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Abstract

A (previously reported) surprising and attractive hypergeomet-
ric identity is established from first principles using three hy-
pergeometric transformations.

Introduction

In (1], a hitherto unseen hypergeometric identity arose naturally as a con-
sequence of producing a new form for the general term of the so called
Fennessey-Larcombe-French sequence (see (24) of Remark 2 therein, p.90).
Adopting standard notation, it is thus:

Theorem For integer n > 0,

2 1 1
2 -n,5,"3
(2n+1)< :) 31.!«*2(1 22

The identity, as far as anyone is currently aware, is not, it seems, a spe-
cial case of an existing hypergeometric identity. On the contrary, as will be
shown, its formulation requires no little effort and ingenuity, on which point
the author is indebted to Professor Christian Krattenthaler for kindly pro-
viding a proof outline (computer-assisted via his symbolic package “HYP”!).
Because it is non-trivial, the setting down of the full proof will no doubt

1See http://www.mat.univie.ac.at/~kratt/hyp_ hypq/hyp.html#HYP.
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interest people working in this specialised area of mathematics.

In this short paper a first principles proof of the result is detailed, based on
certain hypergeometric transformations. For ease of reference we list them
at the outset. Result I appears in, for example, Slater’s well known 1966
text [2], and Result II—generally (but wrongly) accepted to be due to J.
Thomae—is given in Gasper and Rahman [3] in a slightly different guise.
Result I1I is a contiguous relation which is easily verified (by showing that
the coefficient of a general term 2°, say, is the same on both Lh.s. and r.h.s.)
and used here for p = 2,3 as needed.

Result I For integer d or f (or both) <0 [2, (2.4.2.1), p.65],
oF, (f,1+f—a,d _1> _
a,9
I‘(.‘J)l"(y-f-'d)d d1+f—-g,305+3f
Te-ATlo-d) “*\aj+3f+3d-301+3f +3d-1g

Result I For integer b or ¢ (or both) < 0 (see the Appendix),

P a,b,c 1 _T(e=b-c)(e) P d-a,b,c
372\ dye T Te-ble—c) > *\d1+b+c—e
a,Al,...,A,,

F, z =
”“”(Bl,...,B,, )

a_l,Alv"'yAp
"“F’( Bi,...,B, z)

A]_"’Ap a,Al+1,..o,Ap+1
+ (Bl--.B,,)z"“FP( Bi+1,...,B, +1

1).
1).

Result III For p > 1,

Whilst Result II is used fairly commonly, the Result I transformation be-
tween a nearly poised 3F>(—1) series and a 4F3(1) series is quite an exotic
one which is rarely applied. For this reason the route through our proof
cannot be described as obvious, the limiting arguments required in places
perhaps adding elements of appeal to those interested in this type of proof
construction. The identity in question seems quite attractive, possessing a
rather pleasing compactness (viewing the proof in reverse, this is seen to
arise essentially from the somewhat fortunate combining of terms gener-
ated by Result III), though time alone will tell whether or not the result
becomes one of any significance within the study of binomial coefficient or
hypergeometric series identities.
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Denoting by (¢)m, in usual fashion, the rising factorial function
Wm =uw+1)(u+2)(w+3)---(u+m-1) (1)

defined for integer m > 0 (where (u)g = 1), our Theorem can be re-cast

slightly:

W (bhi-inede
27t1(1)(3)n41

Theorem For integer n > 0,

1 1
—M 33
3F2 ( 1

1
g~ m—z R

It is this version which will be proved. It is trivial to see that it holds for
n = 0, and the case n = 1 may be checked by hand without difficulty. For a
minor technical reason explained later, we assume n > 2. Three other sub-
results are employed in places, in addition to Results I-III already given.
The first,

gl(z) =T(z +1), (2)

is a familiar one. Replacing z with z — 1 in (2) and iterating it m ~ 1 times
leads, using (1), to

) _
Ry = @ mm 3
our second result. Finally, it is easy to deduce from (1) that
(@m = (D)™ (—z —m + 1)p. 4

The Proof

Our starting point is toset f = —n,d=—},a=%-nandg=-1-n+e
in Result I, which reads
_1)

(-1 -n+e)l(e) -3.3- €,—3n,1—1in
I(—1 +e)(-n+e¢) s

1
2
13 1 1
(1=€)n o -35-6~3Mz— 30
C-e)n P\ Lonl-leg1-1
2 n 2 ' 2 2% 2
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since, applying (3),(4) consecutively,

I(-1-n+e)le)  T(—3+e—n) T(e)
T(-1+e)l(-n+e) = T(-3+¢) T(e—n)
1
= Clre—m, o e
- g__l_e)_ (1= ). (P2)
3 n

Thus, in the limit € — 0 the Lh.s. 3F5(—1) series of the Theorem can,
noting that (1), = n!, be written as

1) )

from (P1), having imposed a convenient re-ordering of upper/lower param-
eters in the r.h.s. 4 F3(1) series. This is in readiness for the next step—which
is to transform the latter via a p = 3 instance of Result III (with ¢ = -32-,
Ay = —1,...,B3 = } — n; z = 1)—whereupon, after some simplification,
it takes the form of a combination of 3F»(1) series:

1) . (P4)

We now apply Result II to the two gF3(1) series of (P4), both of which
require careful treatment. In the first instance, putting a = —1, b= —1n,

: : 1 . i 2 2
c:f—in,dzlande=-2-—n+s,ltglves

1 1 1 1 3 1 1 1
—3 =3z~ | ) it L8 Rl 1
3F2( A-n+e 1)—f(n,e)3F2( 11-e 1), (P5)
where P(E)T(L )
(A —n+e
fln,e) = 2 (P6)

(3 -3n+e)l(—3n+e)
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There are clearly separate cases to consider in employing Result I1, depend-
ing on whether n is odd or even (which results in either one of b or ¢ being
a (strictly) negative integer).

Case A: Suppose n (even, > 2) = 2m, where m = 1,2,3,4,..., so that
b= —in=-1,-2,-3,—4,... (with c rational). Then

f(n,e) = f(m(n),e)
L(e)L(3 —2m +¢)

(3 -m+e)l(-m+e)
(1=€)m

(G3+m—¢)m’ (P7)
again making use of (3),(4). Letting € — 0,
f(n) = f(m(n))
(Dm
(m + 3)m
(3n)!
(%n + %).:—,n
3 1-2-3. ... -%n
T GrtDEr+ DGR+ (- 3)
2:4-6- --- .
(n+1)n+3)(n+5)---(2n—1)
-1
= 2"( 2n ) . (P8)

Case B: Suppose instead n (odd, > 3) =2m + 1, where m = 1,2,3,4,...,

so that ¢ =4 — In=—1,-2,-3,—4,... (with b rational). Then

f(n,e) = f(m(n),e)
IE)I(-1 —2m+e¢)
[(-m+e)l(-3 —m+e¢)
(1 - e)m
BG+m—e)m

(P9)

from (3),(4) yet once more. This time in the limit,

[3(n—D)!

fm) (%n + 1)%(7;-1)

69



1-2:3- -+ -imn-1)
En+ )(In+2)(En+3)-(n-3)

2.4.6- - -(n-1)
(n+2)(n+4)(n+6)---(2n-1)
-1
= 2"(21’:) . (P10)

1 1

In both Cases A,B f(n) is, as anticipated, found to be the same expression,
1 _1
—5,—3N, 5 — N
F. 22 T3
342 ( 1 1_ n

and (P5) duly yields
1)
12

-1 3 1, 1 1

2n 5y —5N,5 — 3N

= 9n F 2y 2°M2 2
(n) “’( 1,1

As stated, Result IT is applied also to the second r.h.s. 3F5(1) series of (P4),
this time choosinga =1, b=1-1in,c=3-1In,d=2ande=§-n+e,

2
whereby we obtain

1) : (P11)

l’l_ln’g.—_l.n §.’1_ln,.3._ln
3F2<2 APLIACL 1) =gme)sis (1 HETE 1), 1o
12 7
with (-1 I3
oln€) = = +or(G —nte) (P13)

T} -in+e)l(—in+e)

Again the parity of n needs consideration, and at this point the assumption
that » > 2 comes into play since n = 2 is the smallest value which guaran-
tees one of b or ¢ is, as required, a non-positive integer.

Case A: Here n (even) = 2m, where m = 1,2,3,4,... Thenb=1-}n =
0,-1,-2,-3,..., and

g(n,e) = g(m(n),e)

L(-1+¢&)(2 - 2m +¢)

T} -m+e)l(-m+e)

L-2m+e T((F-2m+e)
-1+& T3 —-m+e)l(-m+e)

i

(P14)

by (2). Comparison of g(n,&) with f(n,€) in the penultimate line of (P7)
(see the previous Case A for n even) gives by inspection that, in the limit
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e—0,

1 —-1 -1
_s=n_.{ 2n . 1WN\on( 2n
g(n) = = 2 ( n ) = (n 2)2 ( n ) (P15)
directly from (P8).

Case B: Here n (odd) = 2m + 1, where m = 1,2,3,4,..., so that ¢ =
$ - 1n =10,-1,-2,-3,... By a similar process to that in Case A just
discussed, a consistent form of g(n) is obtained (this is left as a straight-

forward reader exercise).

Having established that g(n) is as in (P15) for both n odd/even, (P12)
gives

11 1 3 1
5 —5n,5 — 5N
2? 2

3F2< 12 2

2.3 _n
12

1
§n
1
2
-1 1 _1.1_1

n 1,1 1)

+ n(n —-1) 3F2( 2 1-in3-1n

2 2,2

1)] (P18)

on employing Result III (for p = 2) to the first 3F5(1) series in the r.h.s. of
(P17) as appropriate. Our proof ends with the substitution of the 4F3(1)
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series above in (P18) back into the r.h.s. of (P3), which becomes, bearing
in mind the easily established relations

(3) =@+n(3) . 2n(2:)_1=%%’ (P19)

—_p. 1 _1
3F2( n’2’ 2 _1)

1 _p_1_
3 -n, 3 n
2 1 1 1 1
- n! [an (5’—57%5 - 3n
- 1 1

2n+l(§)n(§)n+l

H

511_1 1

nt? N I A
21 ()0 (3)ni1

contraction of the r.h.s. here being the immediate consequence of a partic-

ular instance of Result III (for p = 3) with parameters/argument assigned

accordingly (we omit the details, which are elementary, as we did in its last
application to arrive at (P18)). Equation (P20) is the Theorem.O

1) , (P20)

Summary

In this paper an unusual hypergeometric identity has been established from
first principles. Whilst computer-assisted, it has the advantage over a fully
automated proof using the WZ method of Wilf and Zeilberger? (which, be-
ing but a pure verification, would not be particularly illuminating) in that
it puts the result into some kind of perspective relative to others and, as
with some classical formulations such as this, there is always the possibility
that it might lead to a generalised version of the original identity or even a
g-analogue expressed in terms of basic hypergeometric series. In any case,
as stated in the Introduction, it is felt that the details of the proof are
sufficiently interesting from an analytical point of view to warrant dissem-
ination.

Appendix

Here, for completeness, we derive Result II. It is, as alluded to in the
Introduction, but a simple re-write of (3.1.1) in [3, p.59], which with a

2See, for instance, Petkoviek, M., Wilf, H.S. and Zeilberger, D. (1996). A=B, A.K.
Peters, Wellesley, U.S.A., for more information.
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corrected l.h.s. 3F, series argument is, for n =0,1,2,3,...,

-n,a,b
3F2( ¢,d ‘1)

(d—b)n P -n,c—a,b
d)n >\ l+b-d-n

1) . (A1)

We write

-n,a,b
w (708" [1)

I'(d—b+n)T'({d) -n,c—a,b
Td-bl(d+n)° 2(0,1+b—d-—n 1)1 (A2)
since
(d=b)n _ (d=b+n)-n),
(d)n B {((d+n) —n),
I'(d - b+ n)[(d) (A3

T(d — b)T(d + n)

using (3). Switching variables according to d —+ e, ¢ =& d, n & —c¢, (A2)
becomes

P ca,b 1 _T(e=b-c)['(e) P c,d—a,b
2 e T Te-blle—c) > \d1+b—e+c

1) ., (A4)

which now holds for ¢ = 0,-1,-2,-3,... Clearly b and c are interchange-
able in (A4), and we have Result IL
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