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Two players, A and B, are presented with a finite, simple graph G = (V, E)
that has no isolated vertices. They play the “edge-delete game” on G by
alternately removing an edge from the graph in such a way that no isolated
vertex is created. Player A begins and the winner is the last player able to
remove an edge. We say that the graph G is a Player A graph if there is
a strategy that A can follow that will guarantee that she wins the game.
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Abstract

Two players are presented with a finite, simple graph G = (V, E)
that has no isolated vertices. They take turns deleting an edge from
the graph in such a way that no isolated vertex is created. The
winner is the last player able to remove an edge. We analyze this
game when the graph G is a path of arbitrary length. In addition,
some observations are made in the situation that the graph has an
automorphism of a special type.

Introduction

Otherwise, G is said to be a Player B graph.
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Of course, after 4 has removed the first edge from G a new graph H has
been created. If there is an edge that can legally be removed by Player B,
then this can be considered as a new game in which the first player is now
B and the game is being played on H.

To be able to analyze the game played on a particular graph we now
formally use the setting of directed graphs. For any undefined terms see
Chapter 15 of [6]. A directed graph, or digraph for short, D, consists of
a finite set of vertices V(D) and some collection A(D) of ordered pairs of
distinct vertices. For u,v € V(D) such that (u,v) € A(D) we say that v
is a successor of u and that u is a predecessor of v. In addition, we say
the arc (u,v) is directed from u to v. The outset of a vertex z is the set
O(z) = {y | (z,y) € A(D)}. The inset of z is denoted by I(z) and is
defined as {y | (y,z) € A(D)}. A sinkof D is a vertex z having an empty
outset. A set I of V(D) is independent if for all u,v € I, (u,v) ¢ A(D).
The set I is absorbant if for each u & I there is an arc (u,v) such that
v € I. A set K that is both independent and absorbant is called a kernel.
A sequence W : vy, vs, ..., vy of vertices in D is called a walk if v; € I(vi41)
for each 1 < i < k — 1. The walk is closed il v; = v;.

For a given undirected graph G = (V, E) having no isolates, let D(G)
be the directed graph whose vertex set consists of all spanning subgraphs
of G that can result from some sequence of legal moves in the edge-delete
game played on G. In particular, the vertices correspond to the spanning
subgraphs of G having no isolated vertices. For two such subgraphs G; and
G5 there is an arc directed from G; to G2 in D(G) if G3 = Gy — f for some
edge f of G;. That is, we have the arc (G1, G2) in D(G) if and only if some
legal move in the edge-delete game played on G, yields Ga.

Since the number of edges is decreased by one with each move of the
game, it is clear that there are no closed walks in D(G), and each sequence
of legal moves is finite. A complete game corresponds to a directed path in
D(G), starting at G and ending at a sink. A player thus wins the game by
moving to a sink of D(G).

A vertex H of D(G) is considered to be a position or a state of the game
played on G, but D(H) is also an induced subdigraph of D(G). Hence we
may consider H as a position in the original game or as the starting position
in the game played on H. In fact, H could have k connected components
C1,Cs,...,C in which case it is consistent to consider H as a vertex in
the directed graph arising from the game sum of k edge-delete games. (For
the formal definition of the sum of gaines see the chapter by A. S. Fraenkel
in [2).) In either case H is called an N-position (i.e., next) if the player
starting the edge-delete game on H has a winning strategy. Otherwise, H
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is called a P-position (i.e., previous). More precisely, H is a P-position if
for every edge e € E(H) such that H — e has no isolated vertices, the graph
H —eis an N-position. If it is the case that H — e has an isolated vertex for
every edge e of H, then the game has been won by the player who removed
an edge from some graph to leave H, and so H is a P-position. Note that
in this latter case the vertex H is a sink of D(G) and of D(H).

For a given undirected graph G we partition the vertex set of the directed
graph D(G) as P UN where

e P is the set of all P-positions, and

e N is the set of all N-positions.

Here P and N suggestively stand for “previous” and “next”. Note that
every sink of D(G) belongs to P. Suppose now that a player must make a
move on a graph H. If H € N, then by definition there exists an edge e
of H such that H — e € P. On the other hand, if H € P, then for every
arc (H,F) in D(G), F € N. Thus, il G € N, then there is a strategy that
A can follow to guarantee hersell a win. But if G € P, then B can follow a
strategy that guarantecs himn a win.

It follows from the definitions that P is a kernel of the digraph D(G), and
since D(G) has no circuits the following result of Von Neumann [7] implies
the partition is unique.

Theorem 1 A digraph withoul circuits possesses a unique kernel,

Of course, the difficulty is in finding the partition P UN efficiently. In
Section 2 we determine those values of k for which the path of order k
belongs to . In Section 3 we consider the more general case and find a
number of classes of graphs on which B has a winning strategy.

2 Paths

Throughout this section we let P,, denote the path of order n having vertices
labelled 1,2, ..., n in the natural order. Each vertex of D(P,) is a collection
of paths each of order at least two. In addition, the orders of these subpaths
of P, add to n. For simplicity we denote by (p;,po,...,p:) the vertex of
D(Py) that has k components having orders py,pa, ..., pr. Note that we are
allowing orders to be repeated. For example, (2,3, 3,6) is a vertex of D(P4)
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and this vertex has two successors, namely (2,3,3,2,4) and (2,3,3,3,3),
which has no successors. The only successor of (2, 3,3,2,4) is (2,3,3,2,2,2),
which is a sink. Thus, (2,3,3,2,4) € N. There are several sequences of
moves that give rise to the position (2,3,3,6). How does one determine
whether the original P4 is in P or in N'?

We define a function g, the so-called Grundy function, that assigns a
non-negative integer to each vertex of D(P,) in such a way that P = {z |
g(z) = 0}. This method was introduced in 1939 by P. M. Grundy [1]. First
we partition the vertex set of D(P,) into levels as follows. Let Lq be the set
of sinks and let £; be the set of vertices of D(P,) all of whose successors
belong to Lo. For k > 1, let £, denote the set of vertices z & U;<xL; such
that O(z) N Lx—1 # @ and O(x) C Uik Li. For z € Lo let g(z) = 0. If
z € Ly for £ > 1 let g(z) be the smallest non-negative integer that does
not belong to the set {g(y) | y € O(z)}.

This implies that P = {2 € V(D(P,)) | g9(z) = 0} and N = {z €
V(D(P,)) | g(z) > 0}. To see this we show that K = {z € V(D(F,)) |
g(z) = 0} is a kernel in D(P,). If u,v € K then g(u) = 0 = g(v) and so
by the definition of g, u is not a successor of v nor is v a successor of u.
Also, if w ¢ K, then g(w) > 0 and so by definition w has a successor x
such that g(z) = 0. Hence, K is independent and absorbant. That is, K is
a kernel of D(P,,). But by Theoremn 1 the kernel of D(P,) is unique and so
P = {z € V(D(F)) | g(x) = 0}.

We now appeal to the method presented by A. Fraenkel in [2]. See
especially pages 117-120. For two non-negative integers r and s we denote
by r @ s the Nim-sum of r and s, which is computed as follows. Suppose
T = Zf:o r;2' where each r; is non-negative; similarly, s = Zf:(] s;2*. Then
r®dsis Zf:o t;2, where for each i, t; = r; + s; € {0,1} computed in Zs.

If F; and F> are games that both belong to P or if one belongs to P
and the other is in A/, we can determine where their game sum, denoted
F, U F, lies by using the Grundy function defined on each.

Lemma 2 Let Fy and F»> be games. Then

(i) If F,,F> € P, then the game sum Fy U F3 is also in P.
(ii)) fFLeEPand R €N, then FLUF> € N

Proof To prove (i) let Fy, > € P. Then, g(F1) = 0 = g(F2), and every
successor of F} and every successor of F> has a positive Grundy value.
For any successor Fy of I, and any successor F3 of F it follows that
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g(F}) ® g(F2) > 0 and g(F,) & g(F3) > 0. Therefore, g(F; U F3), being the
smallest non-negative value not assumed by ¢ for all possible successors of
F, UF,, is 0. This implies that F; UF; € P.

For (ii), since F> € A let F; € P be a successor of Fj. Then FjUF; isa
successor of F} U F, and belongs to P by (i). Therefore, in this case F; UF;
has a successor that is in P, and so F} UF> € N. a

To compute the Grundy value, g(n), for the path P, we first note that
the set of successors in D(P,) is {(2,7 - 2),(3,n = 3),...,(n — 2,2)}. As
in [2) the Grundy value g(k,n — k) is g(k) ® g(n — k) and hence g(n) is the
smallest non-negative integer not in the set

{92y dg(n—2),9(3)®g(n—3),...,9(n - 2) B g(2)}.

To be able to find the partition of D(P,) as P UN for a given n we will
need to know all of the above Grundy values. One step in that process
is the following lemma. Note that (m,m + 34) is a position in the game
played on Pa,,4.34, but it could also be two of some number of components
that arise in the course of a game played on a longer path. The meaning
should be clear from context.

Lemma 3 For every positive integer m > 56, the position (m,m + 34) is
inP.

Proof The calculation of Nim-sums is tedious but straightforward. A
computer program has verified that (m,m + 34) € P for 56 < m < 145.
Proceeding by induction we let A > 146 and assume that for all m, such
that 56 < m < M the position (m, m + 34) belongs to P. Let z = (M, M +
34) and let y be any successor of 2.

First suppose that y = (a,b, M + 34) where M =a+ b and b > a. Let
z=(a,b,a,b+ 34) € O(y). By Lemma 2 (a,a) € P. Since b > q, it follows
that b > 4—} > 56. Therefore, by the induction hypothesis (b, b + 34) also
belongs to P. Thus, z is the sum of two games in Pand hence z € P. As
z, a successor of y, is in P, we have y € N.

Next, suppose that y = (M,c,d) where c+d = M + 34 and ¢ < d.
Since ¢ £ M — 2 the position z = (¢, M — ¢, ¢,d) is a successor of y. But
M—c = d—34and hence z = (c, ¢, d—34, (d—34)+34). Now, d > 33 > g9
and so d — 34 > 56. By induction (d — 34,d) € P and hence z, being the
sum of two games in P, is also in P. As z, a successor of y, is in P, we
have y € M.
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Since we have shown that every successor y of = is in N, we have that
z=(M,M+34)eP. ]

Now we can complete the analysis of the edge delete game on paths.
Using a computer program that computes Grundy numbers we have shown
that for paths of order n less than 90, the edge delete game on P, can be won
by A unless n € {2,3,7,11,17,23,27,31,37,41, 45, 57,61, 65, 75, 79}. The
proof of the following theoremn now follows immediately by using Lemmas
2 and 3.

Theorem 4 The edge delete game on the path of order n can be won by
B if and only if n belongs to one of the following sets:

e {2,3,7,11,17,23,27,31,37}

o |J {41 + 34k, 45 + 34k, 57 + 34k, 61 + 34k, 65 + 34k}
£>0

3 Graphs with symmetry

Many other graphs for which it is easy to see a winning strategy fit into
the following general framework.

Theorem 5 Suppose G = (V, E) has an awtomorphism f : V. = V with
the properties: (1) f has no fized poinis; (2) f(f(x)) = 2z for every vertex
z in V; and (3) x is not adjacent lo f(z) for any 2 in V. Then B has a
winning strategy on G.

Proof Given the structure of the graph, we observe that whenever A deletes
an edge 2y, B can respond by deleting the edge f(z)f(y). After each pair
of moves (in other words, after B has played each time), f is still an auto-
morphism of the resulting graph. So, if A removing an edge is a legal move
(i-e-, no vertex is isolated), then B ’s move is also legal. o

Many situations fit into this “mirror type” situation. For example,

(i) Even cycles.

(ii) Any graph which is the disjoint union of 2 copies of the same graph
(or any even number of copies of the same graph for that matter).
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(iii) Any complete bipartite graph of the form K5, 2 (the automorphism
interchanges pairs within the same color class).

(iv) A complete graph of even order which has had a perfect matching
removed (the automorphism interchanges the vertices at the ends of
removed edges in the perfect matching).

(v) Hypercubes (the automorphism is the function that interchanges 0’s
and 1’s in the representation of the hypercube of dimension n as a bit
string of length » in which two bit strings are adjacent if and only if
they differ in exactly one coordinate).

(vi) Any even by even grid graph (for instance, for the 2n by 2m grid,
vertex (4,7) corresponds to vertex (2n+1—1i,2m + 1 —j)).

Note that any even by odd grid, say 2n by 2m + 1, is an .4 graph, since
A could remove the edge joining vertex (n,m + 1) to vertex (n +1,m + 1)
creating a graph as described in Theorem 5 where vertex (i, j) corresponds
to vertex (2n+1—1i,2m + 2 — 7)) and thus a B winning situation. We also
observe that 4 graphs can be built by taking two vertex-disjoint B graphs,
say G and H, and joining a vertex v in G with a vertex v in H by an edge.

4 Related Problems

The edge delete game actually first arose as a special case of the following
two person game [3] played on a graph G, where E is the number of edges.
The set {1,2,...,E} will be the set of labels, each of which can be used
at most once. Each edge can be assigned at most one label. The players
alternate assigning an unused label from {1,2, ..., E} to an unlabeled edge.
For a given vertex z, let S(z) be the set consisting of all the edges meeting
z. If not all elements of S(a:) have been assigned a label yet, we call the
partial weight of 2 the sum of the labels of those elements of S(z) that have
a label. Once all of S(2) has a label we call the weight of the vertex 2 the
sum of the labels assigned to all of its incident edges. The first time some
vertex has all incident edges labeled, the sum of those labels is called the
magic constant, k. If the first time this occurs it involves two vertices (by
labeling the edge joining them), both weights must be the same. Once the
magic constant has been set, all other weights must be equal to this magic
constant. If this cannot be accomplished at some vertex, then one of the
incident edges must remain unlabeled. Note that as long as an incident
edge remains unlabeled, the partial weight may actually exceed k.
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The last player able to make a legal move wins. Thus, in general, the
game will be over before all the edges have been labeled. Now observe that
if the first player uses the label 1 on an edge to a leaf on his/her first move,
the constant k is set to 1 and this cannot be achieved at any other vertex.
Hence the players can assign any label to edges but must always leave some
edge unlabeled at every vertex. In essence, this is simply the edge delete
game. Thus the first player would make such a move on her first play if she
could win the edge delete game on the rest of the graph.

The reader is also referred to [4) for a collection of graphs with the very
special property that regardless of how the players move the outcome is
determined. For example, consider an arbitrary graph which has an odd
number of edges. If one attaches a leaf to every vertex of this graph to form
a new graph H, then no matter how the players move on H, A will always
win.
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