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Abstract

Computational Algebra methods have been used successfully in various
problems in many fields of Mathematics. Computational Algebra encom-
passes a set of powerful algorithms for studying ideals in polynomial rings
and solving systems of nonlinear polynomial equations efficiently. The
theory of Gribner bases is a cornerstone of Computational Algebra, since
it provides us with a constructive way of computing a kind of a partic-
ular basis of an ideal which enjoys some important properties. In this
paper we introduce the concept of Hadamard ideals in order to establish
a new approach to the construction of Hadamard matrices with circu-
lant core. Hadamard ideals reveal the rich interplay between Hadamard
matrices with circulant core and ideals in multivariate polynomial rings.
Hadamard ideals yield an exhaustive search for Hadamard matrices with
circulant core for any specific dimension. In particular, we furnish all
solutions for Hadamard matrices of the 12 orders 4, 8, ..., 44, 48 with cir-
culant core. We establish the dihedral structure of the varieties associated
with Hadamard ideals. Finally we furnish the complete lists (exhaustive
search) of inequivalent Hadamard matrices of the 12 orders 4, 8, ..., 44,48
with circulant core.

Keywords:
Hadamard matrices; Computational Algebra; Hadamard ideal; Hadamard equiv-
alence; algorithm. MSC: 05B20; 13P10.

1 Introduction

Hadamard matrices arise in Statistics, Combinatorics, Cryptography and other
areas and have been studied extensively. It is well known that the order of a
Hadamard matrix must be 1, 2 or a multiple of 4. A particularly important
class of n x n Hadamard matrices can be constructed based on n —1xn —1
circulant matrices. These are called Hadamard matrices with circulant core.
Four categories of Hadamard matrices with circulant core have been identified,
essentially using techniques from Combinatorics and Number Theory. We pro-
pose a Computational Algebra formalism to tackle the problem of construct-
ing Hadamard matrices with circulant core of any fixed dimension, or prove
that such matrices do not exist. Our formalism is based on the concept of the
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Hadamard ideal, which exemplifies the algebraic structure of the problem as
well as a group-theoretic interpretation of the structure of the corresponding
variety. The concept of the Hadamard ideal is shown to be a valuable tool for
computation, since it allows us to apply directly a lot of the available machinery
for ideals in multivariate polynomial rings, as it has been developed in the realm
of Computational Algebra.

2 Hadamard matrices with circulant cores

An Hadamard matrix of order n is an n x n matrix with elements +1 such that
HHT = HTH = nl,, where I, is the n x n identity matrix and T stands for
transposition. For more details see the books [16, 22]. An Hadamard matrix of
order p + 1 which can be written in one of the two equivalent forms

1j1..-1
1

. or

: C

1

where C = (c;;) is a circulant matrix of order p i.e. ¢ij = €1 j—i+1(mod p), i said
to have a circulant core. The following matrices are examples for order 12.

111 1 1 1 1 1 1 1111
1/]- 1 - 111 - - - 1 -
1j- -1 - 111 - - -
i1fj» - -1 - 111 - - -
1]- 1 -1 - 111 - -
11- - - -1 -1 11 -
1}j- - -1 - -1 - 111
1{jr - - - - -1 - 11
1/j1 1 - « -1 - -1 -1
1fjr 1.1 - - - - 1 -
1}]- 1 1 1 - -1 - -1
1]1 - 1 1 - - -1 - -
1j1 -1 - - - 1 11 -1
111 -1 - - - 1 1 1 -
1fj- 11 - 1 - - - 111
i1j1 - 11 - 1 - - - 11
1{f1 1 - 11 - 1 - - -1
1j1 1 1 - 11 - 1 - - -
1fj- 111 - 11 - 1 - -
1/f- - 111 - 11 - 1 -
1f{- - -1 1 1 - 11 - 1
1 - - - 1 11 - 11 -
1/- 1 - - - 1 11 - 11
1l- - - - - - - - - - -
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where — stands for —1 to conform with the customary notation for Hadamard
matrices. The two forms are equivalent as described in section 2.1. In this paper
we use the second form as described in section 2.2.

Four families of these kinds of Hadamard matrices have been found by Paley
[13], Stanton, Sprott and Whiteman [19, 23], Singer (17] and Marshall Hall Jr.
[8]. We group these results as a theorem

Theorem 1 (Circulant Core Hadamard Construction Theorem)
An Hadamard matriz of order p+ 1 with circulant core can be constructed if

1. p = 3(mod 4) is a prime [13];

2. p=q(q + 2) where q and q + 2 are both primes {19, 23);

3. p=2' — 1 where t is a positive integer [17];

4. p = 4z?% + 27 where p is a prime and z a positive integer [8].

2.1 Equivalent Hadamard matrices

Two Hadamard matrices H, and H; are called equivalent (or Hadamard equiv-
alent, or H-equivalent) if one can be obtained from the other by a sequence of
row negations, row permutations, column negations and columns permutations.
More specifically, two Hadamard matrices are equivalent if one can be obtained
by the other by a sequence of the following transformations:

o Multiply rows and/or columns by -1.
o Interchange rows and/or columns.

For a detailed presentation of Hadamard matrices and their constructions see
[7], [22], [16] and for inequivalent Hadamard matrices see [6] and [5].

2.2 Construction of Hadamard matrices with circulant core

We detail the construction of Hadamard matrices with circulant core with an
eye to producing a set of nonlinear polynomial equations and study the structure
of the associated ideal which we will call a Hadamard Ideal.

Let n = 4k, for £k = 1,2,... and consider the vector of n — 1 unknowns
(@1,...,8n-1). This vector generates the circulant n x n — 1 matrix (supple-
mented from underneath by a row of —1s)

a) Qaz ee. Qp-i

Qpn—-1 Gy cer Qp-2
Bn—l =

as ag B /3]

-1 -1 ... -1

The Plackett-Burman construction of Hadamard matrices (see [14]) stipulates
that we must have B! _, - B,_; = nl,,_; with the additional constraints:
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e {a),...,8n-1} C {—1,+1}""! (amounts to a set of n — 1 quadratic con-
straints);

e gy +az+...+a,—; =1 (linear constraint).

Once we have constructed the matrix B,_;, an n x n Hadamard matrix is
obtained by supplementing it with a column of 1s from the left

1 aq a ... Gp-}

1 ap-1 a1 ... @p-2
Hn = 1 . . . .

1 ap a ... @

1 -1 -1 ... -1

3 Hadamard Ideals

The matrix equation Bf,_, - B,_; = nl,_; gives rise to a set of 2k — 1 equations
sy =0, ..., sax—1 = 0 where each s; is a quadratic homogeneous polynomial
with 4k — 1 terms plus the constant term 1.

Notice that the equations corresponding to the diagonal of the matrix equa-
tion B,‘,_,l « Bn—1 = nl,_;, boil down to the one equation

a+...+ad2_+1=n

which is satisfied trivially, since a? = ... =a2_; =1.
Moreover, a succinct algebraic description of the quadratic constraints given
above is provided by the following set of n — 1 algebraic equations:

a?-1=0,...,a2_;—1=0.

Another way to express this, is to say that we target some elements of a positive-
dimensional variety which are located inside the zero-dimensional (finite) sub-
variety defined by

{-1,+1} x ... x {-1,+1}.

n—1 terms

To systematize the study of the system of polynomial equations that arises from
considering Hadamard matrices with circulant core, we introduce the notion of
Hadamard Ideal. This allows us to apply numerous tools of computational
algebra to the study of Hadamard matrices with circulant core. This connection
between an important combinatorial problem and ideals in multivariate polyno-
mial rings is exploited in this paper from both the theoretical and the computa-
tional points of view. The interpretation of the Circulant Core Hadamard
Construction Theorem in terms of Hadamard ideals is also of interest be-
cause it implies some non-trivial algebraic statements. The algebraic ramifica-
tions entailed by the Circulant Core Hadamard Construction Theorem
are important because the theorem is of number-theoretic nature and a priori
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there are no direct dependencies between number-theoretic conditions on the
form of an ideal in a multivariate polynomial ring and the structure of the ideal.
Hadamard Ideals are also defined for other constructions of Hadamard matrices
based on the concept of circulant core [11]. The ideals that arise in all of these
constructions share numerous similar characteristics and this justifies using the
term Hadamard Ideal to describe all of them. When it is not clear which con-
struction we are referring to, the name of the construction may be mentioned
explicitly, to remove any potential ambiguities. In the sequel, we will use the
standard algebraic notation () for an ideal in a multivariate polynomial ring,
see for instance {20, 21].

Definition 1 For k = 1,2,... the k-th Hadamard ideal (for a Hadamard
matriz with a circulant core) is defined by:

Hi = (s1,...82%k-1,81+ ...+ any — 1,02 —1,...,a2_, — 1).
Notation 1 We will also use the notation
Hi = (h1,. .. hak—1, hok, hogs1, . . . hok—1)
wn direct one-to-one correspondence with the definition of Hy, given above.
Remark 1 H; is generated by 2k — 1+ 1 + 4k — 1 = 6k — 1 polynomials.

Property 1 Hy is a zero-dimensional ideal. (This is evident, because all points
in Hy, are also points of {—1,+1}""! which is in turn, a finite set).

The term zero-dimensional ideal, refers to the fact that the system of polyno-
mial equations by = 0,...,hgx—1 = 0, corresponding to Hy, has a finite number
of solutions. The dimension of an ideal of a multivariate polynomial ring in
general, is defined in Commutative Algebra in terms of independent subsets of
variables see {2], or in terms of ring-theoretic concepts see [4].

Property 2 s;+...+ sox—1 = €2 + (2k — 1) where e; is the second elementary
symmetric function in the unknowns ay, ..., ap_;.

The second elementary symmetric function e, in the unknowns ay, ..., a,—
contains (*;') = (2k — 1)(4k — 1) terms.
Fact: H; is a radical ideal for k£ = 1,2,3,4,5, (computations in Magma and
Macaulay).

Remark 2 Two solutions of the system corresponding to the Hadamard ideal
Hi will be termed equivalent, if the corresponding Hadamard mairices are
equivalent in the sense defined in 2.1.

Lemma 1 For any k = 1,2,..., the 6k — 1 generators of the Hadamard ideal
Hy. are not algebraically independent. More specifically we have the equation:

hy + ...+ hgg—1 = 0.
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Proof Consider the more general equation (linear combination)

H =alhy +... 4+ hog—1) + Bhox + Y(hok41 + ... + hgr—1) (1)

for scalar (constant polynomials) , 3, 7. We will use the properties by + ...+
har—1 = ez + (2k — 1) and hyx = e; — 1. Moreover, notice that we have

hoksr+...+heror =al +...+af_y — (4 —1) = €2 — 2ep — (4k — 1)

where e;, ez denote the first and second elementary symmetric functions in the
variables a;, ..., asx—; respectively. By construction of the Hadamard ideal
Hi we have that e; = py = a; + ... + a,—; = 1 and to evaluate e, we use
the expression of the elementary symmetric functions in the power-sum basis
(an instance of what is generally referred to as the Jacobi-Trudi formula in
Combinatorics, see [12] and [20])

_ 1
62—5!'

(3] 1
2e; e

2
h_P =1
=3 5 and dually p» T

1

2
= ey — 2ej.
P2 P 1 2

By construction of the Hadamard ideal #; we have that pp =a?+...+a2_, =
n —1 = 4k — 1. Combining the expressions for the three separate parts of the
linear combination (1) we obtain:

H=a(es+2k-1)+B (e —1)+7 (es>—2e,—4k+1) =

2
—a (%’-—%+2k—1)+ﬂ(p1—1)+'y(p2—4k+1)

—a (%—‘“‘2‘1 +2k—l)+7(4k—1—4k+1)=0.

[m]

The above lemma reveals some of the structure of the 6k — 1 generators of
the Hadamard Ideal. It could possibly be used in proofs of non-existence of
solutions via Hilbert’s (weak) Nullstellensatz, which provides us with a necessary
and sufficient condition for solvability of a system of polynomial equations. In
particular: a system of polynomial equations does not have a common
solution in C" if and only if 1 belongs to the ideal defined by these
polynomials. See [3] and [21] for a detailed exposition of these and related
ideas.

If we can exhibit a linear combination (with scalar or polynomial coefficients) of
the 41 generators (or some of them) of the Hadamard Ideal 7, which is equal to
1, then this furnishes a proof that the ideal 7 is equal to the whole polynomial
ring in 27 variables and that the corresponding variety (set of solutions) is empty.
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4 Computational results

In this section we present the computational results we obtained via Hadamard
ideals and some computational algebra techniques. This section contains:

1. a complete description of all Hadamard matrices with circulant core for
k=1,...,12 up to H-equivalence,

2. combinatorial and algebraic constructions that detail how to generate all
equivalent Hadamard matrices of a certain order and locate the inequiva-
lent ones between them,

3. some heuristic arguments that we used to produce solutions in early stages
of our investigations.

We want to emphasize that the importance of these computational results lies
not in the biggest value of k£ that we can currently solve, but in the insight
we gain and in the general results that can be established, see for example the
analysis of H-equivalence.

4.1 k=1 (n=4)

Form the matrices B3 and B and their product B - Bj:

al a2 a3 al a3 a2 -1
_ | a8 al a2 ¢ _ _
B; = a? a3 af By=| a2 al a3 -1

-1 -1 -1 a3 a2 al -1
The Hadamard Ideal H, is then given by:
Hy=(ala2+alal +a2a8+1,al +a2+a3—1,a12 1,022 -1,03%-1)
and there are 3 solutions to the corresponding system of equations:[al = —1,
a2=1a3=1),[al =1,a2=1,a% =-1],and [al =1, a8 =1, a2 = -1].

Each one of these 3 solutions gives rise to a a Hadamard matrix of order 4 with
circulant core:

1 -1 1 1 1 1 1 -1 1 1 -1 1
1 1 -1 1 1 -1 1 1 1 1 1 -1
1 1 1 -1’ 11 -1 1 |° 1 -1 1 1
1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 -1

All three of the above matrices are H-equivalent.
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4.2 Exhaustive search results for k£ <5
For reference purposes we give here the definition of the Hadamard Ideal Hs:

Ho={ alaf+a7a8+ab6a2+a5al +afa?+alab+a2a5+1,
al a2+ a7al +ab6a7+a5a6+afa5+a%af+a2a3+1,
alal +a7a2 +ab6al +a5a7+afab+a3a5+a2af +1,
al +a2+a3+af+a5+ab+a7-1,
al? - 1,022 - 1,03 - 1,a4% - 1,052 — 1,a6% — 1,27 - 1)

A synopsis of the computational results for & = 2,3,4,5 is in the table below.
For each value of k we computed all solutions, but since all solutions give rise
to equivalent Hadamard matrices, we give only one solution for each k.

k | # solutions | one solution
2 14 al =1 a2 =1 ad =1 ad=~1 a8§=1 ab6=-1 al=-1
3 22 al=-1 a2=1 a3 =1 ad =1 a5=-1 a6=1 aT =1
aB = —1 a9 = 1 al0= -1 all= -1
4 30 al = —1 al = -1 ald = -1 a4 =1 a5==1 a6=~1 aT7T=1la8=1
a9 = -1 al0 = 1 all= -1 al2=1 al3=1 ald =1 ald =1
al =1 al=1 al = ~1 ad = =1 ab=1 af = 1 a7 =1
S 38 a8=1 a0=-1 ald=1 all=-1 oi2=1 ald=-1
al4 = -1 ald = -1 al6= -1 al?7 =1 al8 = 1 alf = -1

4.3 Exhaustive solution for £ =6,7,8

In this section we group the computational results for £ = 6,7,8 using the
Hadamard ideal formalism and some additional algebraic techniques.

4.3.1 k=6

The system is too big to be solved directly by Maple. However, two approaches
based on the Hadamard ideal formalism, allow us to find some solutions quickly
and to state conclusively that the system has 46 = 8 - 6 — 2 solutions.

(A) Heuristics with prescribed values

Observing properties of the complete solution sets for k = 2,3,4,5 we dis-
cover that:

¢ Examining the sets of solutions for &£ = 2,3 we see that there are exactly
2 solutions with a; =ay = a3 = 1.

¢ Examining the sets of solutions for k£ = 4,5 we see that there are exactly
2 solutions with a;y = a3 =a3z =a4 = 1.

We are thus led to assume that for k = 6 there could be exactly 2 solutions with
a) = a2 = a3 = a4 = as = 1. Incorporating this heuristic argument in algebraic
form in the definition of the Hadamard Ideal Hg we do indeed obtain the two
solutions listed below:

[ ]

a1 = 1,02 =1,a9=1,a{ =1,85=1,06 = —1,a7 = —1,08 = —=1,a9 = —1,010 = 1, all = -1,a12 =1,

al3 = ~1,al4{ = -1,al5 = 1,016 = 1,817 = —1,a18 = —1,08l9 = 1,020 = 1,081 = —1,a28 = 1,389 = —1]
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fal =1,a2 =1,a8 =1,af =1, a5 =1,a6 = -1,a7=1,a8 = —-1,a9 = 1,60 = 1,01l = —1,ai2 = —1,

als = 1,al§ 1,018 = =1,816 = —1,al7 = 1,618 = —=1,4a19 = 1,020 = —1,a21 = —1,022 = —1,a8% = —1)

These two solutions give rise to two (equivalent) Hadamard matrices of order
24.
(B) Computer search

The Hadamard Ideal Hg is defined over 23 variables. An exhaustive com-
puter search would need to check for all 222 = 8388608 possible cases to detect
solutions. The linear equation a; + ... + a3 = 1 could serve to sieve out non-
solutions quickly. But this approach has the disadvantage that it would still
require a lot of computing time and it would be entirely impractical for bigger
values of k.
Using the Hadamard Ideal Hg we can detect a reasonable cut-off point in the
number or variables that we can bound with a series of nested +1 loops. For each
of the possible cases that arise, we can then solve the system corresponding to the
associated restriction of the Hadamard Ideal Hg. It turns out that a good cut-
off point is 13. More specifically, we solve the 2!3 = 8192 systems arising from
the restriction of the Hadamard Ideal Hg when the first 13 variables a;,--- ,a;3
take all possible +1 combinations. We obtain exactly 46 solutions, two of which
have been given above, using a heuristic argument.

4.3.2 k=7 (n=28)

The system corresponding to the Hadamard Ideal H7 is defined over 27 variables.
We performed an exhaustive search for this system in C. No solutions were
found. This implies the following equivalent statements:

o the variety of the Hadamard Ideal H7 is empty,
o the Hadamard Ideal H; generates the whole space K|ay,- - - ,az7],
e 1 belongs to the Hadamard Ideal H;.
These results constitute another proof of the following theorem (see [1])
Theorem 2 There is no 28 x 28 Hadamard matriz with circulant core.

Two independent proofs of this theorem can be furnished using the Hadamard
ideal H7 by:

e computing a minimal reduced Grobner basis for a degree order for H.
The result will be equal to the singleton {1} and this means that the
system does not have any solutions.

e exhibiting a linear combination of (some of) the 41 generators of H7 which
is equal to 1. This means that H; = K[a,,...,a27] and that V(H7) = 0.
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4.3.3 k=8 (n=32)

The system corresponding to the Hadamard Ideal Hg is defined over 31 variables.
We performed an exhaustive search for this system in C and 248 solutions were
found. We have that 248 = 4- (8 - 8 — 2). The following two solutions produce
inequivalent 32 x 32 Hadamard matrices with circulant core:

¢----1-1-111-11---11111--11-1--1
el--1--1----111-1-1---1111-11-11

Inequivalence can be checked easily in Magma. This constitutes another proof
of the following theorem (see [10])

Theorem 3 There are only 2 inequivalent 32 x 32 Hadamard mairices with
circulant core.

4.3.4 k=9 (n=36)

The system corresponding to the Hadamard Ideal Hy is defined over 35 variables.
We performed an exhaustive search for this system in C and found 70 solutions.
Since 70 = (8- 9 — 2), we expect that there will be only 1 inequivalent solution.
One such solution (the first one found by the program) is:

¢----1--111-11111---111-1--1--11-1-1
This constitutes another proof of the following theorem (see [1])

Theorem 4 There is only one inequivalent 36 x 36 Hadamard mairiz with cir-
culant core.

4.3.5 k=10 (n=40)

The system corresponding to the Hadamard Ideal Hyq is defined over 39 vari-
ables. We performed an exhaustive search for this system in C. No solutions
were found. This implies the following equivalent statements:

e the variety of the Hadamard Ideal H,q is empty,

e the Hadamard Ideal H;o generates the whole space Klay,--- ,a31),

e 1 belongs to the Hadamard Ideal H,q.
These results constitute another proof of the following theorem (see [1])
Theorem 5 There are no 40 x 40 Hadamard matrices with circulant core.

Two independent proofs of this theorem can be furnished using the Hadamard
ideal Mo as indicated in a previous paragraph for 5.
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4.3.6 k=11 (n=44)

The system corresponding to the Hadamard Ideal H;; is defined over 43 vari-
ables. We performed an exhaustive search for this system in C and found 344
solutions. Notice that 344 = 4 - (8 - 11 — 2). Using Magma it can be shown
that these solutions give only 2 inequivalent Hadamard matrices with circulant
core of order 44. The following two solutions, found by Baumert [1], produce
inequivalent 44 x 44 Hadamard matrices with circulant core:

0l----- 11-11--111-11----1111-1111--1-1-1-1--
e1l-11-1-11---1----- 111-1---11111-111--1-1--1
Inequivalence can be checked easily in Magma. This constitutes a proof of

Theorem 6 There are precisely 2 inequivalent 44 x 44 Hadamard matrices with
circulant core (ezhaustive search).

4.3.7 k=12 (n=48)

The system corresponding to the Hadamard Ideal H;, is defined over 47 vari-
ables. We performed an exhaustive search for this system in C using high-
performance computing and found 94 solutions. Notice that 94 =1-(8-12 —
2). Using Magma it can be shown that all these solutions produce equivalent
Hadamard matrices of order 48 with one circulant core. Here is a solution that
produces a 48 x 48 Hadamard matrix with circulant core:

©----1----11-1-1---11-11--1--111-1-1--1111-11
111

This constitutes a proof of

Theorem 7 Up to Hadamard equivalence, there is precisely one 48x48 Hadamard
matriz with circulant core (ezhaustive search).

5 Additional algebraic techniques

For k& > 7, the solution of the system corresponding to the Hadamard Ideal H;
cannot be obtained in a reasonable amount of time in Maple. To increase the
efficiency of our approach and thus be able to treat bigger values of &k, we can
proceed in three ways:

o Use modular (p-adic) techniques to compute the solution with lezicograph-
ical Grébner bases computations. When we compute a Grobner basis
modulo a prime p, we avoid the well-known problem of intermediate ex-
pression swell. Therefore, the computation is always much faster that the
conventional computation over the integers or over the rationals. More-
over, if we choose the prime p carefully we obtain reliable indications for
the number of solutions of the system.
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o Use FGLM and Griobner Walk algorithms to speed up the Grabner bases
computations. These are essentially change of basis algorithms, in the
sense that we first compute a Grébner basis for an easy monomial order
and then we use this basis to compute the lexicographical Grobner basis.

e Use total degree Grobner bases computations to compute the dimension of
the quotient ring K|ai,...,an—1]/Hk. A classical technique in Grébner
bases theory is the determination of the dimension as well as a basis of the
quotient ring Kz,,...,zn]/I for an ideal I, by means of a total degree
Grobner basis computation. Total degree computations are in general
much faster that the corresponding lexicographical computations but they
encapsulate nevertheless the information on the dimension of the quotient
ring (as a vector space) which is equal to the number of solutions. Notice
that this time the approach is not constructive. We compute the number
and thus the existence, of solutions, but we don’t find them explicitly.
This approach yields a basis of the quotient ring as a vector space.

We illustrate the third option above, in the case k = 3. The Hadamard Ideal
‘H, is defined as follows:

M3 = (af a2 + alf al + al0 alf + 69 610 + a8 a9 + a7 a8 + ab a7 + a5 a6 + af a5 + oS af + a2a¥ + 1,
al a3 + alla2 + al0al + a9all + aBol0 + a7 a9 + s5 a8 + a5a7 + af a5 + afas5 + afaf + 1,
at af + alt a3 + al0 a2 + a9 al + aB all + a7 al0 + a6 a9 + a5 af + af a7 + a3a6 + afas + 1,
a5 af + all af + al0 a3 + a9 o2 + a8 af + a7 all + a6 al0 + a5 a9 + af a8 + a7aF + aba2 4 1,
a6al +allac5 +al0af +a9a3 +a8af + a7al +aball +a5al0+afa9+aSa8+a%a2 41,
al + 024 a3+ al + a5 + 6 + o7 + a8 + a9 + al0 + all — 1,
a12 1,022 - 1,432 - 1,42 - 1,05% - 1,06% —1,07% = 1,a8% —1,a9% ~1,a10® —1,a11%2 = 1)

Upon computing a total degree Grobner basis for H3 with Magma, we obtain
the following list of 28 initial monomials:

I3 = [al,a2,a.9,a4,a52,a5 a6,a5 a7,a5 a8,a5 a9,a5al10,all a5,a62, a6 a7,

a6 a8al0,a6 a8 all,a6a9,a6 al0all, 072, a7 a8,a7a9al0,
a7a9 all,a7 al0 all,a82, 08 a9 al0,a8 a9 all,a9?, a10%, 2113

Incidentally, at this point we can also verify that the system is of dimension 0
(has a finite number of solutions) because the separation property is satisfied:
for each variable a; there is an element of the form a] for some power j in I3 .
To compute a vector space basis (and at the same time the dimension) of the
quotient ring Klay,...,a11)/Hs we need to compute the set of monomials u
such that no monomial in I3 divides them.

U = {u: u is a monomial such that A g € I3 with gju}.

One way (not the fastest one) to compute this set U in this particular example,
is to build the list of all products of the 11 variables a,,...,a1;, by 1, by 2,
by 3 and by 4 and check the divisibility condition. We need to consider only
squarefree monomials, because in I3 there are either linear or quadratic terms
in the variables. We build this list in Maple
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c:=[

op(choose([al,a2,a3,a4,a5,a6,a7,a8,a9,a10,al11], 1)),
op(choose([al,a2,a3,a4,a5,a6,a7,a8,a9,a10,al11], 2)),
op(choose([al,a2,a3,ad,ab,a6,a7,a8,a9,al0,a11], 3)),
op(choose([al,a2,a3,ad,a5,a6,a7,a8,a9,a10,a11], 4))
]; cc:=map(convert,c,‘*‘); nops(cc);

and it turns out that it contains 561 elements. After filtering out those mono-
mials which are divided by some monomial in I3 we get a list of 21 monomials
which make up U, together with 1 which always belongs to U

U=|1,a10,a11,45,06,a7,08,a9,al0all,a6 al0,a? al0, a8 al0,a9 al0,
a6 all,a7all,a8 all,a9all,ab a8,a?a9,a8 a9,a10all a8,al0 all a9).

Therefore there are 22 solutions to the system, which agrees with the number
of solutions found by Maple.

6 Structure of the variety V(Hy)

In this section we describe the structure of the variety V(H;) from a combina-
torial/algebraic and a group-theoretic point of view. The computational results
of the previous paragraph are summarized below for easy reference:

E_|1]2 |3 |4 |5 |6 [7]8 |9 |10]11 |12]
[V(He) [ 3] 14227303846 |0 [ 248 |70 | 0 | 344 [ 94 |

Table of the number of solutions for the Hadamard Ideal Kk fork=1,..., 12.

6.1 A combinatorial/algebraic interpretation
The number |V (H;)| (number of elements of the variety V(Hy)) is equal to:

e the number of solutions of the system of equations corresponding to the
6k — 1 generators of Hy;

e the dimension of the quotient K(ai,...,an—1]/Hx as a vector space.

We notice that for k = 2, 3,4, 5,6 we obtain 8k — 2 solutions and that for k = 8
we obtain 2(8% —2) solutions. A combinatorial interpretation of these quantities
can be given by considering a specific solution a,...,a,—; as a finite sequence
of length n — 1 = 4k — 1. Two sequences such that one is the reverse of the
other are considered to be equivalent. Two sequences such that one is a cyclic
permutation of the other are considered to be equivalent. If we reverse this
specific solution, then we obtain the equivalent solution a,_i,...,a;, which
produces 4k — 1 cyclic permutations as well. Therefore, from one solution, we
find 2 x (4k — 1) = 8k — 2 equivalent solutions. These 8k — 2 equivalent solutions
belong to the same equivalence class with respect to the equivalence relation
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X defined in § 2.1. For k = 2,3,4,5,6 there is only one equivalence class with
respect to the equivalence relation e

For k = 8, there are two inequivalent solutions (the ones mentioned in § 4.3.3)
and each one produces 8 - 8 — 2 = 62 solutions, so that we get a total of 124
solutions. Equivalently, for k = 8 there are two equivalence classes with respect
to the equivalence relation £

For k = 9, there is only one inequivalent solution.

In general, there are hi(8k — 2) solutions for Hj, where h; is given in the
following table:

k|
he |

|2]3]4]5]6]7]8]9]10]1
[1{t]1f1]1fof4]1]o |4

‘Table of valuea of by for Hy for k=1,...,12.

1] 12|
1

L Rt

The discussion above can be stated as:

Theorem 8 If for a specific n = 4k there are n x n Hadamard matrices with
circulant core, then there are at most hy, inequivalent such matrices.

or equivalently

Theorem 9 If for a specific n = 4k the number of equivalence classes of the
equivalence relation K is non-zero, then it is at most equal to hy.

6.2 A group theoretic interpretation
6.2.1 The dihedral group formalism

The dihedral group of order 2n is denoted Ds,, and is defined via the two gen-
erators p (the rotation) and e (the reflection) and the relations

pP"=1=eandep=ple (2)
among them. Then the 2n distinct elements of D5, are

1, Py p21 s ’pn—l’ €, pe, PZG: s :p"_lf'

The geometric interpretation of the group generators p and ¢ is usually given in
terms of a regular polygon in the plane with n edges. Specifically, p denotes the
rotation about the center of the polygon through angle 27 /n and € denotes any
of the n reflections. When n is even, the n reflections are about the lines joining
opposite vertices of the polygon and the lines joining mid-points of opposite
edges. When n is odd, the n reflections are about the lines joining vertices of
the polygon to mid-points of opposite edges. See [15] for more details.
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6.2.2 Dihedral group structure of V(H)

For a fixed k (resp. n), suppose that we choose an element [a;,asz,...,a,—1] of
the variety V(H;) and we define it to be the unit element:

1=|a1,a2,...,6p1].
Now mimic the definition of the dihedral group Ds,, and define
1. the “rotation” p, such that

p([alaaz) oo 1aﬂ—~l]) = [02, RS :an—laal.]
this is actually a left shift by one operation.

2. the “reflection” € such that
€([a1,a2,...,8n-1]) = [@n-1,...,a2,a1]

It is easy to see that the relations (2) are satisfied. Moreover, the solutions
constructed by the solution we started with, according to the elements of the
dihedral group Dy, are exactly the 8k — 2 solutions constructed in the previous
paragraph.

The discussion above can be stated as:

Theorem 10 If for a specific n = 4k we can find an n x n Hadamard matriz
with circulant core, then using the Dyn_y) dihedral group formalism we can
write down 2(n — 1) = 8k — 2 equivalent Hadamard matrices.

The above theorem is important because it can be used to speed up consider-
ably the detection of inequivalent solutions and correspondingly of inequivalent
Hadamard matrices for fixed values of n.

7 Acknowledgments

This work is supported in part by a grant from the National Sciences and En-
gineering Research Council of Canada, NSERC and a grant from the Research
Office of Wilfrid Laurier University. All computations in Magma have been
performed remotely at the Centre de calcul formel MEDICIS, Ecole Polytech-
nique, Paris, France. All serial C computations have been performed at the
Computer Algebra Research Group, Wilfrid Laurier University, Waterloo, On-
tario, Canada. All parallel C computations have been performed remotely at
a SHARCNET high performance computing cluster, University of Western On-
tario, London, Ontario, Canada.

61



8 Conclusion

In this paper we introduce the concept of Hadamard ideals to the study of
Hadamard matrices with circulant core. Hadamard ideals establish a rich and
fruitful connection between Hadamard matrices with circulant core and ideals
in multivariate polynomial rings. This connection allows us to apply much of
the machinery of computational algebra to investigations concerning Hadamard
matrices with circulant core. This new approach is suitable for proving in a uni-
fied manner many old and new results about Hadamard matrices with circulant
core.
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