (0,6,1,7,2),
(0,4,6,5,3),(0,6,3,7,4),(0,3,4,5,7)}.
The excess is {01, 02, 03,04, 05,06, 07}.

2. A simple minimum (8, Cs, 1)-covering (V, Bp) with excess Y3.
Elements: V = Zg.
Blocks: By = {B; — {(0,3,4,5,7)}} U {(2,3,4,5,7)}.
The excess is {01, 02, 04, 05, 06, 27, 23}.
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3. A simple minimum (8, Cs, 1)-covering (V, Bs) with excess Y3.
Elements: V = Zg.
Blocks: B3 = {B; - {(0, 3,4,5,7),(0,6,3,7,4)}} U {(2,3,4,5,7),
(5,6,3,7,4)}.
The excess is {01, 02, 05, 54, 56, 27, 23}.

4. A simple minimum (8, Cs, 1)-covering (V, B,) with excess Yj .
Elements: V = Zg.
Blocks: By = {(0,1,5,7,2),(0,1,6,2,3),(0,2,1,6,4), (0,3,4,2,5),
(0,6,3,5,7),(1,2,4,7,3),(1,4,5,6,7)}.
The excess is {16, 12, 10,24, 20,03, 57}.

Example 3.3 ([2]). A simple minimum (10, Cs, 1)-covering (V, B) with ezcess
FE as in Table 1.

Elements: V = Z0.

Blocks: B = {(1,9,4,3,5),(2,0,5,4,6),(4,1,7,6,8),(5,2,8,7,9), (6,3,9,8,0),
(0,7,2,1,3),(1,0,7,3,8),(0,4,7,5,9), (5,6,9,2,8), (2,4,6,1,3)}.

The excess is {07,13,28,59,46}.

Example 3.4. Secven simple minimum (12,Cs, 1)-coverings (V, D;) with ex-
cesses Y;, 1=1,2,..7, as in Table 1.

Let (Zs, B;), i = 1,2, 3,4, be the (8, Cs, 1)-covering, with excess E;, given in
Example 3.2.

1. Four simple minimum (12, Cs, 1)-coverings (V, D;) with excesses Y;, i =
1,2,3,4.
Elements: V = Zg U {a, b,c,d}.
Blocks: D;=B;U {0,q,b,1,c),(0,d,1,a,b), (4, a,5,c,d),(4,b,5,4,¢c),
(21 a,c, 3: d)a (31 a, d$ 7’ b)o (6v b) G, 7: a)’ (2: b) dt 6: C)},‘i = 1» 2t 3a4-
The excesses are E; U {ab,cd},i=1,2,3,4.

2. A simple minimum (12, Cs, 1)-coverings (V, Ds) with excess Ys.
Elements: V = Zg U {a, b, c,d}.
Blocks: Ds={D; — {(0,3,4,5,7)} U {(a,3,4,5,7)}.
The excess is {01, 02, 04,05,06, ab, a3, a7, cd}.

3. A simple minimum (12, Cs, 1)-covering (V, Dg) with excess Ys.
Elements: V = Zg U {a, b, ¢, d}.
Blocks: Dg={Ds — {(0,1,3,2,5)} U {(b,1,3,2,5)}.
The excess is {02, 04, 06, ab, a3, a7, cd, b1, b5}.

4. A simple minimum (12, Cs, 1)-covering (V, D) with excesses Y7.
Elements: V = Zg U {a, b, c,d}.
Blocks: D7={Ds - {(0,1,3,2,5)} U {(c,1,3,2,5)}.
The excess is {02, 04, 06, ab, a3, a7, cd, cl1, c5}.
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Example 8.5. Three simple minimum (14, Cs, 1)-coverings (V, M;) with ez-
cesses X;,1=1,2,3.

Let (Z10, B) be the simple minimum (10, Cs, 1)-covering with excess E given
in Example 3.3. Let M = B — {2,4,6,1,3}.

1. A simple minimum (14, Cs, 1)-covering (V, M) with excess X;. .
Elements: V = Zjp U {a,b, c,d}.
Blocks: M; = M U {(1, a,2,4,b), (a,4,6,¢,3),(a,6,1,4,5),(1,3,b,5,¢),
(2,b,6,d,3),(0,c,2 d,a),(0,b,c,4,d), (b, ¢, a,7,d),(0,b, d, 8, a),
(a,b,8,¢,9),(b,7,¢,d,9)}.
The excess is {07, Oa, 0b, bc, bd, 13, 28, 59,46} .

2. A simple minimum (14, Cs, 1)-covering (V, M2) with excess X».
Elements: V = Zjp U {a,b, c,d}.
Blocks: My = {M; - {(b,c,a,7,d)} U {(0,¢,a,7,d)}.
The excess is {07, Oa, 0b, Oc, 0d, 13, 28, 59, 46}.

3 A simple minimum (14, Cs, 1)-covering (V, M3) with excess Xs.
Elements: V = Zyo U {a,b,c,d}.
Blocks: M3 = {M, — {(0,¢,a,7,d)}U {(2,¢,a,7,d)}.
The excess is {07, Oa, 0b, 13, 28, 2¢, 2d, 59, 46}.

Example 3.6. Three simple minimum (16,Cs, 1)-coverings (V, N;) with ez-
cesses X;,1=1,2,3.

Let N be the block set of the decomposition of (K9+41)V K into 5-cycles (see
Lemma. 2.5). Let V; = {a;,i € Zy0} and I = {agaz, a103,azas, asag, agag}. Let
(Zs, B) be the simple minimum (6, Cs, 1)-covering, with excess E = {20, 04,03,
31,35}, given in Example 3.1. Let (ao, a7) be an edge of I. Define the following
sets of blocks:

Ny = {B-{(0,4,1,3,2),(0,1,2,5,3)}}U{(a0,4,1,3,2),(0,1,2,5,a)}UN, N3 =
{B -{(0,4,1,3,2)}} U {(a0,4,1,3,2)}UN.

1. A simple minimum (16, Cs, 1)-covering (V, N;) with excess X].
Elements: V = Zg U V;.
Blocks: Ny=BUN
The excess is EU I.

2. A simple minimum (16, Cs, 1)-covering (V, N2) with excess Xa.
Elements: V = Zg U V.
Blocks: Ns.
The excess is I U {ao4, a02, a0, a5, 13}.

3. A simple minimum (16, Cs, 1)-covering (V, N3) with excess X3.
Elements: V = Zg U V.
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Blocks: Nj.
The excess is I U {ag4, a92, 30,13, 35}.

Example 3.7. Seven simple minimum (18, Cs, 1)-coverings (V,S;) with ez-
cesses Y;, 1=1,2,..,7, as in Table 1.

Let S be the block set of the decomposition of (K;p+1)V Kg into 5-cycles (see
Lemma 2.5). Let V) = {a;,1 € Zy0} and I = {agas, a,a3,azas, asag, a4ag}. Let
(Zs, B;) be the simple minimum (8, Cs, 1)-coverings with excess E;, i=1,2,3 /4,
given in Example 3.2. Let (ap,a7) and (a;,a3) be two edges of I. Define the
following sets of blocks:

Ss = {B; - {(0,1,2,6,7)}} U {(a0,1,2,6,7)} U S,
Se = {Ss — {(0,4,6,5,3)}} U {(a~,4, 6,5, 3)},
S7 = {85 - {(0,4,6,5,3)}} U {(a1,4, 6,5,3)}.

1. Four simple minimum (18, Cs, 1)-coverings (V, S;) with excesses Y;, i =
1,2,3,4.
Elements: V = Zg U V.
Blocks: S; = B;US,i=1,2,3,4.
The excesses are U E;, 1 = 1,2, 3,4.

2. A simple minimum (18, Cs, 1)-covering (V, Ss) with excess Ys.
Elements: V = Zg U V;.
Blocks: Ss.
The excess is I U {aol, a7, 02, 03,04, 05, 06}.

3. A simple minimum (18, Cs, 1)-covering (V, Sg) with excess Ys.
Elements: V = Zg U V;.
Blocks: Ss.
The excess is I U {apl, ap7,02, @73, a74, 05, 06}.

4. A simple minimum (18, Cs, 1)-covering (V, S7) with excess Yz.
Elements: V = Zg U V.
Blocks: S.
The excess is I U {ag1, 297,02, 2,3, a14,05,06}.

Lemma 3.8. There exists a simple minimum (v, Cs, 1)-covering, v = 22,24,
26,28, with excess as in Table 1.

Proof. Let v = 10+h, where h = 12,14, 16,18. Let I be a 1-factor of K,9. From
Lemma 2.5, there exists a decomposition of (Ko + I) V Ky, h = 12,14, 16,18,
into 5-cycles. Now, replacing the hole of size k by a simple minimum (k, Cs, 1)-
covering with excess E as in Table 1 (such design has been given in Examples
3.4, 3.5, 3.6 and 3.7), we obtain the required designs with excess EUI. O
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4 Main result

In this section we prove that the conditions of the Theorem 2.1 are sufficient for
the existence of a simple minimum (v, Cs, 1)-covering, v > 6, with excess F as
in Table 1.

Lemma 4.1. Ifv=3 (mod 10) , v > 13, then there exists a simple minimum
(v, Cs, 1)-covering with excess as in Table 1.

Proof. Let v =3 (mod 10). By Lemma 2.3, there exists a (v, Cs, 1)-packing
(V. B, L) of order v with leave a triangle L. Let V = {a,b,c,d, ¢, f, g, h}U{a;,i =
1,2,..,v — 8}, L = {ab, bc, ac}. Let (a,d, e, f, g) be a 5-cycle of B. Define four
sets of 5-cycles as follows:

B;=BU {(ar b,c,d, e)v (a'v ¢ f.9 h)}?

B; ={B - {(a)d)e! f)g)}} U {(a,b,d, g, f),(a, c!f!c)d)i(a)g)blc)e)},

B3 =BU {(an bv c dr e), (av G €, f, g)}a

By = BU{(a,b,c,d,e),(a,c,eb,d)}.

Then (V, B;), i = 1,2,3,4, is a simple (v, Cs,1)-covering with excess Z; as in
Table 1. This completes the proof. O

Lemma 4.2. I[fv=7,9 (mod 10), v > 7, then there erists a simple minimum
(v, Cs, 1)-covering with excess as in Table 1.

Proof. Let » = 7,9 (mod 10). By Lemma 2.3, there exists a (v,Cs, 1)-
packing (V, B, L) of order v with leave two vertex disjoint triangles L. Let
V = {a,b,c,d,e, f} U {ai,i = 1,2,...,u — 6}, L = {ab,bc, ac,de,df,ef}. Let
By=BuU {(a» b,c,d,e), (0., e f, d)}’

Then (V, B,) is a simple (v, Cs, 1)-covering with excess C;. This completes the
proof. O

Lemma 4.3. Ifv = 2,4,6,8 (mod 10), v > 12, then there exists a simple
minimum (v, Cs, 1)-covering with excess as in Table 1.

Proof. Write v = h + 10n, where h € {2,4,6,8}. The designs of order v =
12,14,16,18 are all given in Examples 3.4, 3.5, 3.6 and 3.7. The case n = 2
was solved in Lemma 3.8. Now let n > 3, X be a set of size 10n, H a h-set,
h € {2,4,6,8) with XN H =0, H. = Zyo x {r}, r = 0,1,...,n — 1, and
V(K,) = (U H;)U H. Letl, be a 1-factor on V(H,), where r =0, 1,..,n~ 1.
Now we obtain the required design on V as follows.
On the set H U Hy place a simple minimum (10 + k, Cs, 1)-covering of order
10+h, h € {2,4,6,8}, and excess E. On the set HUH;,i=1,2,...,n—1 place
a decomposition of the graph (K0+ 1)V K} into 5-cycles (see Lemma 2.4 ). On
the 10n-set X = HoU H,U---U H,,_, place a decomposition of the complete
n-partite graph Ko, 10,...10 into 5-cycles (see Lemma 2.2). Now, making use of
a simple minimum (u, Cs, 1)-covering of order u € {12, 14, 16,18} with excess
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E as in Table 1, we obtain a simple minimum (v, Cs, 1)-covering with excess
E U (U2l H;) as in Table 1. This completes the proof. O

Theorem 4.4. Ifv =0,2,3,4,6,7,8,9 (mod 10), v > 6, then there erists a
simple minimum (v, Cs, 1)-covering with ezcess as in Table 1.

Proof. The case v = 0 (mod 10) can be found in {2]. The designs of order
v = 6, 8 are given in Examples 3.1 and 3.2. The other cases follow immediately
from Lemmas 4.1, 4.2 and 4.3. O
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Appendix I

1.1 The excesses X;, 1 =1,2,3, for v = 4,6 (mod 10}, n > 14. For v = 6, the
excess is X;.

X: A one factor on v — 6 vertices and a graph {ab, ac, ad, de, df }.

b (<]
a d
o e &
[
f
Xs A one factor on v — 6 vertices and a tree on 6 vertices with one vertex
of degree 5.

X3 A one factor on v — 8 vertices and two trees each on 4 vertices with
one vertex of degree 3.

< é ]

1.2 The excesses Y;, i = 1,2,...7, for v = 2,8 ( mod 10), n > 12. For v = 8, the
excesses are Y;, 1=1,2,3,4.

b€ A one factor on v — 8 vertices and a tree on 8 vertices with one vertex of
degree 7.



Y

Ys

Y,

Ys

Ys

Y,

A one factor on v — 8 vertices and a graph {ab, ac,ad, ae, af, fg, fh}.

4

A one factor on v — 8 vertices and a graph {ab, ac, ad, de, df, bg, bh}.

< 1

A one factor on v — 6 vertices and a graph {ab, ac, bc, ad, be, cf}.

h

A one factor on v — 10 vertices and two trees respectively on 4 vertices
with one vertex of degree 3 and on 6 vertices with one vertex of degree 5.

< < ]

A one factor on v — 10 vertices, a tree on 4 vertices with one vertex of
degree 3 and a graph {ab, ac, ad, de, df}.

> < 1

A one factor on v — 12 vertices and three trees each on 4 vertices with
one vertex of degree 3.

<<<th
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1.8 The excesses Z;, i = 1,2, 3,4, for v = 3 ( mod 10).

Z A cycle of length 7.

Zy A graph on seven vertices {ab, ac, bc, hd, df, fg,gh}.
b

VAN

a c

8 f
Z3 A graph on six vertices {ab, ac, b, cd, de, ef, fc}.

f

Z4 A graph on five vertices {ab, ac, bc, ad, db,af,bf}.
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